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Abstract

We show that internal waverwave interactions in stratified fluids are able to produce strong
horizontal mean currents. A simple analytical model allows us to estimate the amplitude of the
time-periodic horizontal mean flow induced by the interaction of two monochromatic waves. This
model shows that in some cases, the mean flow velocity can overgo a threshold beyond which
critical layers and intense energy transfers from the waves to the mean flow are expected. This
prediction is confirmed by direct pseudo-spectral simulations of the Navier–Stokes equations
under the Boussinesq approximation. Such interactions may help to further understand the
presence of strong vertical shear observed in the final stage of stratified flows in oceans and
atmospheres. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The presence of internal gravity waves is one of the main features of geophysical
stratified flows. Wave fields may be generated by shear instabilities, wakes, tides,
topographic effects or more generally turbulent motions in stratified regions of oceans
and atmospheres.
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Attention was already paid to waverwave interactions in stratified media. As pointed
Ž .out by Garrett and Munk 1979 , an important issue is the influence of such interactions

on energy spectra in the oceans. Nonlinear triadic interactions give rise to energy
transfers provided that the frequencies and wavevectors of the modes involved verify the
resonance condition.

Investigating the possible wave action transfers in internal wave energy spectra,
Ž .McComas and Bretherton 1977 concluded that three kinds of resonant triadic interac-

tions could take place. The most rapid process, called induced diffusion, involves two
modes with similar wave vectors and frequencies, and a large-scale, low-frequency
mode. Induced diffusion may play an important role in the shape of energy spectra at
low wavenumbers. The second process, called elastic scattering, involves an upward
propagating mode and a downward propagating mode. This process tends to balance the
upward and downward energy fluxes on a time scale of order one wave period. This
accounts for the often-observed vertical symmetry of wave fields in the oceans. The
third process is the parametric subharmonic instability which transfers energy to high
wavenumbers. This mechanism has a great effect on the inertial range of energy spectra
and may account for the high activity of small-scale waves in stratified oceans.

Ž .From a theoretical point-of-view, Lelong and Riley 1991 studied wave–wave
interactions with a multiple-scale method. They also considered triads involving a

Ž .vertical vorticity mode. From an experimental point-of-view, Martin et al. 1972 have
observed the excitation of several resonant triads by the propagation of a single internal

Ž .wave. Teoh et al. 1997 studied the interaction between two internal wave rays in salt
water and observed the production of evanescent modes in the interaction region. In this
region, wave energy was accumulated but turbulent kinetic energy was locally dissipated
and the mixing efficiency was weak.

Few studies have paid attention to triads involving a vertical wavevector which is
actually associated with a non propagating, horizontal mean flow. However, Phillips
Ž .1968 has shown that internal gravity waves can be trapped by a vertically modulated
horizontal current giving rise to the elastic scattering triadic interaction.

Furthermore, some studies have shown that horizontal mean flows strongly interact
Ž .with internal waves. As experimentally observed by Koop 1981 , internal waves

Ž .propagating in a horizontal mean flow U z can reach a critical level. This happens at
an altitude z where the Taylor–Goldstein equation becomes singular, i.e.,c

U z svrk , 1Ž . Ž .c 1

where v is the angular frequency of the wave and k is the horizontal wave number.1
Ž .Booker and Bretherton 1967 have theoretically studied energy transfers at a critical

level and concluded that an acceleration of the mean flow could result at the critical
Ž .altitude. The numerical simulations performed by Winters and D’Asaro 1994 have

actually shown that in most cases, wave energy was not only transferred to the mean
flow but also converted into turbulent motions or transferred to the reflected wave. In
the present article, we show that critical layer mechanisms can be involved in wave–wave
interactions and lead to a significant energy transfer from the waves to the mean flow.

Only bidimensional cases are considered in the x–z vertical plane where z is the
spatial coordinate in the direction of gravity and x is the spatial coordinate in the
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Ž .horizontal direction. The horizontal mean flow U z is defined as the average of the
horizontal velocity in each horizontal plane of altitude z. In Section 2, we use a simple
analytical model to estimate the amplitude of the time-periodic mean flow induced by
the interaction of two monochromatic waves. The modes involved are similar to those

Ž .involved in the interaction described by Phillips 1968 . The waves are supposed to
remain unperturbed by the induced mean flow. This model shows that in some cases, the
velocity of the shear flow catalysed by the waverwave interaction can locally reach a

Ž .value such that the critical layer condition 1 is satisfied for one of the two waves or
both. Then, the shearing motion is expected to accelerate and to lose its time-periodicity.
We give a simple criterium which allow us to determine whether or not such a critical
level is reached.

This criterium based on simple, linear argument is confirmed in Section 3 by
bidimensional direct numerical simulations of the interaction between two monochro-

Ž .matic internal waves. A pseudo-spectral code Thual, 1992 is used to solve the
complete, non-linear Navier–Stokes equations under the Boussinesq approximation with
fully periodic boundary conditions.

2. The analytical model

2.1. Equations of motion

In this section, we propose a simple analytical model describing the evolution of the
mean flow induced by the interaction of two monochromatic internal waves in a
thermally stratified fluid with constant and uniform Brunt–Vaısala frequency N. Under¨¨ ¨ ¨
the Boussinesq approximation, variations of density r are assumed to induce buoyancy
forces without affecting the inertial terms and to linearly depend of temperature T :
Ž . Ž .ryr rr sa TyT , where subscript 0 stands for a reference state and a is the0 0 0

expansion coefficient. Then, the equations of motion may be written in a cartesian
Ž .coordinate system e , e , e as:1 2 3

=Pus0°
y1 2~E uq uP= usyr = pqa gu e qn= uŽ .t 0 3 2Ž .

2¢E uq uP= usyGwqk= uŽ .t

Ž . Ž .where u x, y, z, t s u, Õ, w , and p are the velocity and pressure fields. Variable u

represents the temperature fluctuations from the stable, mean profile. x, y, z and t are
Ž .the space and time coordinates and =s E , E , E . g is the acceleration of gravity, n isx y z

the kinematic viscosity and k is the thermal diffusivity. G is the mean temperature
vertical gradient. The Brunt-Vaısala frequency is defined by: N 2 sa gG.¨¨ ¨ ¨

ŽWe choose fully periodic boundary conditions with periodicity L the size of theb
.periodic domain and we will only consider bidimensional, incompressible flows. Then,

Ž . Ž Ž . Ž ..the velocity field u x, z, t s u x, z, t , w x, z, t is fully described by variables:
Ž . Ž .w x, z, t , the vertical velocity, and U z, t , the horizontally averaged horizontal
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Ž .velocity. Component u x, z, t is easily deduced from the resolution of the incompress-
ibility condition E usyE w with periodic boundary conditions, knowing thatx z

² :x yu x , y , z ,t sU z ,t , 3Ž . Ž . Ž .

² :x ywhere . is the horizontal average operator, i.e.,

1 L Lb bx y² :q x , y , z s q x , y , z d xd y.Ž . Ž .H H2L 0 0b

Ž .for any quantity q x, y, z .
Ž . Ž . Ž .Equations for variables w x, z, t , u x, z, t and U z, t read:

2 4°E= wy=n =n uP= u Pe sa gE uqn= wŽ .Ž .t 3 x x

2~ 4E uq uP= usyGwqk= u Ž .Ž .t
x y¢ ² :E UqE uw snE Ut z z z

2.2. The mean flow induced by two internal waÕes

Let us write the bidimensional velocity field as:

us u ,w s U z ,t quX x , z ,t , wX x , z ,t , 5Ž . Ž . Ž . Ž . Ž .Ž .

Ž . Ž XŽ . XŽ ..where U z, t is the horizontal parallel flow and u x, z, t , w x, z, t is associated
Ž .with a small-amplitude wave field. It is clear from Eq. 4 that this wave field is subject

to the distortion by the mean flow. However, to a first approximation, we will consider
that the waves are only weakly distorted. Also, nonlinear terms will be neglected in the
equations of w and u as well as the effect of dissipation. Then, we get the linear,
non-dissipative internal wave equation:

E2= 2 wX
E2 wX

2qN s0. 6Ž .2 2Et Ex

Let us consider the superposition of two monochromatic internal waves A and B:

uX suX quX
A B 7X X X Ž .½w sw qwA B

uX sy k rk wX cos k xqk zyv tqwŽ . Ž .A 3A 1A 0A 1A 3A A A
8Ž .X X½w sw cos k xqk zyv tqwŽ .A 0A 1A 3A A A

uX sy k rk wX cos k xqk zyv tqwŽ . Ž .B 3B 1B 0B 1B 3B B B
9Ž .X X½w sw cos k xqk zyv tqwŽ .B 0B 1B 3B B B
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This wave field is the superposition of waves A and B with small amplitudes wX
0A

X Ž . Ž .and w , wave vectors k s k , k and k s k , k , frequencies v and v0B A 1A 3A B 1B 3B A B
Ž .and phase shifts w and w . Eq. 6 is satisfied if v and v verify the dispersionA B A B

relation:

k1A
v sN sNcosb 10Ž .A A2 2(k qk1A 3A

k1 B
v sN sNcosb 11Ž .B B2 2(k qk1B 3B

Ž . Ž .where b respectively b is the angle between k respectively k and theA B A B

horizontal direction e .1
Ž .We now consider the evolution equation of U z, t . This equation reads:

² X X:x
E UqE u w s0 12Ž .t z

Thus, the wave-induced mean current is quadratic in the waves amplitude and it is
² X X:xstraightforward that E u w '0 unless waves A and B are such that k sk orz 1A 1B

k syk . In the following, we will only consider the second case and we will note1A 1B

k sk )0 and k syk -0, the results being easily extended to the case where1A 1 1B 1
w x w xk sk . Then, cos b g 0, 1 and cos b g y1, 0 .1A 1B A B

Ž .Eq. 12 reads:

wX wX k 2 yk 2
0A 0B 3A 3BxX X² :E u w s sin k qk zŽ .z 3A 3Bž /2 k1

y v qv tq w qw 13Ž . Ž . Ž .A B A B

Ž . Ž .Let us choose the initial condition U z, 0 s0 for Eq. 12 . This leads to the solution:

wX wX
0A 0B

U z ,t sMk cos KzyV tqf ycos Kzqf 14Ž . Ž . Ž . Ž .1 2 N

where

tan2b y tan2b cosb ycosbA B B A
Ms s , 15Ž .2 2cosb qcosb cos b cos bA B A B

Ksk qk , Vsv qv and fsw qw3A 3B A B A B

2.3. Critical layer criterium

We now have the solution for the mean flow induced by the interaction of waves A
and B. Now we would like to know whether this mean flow is strong enough so that
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Ž .wave A or B can locally develop a critical layer. According to Eq. 1 , a necessary
condition for this to happen is that its amplitude overgoes one of the thresholds:

v vA B
U s or U s .cA cBk k1A 1B

Thus a critical layer may appear if

< < < <U Gmin U , U , 16Ž .Ž .M cA cB

Ž .where U is the maximum positive value that the mean flow can reach. From Eq.M
Ž .14 , the value of U is given by:M

wX wX
0A 0B

U sMk 17Ž .M 1 N

We are now going to look for a criterium in terms of the dimensionless parameter

X Xk w w(1 0A 0B
Qs 18Ž .

N

Ž . Ž . Ž . Ž .Using Eq. 10 , Eq. 11 , Eqs. 17 and 18 , we can calculate U , U and U incA cB M

function of Q:

cosbAX XU s w w 19Ž .(cA 0A 0B Q

cosbBX XU s w w 20Ž .(cB 0A 0B Q

X X < <U s w w Q M 21Ž .(M 0A 0B

Ž .Then, criterion 16 can be equivalently written in terms of Q:

QGmin Q ,Q 22Ž . Ž .A B

where

cosb cosbA B
Q s and Q s 23Ž .( (A BM M

We see that this condition depends not only on the value of Q but also on
trigonometric functions which determine the values of the thresholds. Let us use Eq.
Ž .15 to write again Q Q in function of cos b and cos b :A B A B

cosbA 2 2Q s cos b cos b 24Ž .A A B( cosb qcosbA B

cosbB 2 2Q s cos b cos b 25Ž .B A B( cosb qcosbA B
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The values of Q and Q in function of cos b and cos b are plotted on Fig. 1.A B A B

Given the values of cos b , cos b and Q, this plot allows us to determine whether orA B
Ž .not condition 22 is verified. We see that for low values of cos b and cos b , theA B

values of the thresholds Q and Q can be small.A B

One will notice that the wave–wave–mean flow interaction is spatially resonant but
not temporally resonant in the general case because the frequency of the induced mean
flow does not automatically verify the dispersion relation. It is only the case when

² X X:x Ž Ž ..Vs0 but this requires that cos b sycos b and then E u w s0 see Eq. 13B A z
Ž .and no mean flow is produced. This means that an anisotropy or asymmetry of the

wave field is needed to give rise to a horizontal mean flow.
Notice that planes cos b s0 and cos b s0 do not have to be taken into accountA B

because in that case, waves have actually to be considered as non-propagative vertical
shearing modes. However, an interesting result is that the value of the critical threshold

Ž . Ž .for wave A respectively wave B is very low when cos b respectively wave cos bA A

is close to zero. This happens when one of the two waves propagates almost vertically
with almost horizontal phase planes. In this case, we thus expect that a critical level will

Fig. 1. Thresholds Q and Q as a function of cos b and cos b . Given the values of cos b , cos b andA B A B A B

Q, this plot allows us to determine whether or not the mean flow induced by the wave–wave interaction can
Ž .reach the critical level of wave A, wave B or both. Q respectively Q is maximum for cos b s3r5A B A

Ž .respectively cos b sy3r5 . The maximum value of Q and Q is 0.41. For cos b s0.5 and cosB A B A

b sy0.5, we have Q sQ s0.18.B A B
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be reached for almost any value of Q. This may be a scenario for energy transfers from
almost horizontal wavy motions to purely horizontal mean currents.

We conclude that the interaction of two internal gravity waves with amplitudes wX
0A

X Ž . Ž .and w and wavevectors k s k , k and k s k , k are able to produce a0A A 1A 3A B 1B 3B
< < < < < < < <horizontal mean flow if k s k and k / k . Furthermore, critical layers and1A 1B 3A 3B

intense energy transfers from the waves to the mean flow may occur if the dimension-
X X Žless parameter Qsk w w rN where N is the Brunt–Vaısala frequency of the( ¨¨ ¨ ¨1 0A 0B

.stratification is such that

QGmin Q ,Q ,Ž .A B

where Q and Q depend on the orientation of the wave vectors and are given by Eqs.A B
Ž . Ž .24 and 24 . However, our model does not allow us to predict the evolution of the flow
once a critical level is reached. Then, the complete set of nonlinear equations has to be
considered.

3. Direct numerical simulation

3.1. Methodology

In order to check that the conclusions of Section 2 are relevant, we performed direct
numerical simulations of the interaction between two monochromatic internal gravity

Ž .waves. The complete set of nonlinear, dissipative Eq. 4 was solved by a pseudo-spec-
Ž .tral code Thual, 1992 . The boundary conditions are fully periodic and the spatial

resolution is 64=64. All the variables are expressed in the Fourier space and nonlinear
terms are calculated in the physical space. We use a second-order slaÕed-frog temporal

Ž .scheme see Frisch et al., 1986 .
The flow evolves in a periodic square box of size L with no external forcing, theb

initial condition being the superposition of two monochromatic internal waves A and B
Ž .with horizontal wavenumbers k s2prL and k s -2prL see Fig. 2 . Obviously,1A b 1B b

nonlinear interactions and dissipation are now allowed so that the velocity field is not
Ž .expected to keep the simple expression 7 all along the simulation. The initial condition

is chosen such that:

wX swX swX ,0A 0B 0

the initial amplitude of the waves,

k syk sk s2prL ,1A 1B 1 b

k s2prL and k sy4prL ,3 A b 3 B b

w s0 and w s0.A B

So that:

' 'cosb s1r 2 and cosb sy1r 5 .A B
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Ž .Fig. 2. Initial velocity field arrows in a vertical plane for the numerical simulations: superposition of two
monochromatic internal waves with no vertical mean shear.

And

Q s0.247 and Q s0.197A B

The simulations are fully defined by the values of:

ReswX L rn ,0 b

the initial Reynolds number;

PsnrK

the Prandtl number;

Qsk wX rN.1 0

2 Ž .The resolution of 64 allows: Res833, Ps1.Two simulations were performed: i
Ž . Ž . Ž .Sub-critical simulation Simulation I : Qs0.13-min Q , Q , ii Over-critical simu-A B

Ž . Ž .lation Simulation II : Qs0.31)max Q , Q .In order highlight the global evolutionA B
Ž .of the mean current, we plotted its total energy within the box against time see Fig. 3 :

1 1Lb 2E t s U z ,t d zŽ . Ž .Hsh L 20b

3.2. Sub-critical simulation

Ž .In the sub-critical simulation Simulation I , we observe a time-periodic mean current
Ž .energy see Fig. 3 , which is consistent with the conclusions of Section 2.

As can be seen on the velocity fields shown on Fig. 4, the waves are not significantly
perturbed by the induced mean flow but are slowly dissipated along the simulation. No
energy is transferred to smaller structures which is typical of a weak interaction.
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Ž . Ž .Fig. 3. Evolution of the total mean current energy in Simulations I sub-critical and II over-critical . The
velocity scale is wX . The time scale is L r wX . In Simulation I, the mean current remains time-periodic0 b 0

whereas in Simulation II, it loses its periodicity and finally dominates the flow.

Nevertheless, we notice that the mean current energy oscillates around a mean value
which slowly increases along the simulation and does not reach zero anymore along its

Ž Ž ..Fig. 4. Simulation of waverwave interaction in the sub-critical case Qs0.13-min Q , Q . VelocityA B
Ž . X Ž . X Ž .fields arrows in a vertical plane at ts L r w left and ts2 L r w right . The waves are notb 0 b 0

significantly perturbed by the induced time-periodic vertical mean shear.
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oscillations. This may be explained by the effect of dissipation which dissipates the
wavy motions faster than the larger-scale mean flow. It is also possible that a weak
nonlinearity rises in this sub-critical simulation and participates to this slow drift.

3.3. OÕer-critical simulation

In the over-critical simulation, it is found that the mean current produced by the
wave–wave interaction rapidly loses its periodicity as evident on Fig. 3. Both waves are
strongly affected by the presence of the induced mean shear and small structures are

Ž .produced, which is typical of a strong nonlinear wave–shear interaction see Fig. 5, left .
After less than one time unit L rwX , a strong energy transfer is observed from theb 0

waves to the mean flow. This energy transfer seems to happen on a time scale a little
slower than the waves time scale. Thus, some oscillations are still observed on Fig. 3
even after the threshold is reached. At the end of the simulation, the mean current totally

Ž .dominates the flow and the remaining wavy motions are weak see Fig. 5, right .
Thus, it is confirmed that the evolution of the mean flow is radically different when

the critical layer criterium derived in Section 2 is satisfied. In addition, direct numerical
simulation allows us to observe that the energy transfer is not localized in altitude as one
would expect from a critical-level mechanism. Even if the criterium we derived with
simple arguments seems to be relevant, this leads us to study in the last section how
nonlinearity affects the energy transfer scenario described in Section 2.

3.4. Effect of nonlinearity

In order to show that the intense mean flow production observed in the over-critical
simulation is not due to a simple wave instability but to the wave–mean flow

Ž Ž ..Fig. 5. Simulation of waverwave interaction in the over-critical case Qs0.31)max Q , Q . VelocityA B
Ž . X Ž . X Ž .fields arrows in a vertical plane at ts L r w left and ts2 L r w right . The induced vertical meanb 0 b 0

shear loses its time-periodicity and dominates the flow at the end of the simulation.
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interaction, we have performed the same simulation ignoring the retroaction of the mean
Ž .flow onto the wave field Simulation III . The new set of equations is:

X X X X2 4E= w y=n =n u P= u Pe sa gE uqn= wŽ .Ž .t 3 x x
26Ž .X X 2½E uq u P= usyGw qk= uŽ .t

X Ž X X.where u s u , w is deduced from the resolution of the incompressibility condition
E uX syE wX with periodic boundary conditions, specifying thatx z

² :x yu x , y , z ,t s0. 27Ž . Ž .
Ž .Eq. 26 is then uncoupled from the mean flow equation:

² X X:x y
E UqE u w snE U 28Ž .t z z z

All the parameters defining the simulation are the same as for Simulation II. The
evolution of the total mean current energy is shown on Fig. 6. The velocity field
usUe quX in a vertical section is shown on Fig. 7 at tsL rwX and ts2 L rwX .1 b 0 b 0

In this simulation a roughly time-periodic mean flow is produced until t,L rwX
b 0

Ž . Ž .see Fig. 6 . After this time, the waves become unstable see Fig. 7, left but the mean
Žflow energy starts decreasing and is weak at the end of the simulation see Figs. 6 and 7,

.right .

ŽFig. 6. Evolution of the total mean current energy in Simulation III over-critical, with no retroaction of the
. X Xmean shear on the wave field . The velocity scale is w . The time scale is L r w . At the end of the0 b 0

simulation, the induced mean flow is much weaker than in Simulation II.
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Fig. 7. Simulation of waverwave interaction in the over-critical case with no retroaction of the mean shear on
Ž . X Ž . X Ž .the wave field. Velocity fields arrows in a vertical plane at ts L r w left and ts2 L r w right . Theb 0 b 0

waves are unstable but the remaining mean flow is weak.

This result clearly shows that the strong acceleration of the mean current observed in
Simulation II was due to the interaction of the waves with the induced mean flow as
conjectured in Section 2, even if no spatially localized critical layer was detected. The
wave instability observed in Simulation III may also be involved in Simulation II but
this instability does not induce any significant acceleration of the horizontal mean
current as shown by Simulation III and wave–mean flow interaction seems to be the
dominant energy transfer mechanism from the waves to the mean flow.

4. Conclusion

We have proposed a simple 2D-analytical model describing the evolution of the
horizontal mean flow induced by the superposition of two monochromatic internal
gravity waves in a stratified fluid with constant and uniform Brunt-Vaısala frequency N.¨¨ ¨ ¨
In this model, waves were assumed to have small amplitudes and to remain unaffected
by the induced mean flow. Nonlinear effects were neglected as well as dissipation. It

Žwas found that a time-periodic mean flow could be produced if wavenumbers k s k ,A 1A
. Ž . < < < < < < < <k and k s k , k were such that k s k and k / k . In addition we3A B 1B 3B 1A 1B 3A 3B

Ž .have found that the mean flow could either remain time-periodic sub-critical case or
overgo a threshold beyond which a critical layer phenomenum and energy transfers from
the waves to the mean flow were expected. We found that such a threshold was reached

X X Ž < < < <when the dimensionless parameter Qsk w w rN where k s k s k and(1 0 A 0 B 1 1A 1B
X X .w and w are the amplitudes of waves A and B was such that0A 0B

QGmin Q ,Q , , 29Ž . Ž .A B
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where Q and Q depend on the orientation of the wave vectors and are given by Eqs.A B
Ž . Ž . Ž .24 and 24 see Fig. 1 .

This prediction was confirmed by bidimensional direct numerical simulations of the
Navier–Stokes equations under the Boussinesq approximation, the initial condition
being the superposition of two monochromatic waves with no vertical mean shear. In the
sub-critical case, the mean current was approximately time-periodic with a slightly
increasing mean value. This slow drift may be due to a weak non-linearity or to the
effect of viscosity which dissipates the large-scale growing mode more slowly than the
wavy motions. In the over-critical case, nonlinear transfers were observed from the
waves to the mean flow and the flow was finally dominated by the mean current. The
effect of wave instability was also investigated by switching off the retroaction of the
mean flow on the waves in the over-critical simulation. We found that the waves became
unstable but did not produce any significant vertical mean shear. This allowed us to
conclude that the interaction between the waves and the induced mean flow was the
dominant mechanism.

It is likely that such a wave–wave–mean flow interaction can partly explain the
presence of strong vertical shear modes in geophysical flows, such as stratified wakes of
obstacles or moving bodies in oceans and atmospheres. It could also be involved in the
acceleration of horizontal mean currents by stratified turbulence as observed in DNS of

Ž .stratified turbulent shear flows see Galmiche et al., 1997, 1998, 1999 . To get closer to
realistic situations, our predictions might be improved by taking the effect of the Earth
rotation into consideration.

This mechanism may also help to understand the production of intense horizontal
currents by the interaction between a breaking wave and the induced secondary modes

Ž .as observed by Lombard 1994 .
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