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Lee-wave breaking over obstacles in stratified flow
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Experimental results are presented on the lee-wave breaking process which occurs at low Froude
numbers when uniform and strongly stratified flow approaches two-dimensional and quasi
two-dimensional Gaussian-shaped obstacles. It was found that the lee-wave breaking process is
essentially independent of the two-dimensional and the quasi two-dimensional shape of the
obstacles. The attainment of the critical condition where the steepening wave becomes statically
unstable does not mark a threshold to breakdown. Instead, the wave remains dynamically stable for
several buoyancy periods, overturning into an ‘‘S’’-shape with maximum overturning reaching
about 55° past the vertical. It is observed that the primary instability forms a quasi two-dimensional
spanwise vortex over the central portion of the obstacles and is mainly shear driven. The quasi
two-dimensional spanwise vortex persists for a few buoyancy periods before undergoing a
three-dimensional convective instability, similar to a Rayleigh–Taylor instability. As a result, an
array of toroidal vortex structures aligned parallel to the obstacle crest forms. These vortex
structures of size;3H are inclined into the flow yielding three strong components of vorticity.
© 2000 American Institute of Physics.@S1070-6631~00!01604-4#
le
ng
fo
s
nt

n

on
es
er
r-
d
he
th
wn
ai

th
ric

he
on

re-
he
and

lity
ey

ow
ning
ee-

ilar
as-
-
ve

ee-
ar
the

ing

ri-
r
ad-
ribe
nt

ibe
I. INTRODUCTION

The flow of uniformly stratified fluid over an obstac
such as a mountain can lead to stationary lee-waves. Lo1,2

developed a nonlinear stationary two-dimensional model
these flows and showed that for sufficiently small obstacle
was in remarkable agreement with laboratory experime
Clark and Peltier,3 Peltier and Clark,4 and Laprise and
Peltier5 demonstrated, from numerical simulations of u
bounded flows, that when the Froude numberF (F
5U/NH, whereU is the upstream velocity,H is the obstacle
height andN5(2g/r0 dr/dz)1/2 is the Brunt–Va¨isälä fre-
quency! is below the critical value,Fc , for which the
streamlines overturn locally in Long’s steady-state soluti
the lee-wave becomes statically unstable and undergo
transition. The flow changes from a freely propagating int
nal wave flow, well described by Long’s model, to a diffe
ent configuration with a region of intense turbulence an
strong acceleration of the low-level flow in the lee of t
obstacle. This phenomenon is particularly important in
meteorological context, because it is responsible for do
slope windstorms occurring on the lee-side of mount
ranges such as the Rocky mountains.6 Lee-wave breaking is
also responsible for a further increase in drag imparted on
atmosphere, which needs to be accounted for in nume
weather prediction models.

Theoretical investigations of the lee-wave breaking p
nomenon have been done essentially in Long’s inviscid c

a!Electronic mail: eiff@cnrm.meteo.fr
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text. Smith7 developed a nonlinear hydrostatic theory to p
dict the vertical location of the breaking region and t
associated increase of the wind speed and drag. Laprise
Peltier8 have undertaken the two-dimensional linear stabi
analysis of Long’s steady-state nonlinear solution. Th
showed that forF,Fc , in addition to a local convective
mode, the dominant instability mechanism is of a shear-fl
type which feeds on the shear layer between the steepe
wave level and the ground. The more recent thr
dimensional simulations by Afanasyev and Peltier,9 suggest
that the instability behavior is three-dimensional and sim
to the shear-aligned convective instability described by Kl
sen and Peltier10 in Kelvin–Helmholtz rolls. Further three
dimensional high-resolution simulations of gravity wa
breaking near a critical level by Fritts and Isler,11 Winters
and D’Asaro,12 and Andreassenet al.,13 or of propagating
internal-wave breaking by Lombard and Riley14 also suggest
that wave breaking is essentially dominated by thr
dimensional instability in which both convective and she
effects can be important to varying degrees depending on
particular conditions of the flow.

Experimental studies focusing on lee-wave break
such as those by Rottman and Smith15 and Castro and
Snyder16 have undertaken systematic towing tank expe
ments to study the range ofF leading to wave breaking fo
different obstacle shapes. These experiments mainly
dressed the occurrence of wave breaking but did not desc
the lee-wave breaking instability nor its evolving domina
large-scale structures.

Thus, it is the objective of the present paper to descr
3 © 2000 American Institute of Physics
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new experimental results examining the three-dimensio
features of the lee-wave breaking instability and the eme
ing large-scale vortex structures in the wave-breaking zo
In Sec. II, we describe the experimental facilities and pro
dures. Then, in Sec. III, we present some complemen
results to the extensive study of Castro and Snyder16 on the
lee-wave regimes for two-dimensional Gaussian obstacle
order to situate the lee-wave breaking regime investigate
detail in the following sections. In particular, the process
lee-wave breaking is described in Sec. IV, beginning with
overview of the transient evolution~Sec. IV A! and followed
by the observed primary~Sec. IV B! and secondary lee-wav
instabilities~Sec. IV C!. The three-dimensional nature of th
emerging large-scale structures in the breaking zone
shown and discussed in Sec. V.

II. EXPERIMENT

The experiments were conducted in three different wa
towing-tanks of sizeHt3Wt3Lt equal to 0.530.534
m3~small tank!, 0.730.837 m3 ~medium tank! and 1.533
322 m3 ~large tank!, which allowed three different Reynold
number magnitudes to be examined.~See Fig. 1 for a sketch
of the experimental set-up.! These Reynolds number magn
tudes (Re5UH/n, whereU is the towing or freestream ve
locity andH is the obstacle height! were 102, 103, and 104

for the three tanks, respectively. Baines and Manins17 sug-
gest that Reynolds numbers exceeding several hundred
necessary in order to correctly model the large-scale tu
lence as encountered in atmospheric flows. Thus, only
high Reynolds number range is expected to be character
by fully turbulent conditions. Both the low and mediu
ranges, however, are still likely to yield the same fundam
tal large-scale motions, as will be shown.

Many experiments dealing with lee-waves in a stratifi
fluid had adopted a towing-carriage technique where the
stacle was mounted on a flat baseplate suspended from
carriage and towed upside-down across the stationary
~e.g., Hunt and Snyder18!. To avoid the perturbations gene
ated by the baseplate, we preferred an upright towing c
figuration in which the obstacles were towed tangentia
along the bottom of the tank at uniform speed (U). In the
upright configuration the Reynolds numbers associated w
the supporting threads, ranging from 0.5 to 60, induce n
ligible downstream disturbances. The gap between the b
plate of the obstacle and the tank floor, less than about 0.
also produces no significant flow perturbations, as confirm

FIG. 1. Experimental setup.
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by experiments using the small obstacles with increasing
spacings which did not reveal flow perturbations up to 0.3

The experiments were performed with two-dimension
and quasi two-dimensional Gaussian-shaped obstacles~see
Fig. 2!. The streamwise cross-sectional profiles for bo
types of obstacles are given byh(x)5H exp(2x2/2L2) with
H/L50.57. Based on the total length of the mountain, 2Lo ,
the aspect ratio isH/Lo50.23, corresponding to a gentle t
moderate slope.15 The two-dimensional obstacles, used in t
small and medium tanks, are uniform across the entire sp
wise direction, spanning the width of the tank except fo
thin spacing of 2 mm at the walls. The quasi tw
dimensional obstacles, used in all three tanks, were chose
make the flow as two-dimensional as possible and yet m
mize the upstream perturbations caused by flow blocking
F,1.19 Thus, the quasi two-dimensional obstacles are a
uniform along the spanwise direction, but the ends
smoothed by the same Gaussian shape as in the stream
direction, in a semicircular manner. The quasi tw
dimensional obstacles were scaled such that the span
aspect ratio (W/H) and confinement (W/Wt) in each tank
were the same, specifically,W/H510.3 andW/Wt50.45.
~Note that the latter ratio required a separating wall to
used in the small tank to adjustWt to 0.37 m.! In the case of
the two-dimensional obstacles,W/H531 for the small tank
andW/H524 for the medium tank. The maximum perturb
tions due to upstream blocking and the resulting wall refl
tions are expected to be obtained with the two-dimensio
obstacles as the end of tanks are approached~increasing Nt!.
In the small tank, measurements of the longitudinal veloc
profile, taken 30 L ahead of the end-wall at the mome
when the two-dimensional obstacle is approaching at a
tance 40 L from the measurement location, showed that
maximum upstream perturbation is less than 0.1U. This po-
sition of the obstacle relative to the end-wall corresponds
the highest nondimensional times reported here~Nt5150!.

The linear stratification~NaCl solution! was obtained by
a computer-monitored filling process to yield Brunt–Va¨isälä
frequencies,N, in the range ofNP@0.8,1.1 rad/s#. The lin-
earity does not maintain itself at the bottom or at the top
the tank due to convective and diffusive effects at tho
boundaries. This can be expected to pose a problem in
case of the bottom layer where the waves are generate
the obstacles. However, tests with different thicknesses h
revealed that the lee-wave dynamics are not affected w
the bottom layer thickness does not exceed 0.6 H. Care
taken to ensure that this thickness was held well below
limit at 0.2 H. Subtracting the depth of the top layer, t
effective vertical confinement (D) over which the stratifica-

FIG. 2. Schematic of the two-dimensional and quasi-two dimensional
stacles.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



n

el

s
ch
s

fo
ion
rti
nk
ca
y
ne
te
oy
ifie
th
o.
g
tr

si
o
h
en
ed

e
th
m
x
se
s

ve
cl
-

d
,

g
c

d
vis
h

se
is
th

te
e
de

iti-

that

is

1075Phys. Fluids, Vol. 12, No. 5, May 2000 Lee-wave breaking over obstacles in stratified flow
tion is linear was aboutD/H58 with a maximum root-mean
square~rms! deviation of the linear density profile less tha
0.2%. Tests with higherD/H ratios ~up to 40! in the small
tank did not reveal an influence of this ratio on the wave fi
in the lower lee-wave zone of interest.

The flow was examined via two basic technique
fluorescent-dye and particle visualizations. In both te
niques, a thin laser sheet is used to illuminate a cro
sectional plane of the flow which is filmed by CCD~charge
coupled device! cameras and recorded on S-VHS tape
subsequent processing. In the fluorescent-dye visualizat
the dye was introduced into the flow by creating fixed ve
cal (xz) fluorescent-dye planes along the length of the ta
These planes were obtained by carefully pulling a verti
rake of thin cotton threads painted with fluorescent d
shortly before towing the obstacle. The fluorescent pla
appear as lines in any given horizontal laser-illumina
plane. In the particle visualization technique, neutrally bu
ant particles spanning the range of densities in the strat
fluid are seeded throughout the fluid well in advance of
tows. Their settling velocity is, therefore, effectively zer
Two methods to analyze the resulting particle recordin
were used: Particle-tracking and particle image velocime
~PIV! based on the cross-correlation of two images~TSI-
Insight™!. The flows were also examined in two planes
multaneously, either with particle-tracking in both planes
particle-tracking in one and fluorescent-dye in the other. T
was realized by using two laser sheets of different frequ
cies in conjunction with appropriate optical filters mount
on the cameras.

For steady, incompressible flow, the pathlines obtain
from a time-integration of the particle displacements in
particle tracking technique would be equivalent to strea
lines and isopycnal lines. For the slowly evolving flows e
amined here, relatively short time integrations are u
(Ndt52) such that the pathlines can nevertheless be con
ered as approximations to stream and isopycnal lines.

III. LEE-WAVE REGIMES FOR A TWO-DIMENSIONAL
GAUSSIAN OBSTACLE

In this section we give a brief review of the lee-wa
regimes as found for two-dimensional Gaussian obsta
with an aspect ratio,H/L, equal to 0.57. The lee-wave re
gimes are mainly determined by the Froude number base
H (F5U/NH), which quantifies the linearity of the flow
while the Froude number based onL (FL5U/NL) plays a
secondary role, quantifying the nonhydrostaticity. Lon1

showed that nonlinear Boussinesq flow over an obstacle
be described by a linear equation~Helmholtz equation! plus
nonlinear boundary conditions. We have used Long’s mo
to compute the lee-wave field under the assumption of in
cid flow and an unbounded upper boundary condition. T
algorithm used to obtain the solution follows that of Lapri
and Peltier,20 where the governing Helmholtz equation
solved using Fourier transform techniques and where
correct nonlinear lower boundary condition is implemen
iteratively. Figures 3~a!–3~d! show the streamlines of th
resulting wave fields computed for four different Frou
Downloaded 16 Sep 2009 to 147.210.120.5. Redistribution subject to AIP
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numbers (F5$1.2,1,0.97,0.9%). The results in Fig. 3~c! show
that for F50.97, the streamlines become vertical. This cr
cal Froude number,Fc , thus marks the limit of a statically
unstable density gradient where it is generally assumed

FIG. 3. Streamlines over a Gaussian obstacle (H/L50.57) computed from
Long’s ~1953! two-dimensional inviscid and unbounded model. The flow
from left to right and viewed in the obstacle frame.~a! F51.2, ~b! F51.0,
~c! F50.97, ~d! F50.9.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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wave breaking is about to occur. Under linear hydrosta
theory ~e.g., Queney21! vertical steepening occurs forFc

51, but the nonlinear lower boundary condition in additi
to the nonhydrostatic effect characterized byFL yields the
slightly lower value of 0.97 forFL /F5H/L50.57. These
nonlinear and nonhydrostatic effects also cause the loca
of the maximum steepening to move slightly downstream
the obstacle crest.20,22

Figures 4~a!–4~c! show experimental wave fields a
Nt5150 and Re5150 for F5$1.2,1.0,0.6%, obtained via
particle-streak visualizations. These experimental conditi
are viscous and the upper boundary condition is boun
(D/H528) in contrast to Long’s model, which is invisci
and unbounded. Nevertheless, forF51.2 @Fig. 4~a!# the
wave field can be seen to be in good agreement with Lon
solution @Fig. 3~a!# and was also observed to be steady.

FIG. 4. Pathlines over a two-dimensional Gaussian obstacle (H/L50.57) at
Nt5150 and Re5150. ~a! F51.2, ~b! F51.0, ~d! F50.6.
Downloaded 16 Sep 2009 to 147.210.120.5. Redistribution subject to AIP
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F51 @Fig. 4~b!#, on the other hand, the flow fluctuated abo
Long’s steady solution over a long time scale~Nt;50! with
occasional breaking. Essentially continuous breaking w
observed forF,0.8, as shown forF50.6 in Fig. 4~c!. The
flow can, therefore, be divided into three regimes, a fre
propagating wave regime forF.1, an intermittent wave-
breaking regime for 1.F.0.8, and a lee-wave breaking re
gime for F,0.8. The remainder of this paper, focusing o
the breaking regime, will be undertaken atF50.6.

IV. LEE-WAVE BREAKING PROCESS

A. Overview of transient evolution

Since the flow starts impulsively from rest, we begin
examining the transient evolution leading to wave breaki
Using a two-dimensional obstacle in the small ta
~Re5150!, the flow was simultaneously examined in tw
orthogonal planes in order to gain an understanding of p
sible three-dimensional aspects. The two planes chosen
the vertical (xz) symmetry plane (y/H50) and the horizon-
tal (xy) plane through the center of the wave breaking reg
(z/H53). In the vertical plane, the flow was visualized u
ing particle-tracking in order to identify the wave field. In th
horizontal plane, fluorescent dye visualization with fixed v
tical sheets was used in order to verify the tw
dimensionality of the flow. Figures 5~a!@i–vii # and 5~b!@i–
vii # show the results at various stages of evolution leading
wave breaking~Nt5$20,24,34,38,42,46,51%!. Figures 5~a!@i–
vii # show the pathlines in the vertical (xz) plane while Figs.
5~b! @i–vii # show the simultaneously obtained dye or strea
lines in the horizontal (xy) plane. Although the vertica
sheets of dye were introduced into the fluid just prior to t
tow and were initially parallel and straight, weak large-sc
horizontal background motions which generate deformati
by the time of the tow are usually unavoidable. Fortunate
however, these deformations can be distinguished from
smaller-scale deformations induced by the flow when vie
ing the continuous evolution recorded on video. Thus,
main features that can be interpreted from the visualizati
in Fig. 5, in conjunction with the video, are depicted in Fi
6, for clarity.

In Figs. 5~a–i! and 6~a–i!, at Nt520, it can be seen tha
the wave on the lee-side of the obstacle is still steepen
By Nt524 @Figs. 5~a-ii! and 6~a-ii!# the wave is vertical and
has, therefore, reached the critical condition where the lo
flow becomes unstable. However, this condition is only st
cally unstable. Rather than evolving directly and rapidly in
a ‘‘turbulent’’ zone, the wave slowly overturns into the form
of an ‘‘S,’’ as seen in Figs. 5~a-iii! and 6~a-iii! at Nt534.
Fourteen buoyancy periods after reaching the critical con
tion, at Nt538, the flow is still overturning with the maxi
mum unstable inclination of the wave approaching about 5
with respect to the vertical@Figs. 5~a-iv! and 6~a-iv!#. Similar
observations of S-shaped isopycnals which persist for l
periods compared to the wave period were also made
Thorpe23 in the case of a stratified fluid oscillating in a rec
angular tube. In agreement with the present results, Tho
concluded that the selection of a condition in which isopy
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1077Phys. Fluids, Vol. 12, No. 5, May 2000 Lee-wave breaking over obstacles in stratified flow
nals become vertical as a limit for finite amplitude evoluti
of internal waves may be arbitrary and unrealistic.

Figures 5~b!@i–iv# and 6~b!@i–iv# show the correspond
ing horizontal plane results. They reveal that the flow
mains essentially two-dimensional up to Nt538, even
though the wave has overturned. The only spanwise mot
Downloaded 16 Sep 2009 to 147.210.120.5. Redistribution subject to AIP
-

ns

that can be inferred are large-scale deformations which
due to the background disturbances in the tank. Repetit
of the experiment confirmed that these deformations are
correlated with the dynamics of the wave breaking proce

In the late stages of the overturning, the S-shape d
not remain symmetric: At Nt538 @Figs. 5~a-iv! and 6~a-iv!#,
FIG. 5. Simultaneous flow visualizations in two planes intersecting the wave breaking region over a two-dimensional Gaussian obstacle (Re5150) at
Nt5$20,24,34,38,42,46,50%. ~a! Pathlines in vertical (xz) plane aty/H50, ~b! fluorescent-dye images in horizontal (xy) plane atz/H53.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 5. ~Continued.!
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it can be seen that the upper half of the S has contra
more than the lower half. A few buoyancy periods later,
Nt542, this contraction of the upper half of the overturni
wave leads to a topological change in the structure of
flow: The formation of a clockwise rotating vortex@Figs.
5~a-v! and 6~a-v!#. The emergence of this vortex is direct
associated with the appearance of a saddle point do
stream, as it must in order to satisfy the kinematic dema
of the flow. Interestingly, except near the walls of the tan
the flow has essentially remained two-dimensional in
breaking zone during this process since no significant sp
wise motions can be detected in the horizontal plane@Figs.
Downloaded 16 Sep 2009 to 147.210.120.5. Redistribution subject to AIP
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5~b-v! and 6~b-v!#. The implication is that a quasi two
dimensional spanwise (vy) vortex has developed. Howeve
significant spanwise motions can be observed near the e
of the flow, suggesting that the billow does not remain tw
dimensional over the entire width of the obstacle.

The vortex continues to grow for several buoyancy p
riods as seen in the vertical (xz) plane results at Nt546 @Fig.
5~a-vi!#. At this stage, however, significant spanwise motio
can be inferred from the kinks apparent in the streaklin
suggesting that the motion has become three-dimensiona
few buoyancy periods later, by Nt550, the topology of the
flow has again undergone a topological change@Figs. 5~a-vii!
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1079Phys. Fluids, Vol. 12, No. 5, May 2000 Lee-wave breaking over obstacles in stratified flow
and 6~a-vii!#. The flow now consists of two counter-rotatin
vortices in conjunction with two~necessary! saddle points. In
the horizontal (xy) plane @Figs. 5~b-vii! and 6~b-vii!#, the
streaklines have become very perturbed in the spanwise
rection, i.e., implying that the flow has become highly thre
dimensional.

B. Primary instability

The preceding results show that the first wave bre
down yields a spanwise (vy) vortex. This is essentially a
two-dimensional process since no significant spanwise
tions over the central portion of the obstacle crest were
tected. The two-dimensionality is confirmed by the cons
tent observations of spanwise vortices forming in the fix
y/H50 vertical plane for all repetitions of the experimen
The ensuing counter-rotating vortex pair, on the other ha
was not consistently observed. Since three-dimensio
structures are expected to yield different topologies depe
ing on their position relative to a fixed plane of visualizati
while a two-dimensional structure necessarily yields
same topology, the consistent observations of spanwise
tices support the conclusion that the single spanwise vo
formation is essentially two-dimensional, whereas the en
ing vortex pair formation is three-dimensional as sugges
in Figs. 5~b-vii! and 6~b-vii!, and demonstrated in Sec. IV C

FIG. 6. Corresponding schematic representation of the flow visualizat
results shown in Fig. 5.~a! Vertical (xz) plane,~b! horizontal (xy) plane.
Downloaded 16 Sep 2009 to 147.210.120.5. Redistribution subject to AIP
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The emergence of a spanwise vortex in the fixedy/H50
vertical plane after the wave overturns into an S-shape
also observed with the quasi two-dimensional Gaussian
stacles for all Reynolds number magnitudes investigated
cluding the high Reynolds number magnitude under fu
turbulent conditions (Re;104). It can, therefore, be consid
ered that the uniform extent of the quasi two-dimensio
obstacle is wide enough such that the overturning w
breaks down as with the two-dimensional obstacle. In ad
tion, this breakdown appears to be independent of the R
nolds number. Figure 7 displays the pathlines in the cen
vertical plane at Re58000 for a quasi two-dimensional ob
stacle. Clearly, as in the lower Reynolds number exp
ments, a clockwise vortex can be identified after the wa
has overturned into an S-shape.

Details of the flow conditions just prior to the spanwi
vortex roll-up have been investigated by applying the P
technique to the particle visualizations of the Re;600 ex-
periments. Assuming streamlines to be approximately eq
to isopycnals for this slowly evolving flow, vertical densit
profiles @r(z)# could also be estimated by evaluating t
value of each isopycnal at the upstream density gradi
Figure 8 shows a PIV velocity vector field in they/H50
vertical plane just prior to the clockwise vortex formatio
The flow was generated by towing a quasi two-dimensio

s

FIG. 7. Pathlines in the vertical center plane over a quasi two-dimensi
obstacle in the large tank. The obstacle measures 1.14 m~length! by 2.5 m
~width! by 0.13 m~height!. Re58000, Nt521.

FIG. 8. Velocity vector field in vertical (xz) plane aty/H50 obtained via
PIV. Re5580, Nt524, quasi-two dimensional obstacle. The shaded reg
is statically unstable.~The dashed line shows the position of the profil
presented in Fig. 9.!
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1080 Phys. Fluids, Vol. 12, No. 5, May 2000 O. S. Eiff and P. Bonneton
obstacle. It can be seen that the velocity vector field co
sponds closely to the pathline field depicted in Fig. 5 for
case of the two-dimensional obstacle at lower Reyno
number just prior to the vortex roll-up, specifically a S-sha
with the top portion of the S being more contracted than
bottom. The cross-hatched zone in Fig. 8 identifies the reg
where the streamlines and thus the isopycnal lines have o
turned, rendering this region of the flow statically unstab

Figures 9~a!–9~c! show the corresponding density, v
locity and gradient Richardson profiles@r(z), u(z), and
Ri(z)5N2/(du/dz)2# through the center of the overturne
wave atx/H52.7. Similar to the vertical phase-relationsh
between the shear and stratification profiles analyzed
Winters and Riley,24 it can be seen that regions of stron
shear coincide with stable stratification and regions of w
shear with unstable stratification. Near the boundaries of
statically unstable fluid, the shear is strongest andRi(z) lies
between 0 and 0.25 for a thin region outside the bounda
of the statically unstable region. Thus, shear instability c
occur according to the theorem of Miles25 and Howard26

since 0,Ri,0.25 somewhere in the flow. Of course, th
criterion is strictly only valid for parallel and horizonta
shear as well as infinite Re number, and the condition

FIG. 9. Vertical z profiles atx/H52.7 for Re5580, Nt524, quasi two-
dimensional obstacle. The location of the profiles is indicated by the da
line in Fig. 8. ~a! r(z), ~b! u(z)/U, ~c! Ri~z!.
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convective instability is simultaneously satisfied sinceRi
,0 below.

The stability analysis of Winters and Riley,24 examining
internal wave-breaking near a critical layer, showed that
type of instability, shear or convective, which generates
fastest growing mode with spanwise vortices depends on
relative importance of the unstable stratification with resp
to the shear. Using perturbations in thexz-plane they found
that streamwise convective instability~i.e., convective insta-
bility resulting in spanwise vortices! becomes only dominan
for vanishing shear. Strong shear, on the other hand, c
pletely inhibits streamwise convective instability; instead t
spanwise vortices grow due to the kinetic energy of
shear. At intermediate shear values, the instability of the f
est growing mode is due to both shear and convective eff
and is similar in appearance as in the strong shear situa
Winters and Riley24 show that the relative importance o
shear with respect to unstable stratification for the fas
growing modes is determined by the bulk Richardson nu
ber, J5(NLc /Uc)

2, where Uc and Lc are characteristic
scales of the shear profile. For the ‘‘strong’’ shear situatioJ
never exceeds 0.25. ‘‘Intermediate’’ shear values are for v
ues ofJ just above 0.25 while ‘‘vanishing’’ shear occurs i
the largeJ limit. In the present flow, where a similar phas
relationship between the unstable density profile and
shear profile occurs prior to the formation of a spanw
vortex,J was estimated to be about 0.18 from the density a
velocity profiles shown in Figs. 9~a! and 9~b!. (Uc was cor-
respondingly taken as the velocity defect andLc the width of
the defect.! The value ofJ being smaller than 0.25 sugges
that shear is the main driving force with the convective co
tribution playing a minor role in the formation of the spa
wise vortex.

Using disturbances in theyz-plane which are not influ-
enced by the shear in thexz-plane, Winters and Riley24 show
that for the fastest growing modes, spanwise convective
stability, yielding modes with streamwise vortices, exists
J,0.25. Linear stability theory predicts that this streamw
mode grows at about half the rate as the spanwise m
from which they conclude that the instability is thre
dimensional. Rather than being truly three-dimensional,
observed that the spanwise vortex in a givenxz-plane is
associated with a quasi two-dimensional vortex extend
along they direction. Small streamwise deformations asso
ated with this vortex could be the result of streamwise c
vective instability, but do not appear significant in the e
periments, as would be expected from their smaller grow
rate compared to that of the shear instability generating
spanwise vortex.

C. Secondary instability

The simultaneous views of the vertical and horizon
planes discussed in Sec. IV A showed that shortly after
spanwise vortex has formed, the lower portion of t
S-shaped wave~in the vertical plane! forms into a vortex of
opposite rotation~at Nt550), thus yielding a counter
rotating vortex pair. Simultaneously, in the horizontal plan
the previously unperturbed and uniform flow becom

ed
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1081Phys. Fluids, Vol. 12, No. 5, May 2000 Lee-wave breaking over obstacles in stratified flow
strongly perturbed, implying that this evolution is thre
dimensional in nature. A more detailed fluorescent dye vi
alization in the horizontal plane at the level of breaking, a
performed with a quasi two-dimensional obstacle
Re5150, is shown in Fig. 10 for Nt550. It clearly shows
thatseveral separate structures in thexy-plane have formed a
the same time as the spanwise counter-rotating vortex p
For example, near the center of the picture, an undeform
streakline can be seen between two adjacent structu
Clearly, the initially quasi two-dimensional spanwise vort
has separated into distinct structures.

Figure 11 shows the pathline pattern at the same tim
above~i.e., Nt550!, but in the frontal (yz8) plane intersect-
ing the wave-breaking region. This plane is slightly inclin
at 13° with respect to thez axis ~defined asz8) so that the
flow can be viewed through the surface of the water. T
parallel cameras were used in order to span a wider exte
the flow and the laser-light sheet was made relatively th
~;1 cm! to capture the vortex motion. Outside the wav
breaking region the pathlines are expected to be vertical
their apparent inclination in Fig. 11 which increases towa

FIG. 10. Fluorescent-dye image in horizontal (xy) plane at z/H52.5.
Re5150, Nt550, quasi two-dimensional obstacle.
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the edges in each view is due to the movement of the p
ticles through the laser sheet. Nevertheless, the pathline
the wave-breaking region reveal counter-rotating circulat
patterns indicating the presence of counter-rotating stre
wise vortices, characteristic of streamwise convective ins
bility as observed~numerically! by Winters and Riley24 and
also by Andreassenet al.13 or Afanasyev and Peltier.9

Afanasyev and Peltier,9 who present a three-dimension
numerical simulation of stratified flow over topography, pr
pose on the basis of their numerical simulations as wel
the preceding laboratory experiments of Voropayevet al.27

in an overturned linearly stratified fluid, that thin pairs
horizontal layers of relatively lighter and denser fluid form
a result of the vertical isopycnals of the steepening wa
These layers subsequently become unstable, resulting in
formation of arrays of mushroom-like convective structur
in the yz-plane. They conclude that the streamwise vortic
are created by the shear-aligned convective instab
mechanism of Klassen and Peltier.10

In the present laboratory experiments, the unstable s
tem does not consist of several pairs of unstable layers
instead of a heavy spanwise vortex lying above a light la
of unstable fluid. Yet, similar to the convective mushroo
like structures observed by Voropayevet al.27 or Afanasyev
and Peltier,9 this system is subsequently observed to beco
unstable with significant up and down-drafts associated w
streamwise convective structures~Fig. 11!. However, the oc-
currence of a second spanwise~counter-clockwise! vortex
which has been observed to form simultaneously is, giv
the results in the other planes, necessarily part of a th
dimensional structure. Similar spanwise vortices were
reported in the studies by Afanasyev and Peltier9 and Voro-
payevet al.27 Thus, there appear to be differences betwe
the observed mechanisms.

In the topographic flow simulations of Afanasyev an
Peltier9 these differences are likely due to their use of
free-slip boundary condition. Recent direct numerical sim
lations at Re5200 by Gheusiet al.28 of the same flow as
discussed here over a two-dimensional obstacle have sh
that a free-slip condition on the surface of the obstacle res
in a mixed layer which continuously extends downstre
~rather than being confined above the lee-slope!, and both the
FIG. 11. Pathlines in the frontal (yz8) plane through the wave-breaking region. Re5150, Nt550, quasi two-dimensional obstacle.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



te
le
op

th

ti-

on

er

s a

-
ing

er,
ee-
e-

itical
at
m-
en

di-

g
g

r

1082 Phys. Fluids, Vol. 12, No. 5, May 2000 O. S. Eiff and P. Bonneton
mixed layer and the associated lower layer of accelera
fluid propagate downstream. Furthermore, no trapped
wave is observed anymore and the maximum downsl
wind speed has accelerated to about 3.5U, higher than the
situation when surface friction is accounted for (;2.3U, in
agreement with the experiments!. Similar observations were
also made by Richardet al.29 In the topographic flow simu-
lation with a free-slip condition of Afanasyev and Peltier,9 a
similar propagative character was observed. Thus,
streamwise confinement is effectively removed, yielding
convective instability with predominantly streamwise vor
ces. In the case of the experiments by Voropayevet al.,27 the
overturned tank is very narrow in the streamwise directi

FIG. 12. Pathlines in the verticaly/H50 plane at high Reynolds numbe
over a quasi two-dimensional obstacle. Re58000, Nt5118.
Downloaded 16 Sep 2009 to 147.210.120.5. Redistribution subject to AIP
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which could inhibit spanwise structures by being narrow
than the wavelength of this amplified disturbance.

V. DOMINANT VORTEX STRUCTURES

A. Vortex model

The emergence of the second spanwise vortex yield
counter-rotating vortex pair as seen in Fig. 13~a-i! at low
Reynolds number~150! or in Fig. 12 at high Reynolds num
ber ~8000!. The streamline pattern of these counter-rotat
vortex structures is represented in Fig. 13~a-ii!. However,
this topology, which is independent of the Reynolds numb
does not always occur in the vertical planes after the thr
dimensionalization. Instead, a different topology can som
times be identified as seen in Fig. 13~b-i! and in the corre-
sponding streamline pattern in Fig. 13~b-ii!. A common
feature that was observed in these cases is that the cr
points ~focal and saddle points! have disappeared and th
the flow in the wave-breaking region is upward and strea
wise. Usually one or both of the negative and positive op
bifurcation lines seen in Fig. 13~b-ii! can be identified, which
indicates that the flow is not two-dimensional since the
vergence is nonzero.

In the frontal (yz8) plane through the wave-breakin
region ~Fig. 11!, several pairs of adjacent counter-rotatin
vortex pairs were identified, while in the horizontal (xy)
e
FIG. 13. Sectional streamlines deduced from particle-tracking results in they/H50 vertical (xz) plane~Re5150!. Two different topological patterns can b
observed:~a! Two counter-rotating focal points with two saddle points, and~b! no focal nor saddle points.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1083Phys. Fluids, Vol. 12, No. 5, May 2000 Lee-wave breaking over obstacles in stratified flow
plane, the fluorescent dye visualizations~Fig. 10! have re-
vealed distinct structures. To account for these topolog
features in the three planes, the vortex model shown in
14 is proposed. The vortex structures are toroidal or ring-
and are inclined with respect to the horizontal. In this co
figuration they are associated with strong vorticity comp
nents in all directions. Sectional streamlines in a verti
plane intersecting the flow near the center of a torus~plane
v1 in Fig. 14! would reveal the topology of Fig. 13~a!. On
the other hand, no foci but strong upward flow as in F
13~b! would be observed in a vertical plane positioned in
region between two adjacent tori~plane v2 in Fig. 14!. Bi-
furcation lines are expected since in a real flow a perf
symmetry plane is unlikely to exist and furthermore unlike
to be coplanar with the plane of examination. Since in
experiment the vertical plane of examination was fixed w
respect to the obstacle, the observed changes of topo
between the ones depicted in Figs. 13~a! and 13~b! would be
the result of spanwise advection of the vortices. While s

FIG. 15. Sectional streamline pattern deduced from the vortex mode
either the horizontal (xy) or frontal (yz8) planes. The planes intersect th
centers of the vortices.

FIG. 14. Proposed vortex skeleton model of the dominant structures in
wave-breaking region over an obstacle. The co-rotating toroidal struct
are inclined and, therefore, exhibit strong vorticity components in all th
directions. The three planes of investigation are indicated with respect to
inclined vortices.
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tional streamlines in a vertical plane through the center o
torus yield one counter-rotating vortex pair, sectional strea
lines in frontal (yz8) and horizontal (xy) planes through the
array of vortices are expected to yield several align
counter-rotating vortex pairs~Fig. 15!, each pair associate
with one torus.

B. Experimental confirmation

Simultaneous measurements in at least two planes
needed to confirm that the observed topologies in each p
can indeed be attributed to the type of three-dimensio
vortex structures proposed in the model. Similar simul
neous fluorescent-dye and particle tracking experiments
described in Sec. IV A were carried out at Re;150 for both
the two-dimensional and the quasi two-dimensional o
stacles. They revealed that the ‘‘relaminarized’’ topology
Fig. 13~b! exists between two adjacent structures in the ho
zontal plane while the counter-rotating vortex pair is o
served between adjacent structures@Fig. 13~a!#. The fluores-
cent dye in the horizontal plane, however, did not clea
reveal the topology of those structures and therefore exp
ments examining the vertical and horizontal planes simu
neously with the particle tracking technique were carried
at Re;600 for both types of obstacles.

The results for the quasi two-dimensional obstacle w
the xz-plane fixed aty/H50 and thexy-plane atz/H52.5
are shown in Figs. 16~a!@i–ii # and 16~b!@i–ii #, respectively.
The horizontal (xy) plane at Nt564 shown in Fig. 16~b-i!
reveals at least two counter-rotating vortex pairs in the wa
breaking region, roughly aligned along the spanwise dir
tion. Taking into consideration the senses of rotation of th
structures, it can be inferred that two pairs are cente
aroundy/H;0. Therefore, no critical points are expected
the y/H50 vertical plane, which is verified by the inferre
sectional streamlines in Fig. 16~a-i!. At Nt5128, one vortex
pair can be identified in the horizontal plane@Fig. 16~b-ii!#.
Since the center of the vortex pair is now aligned latera
aroundy/H;0, we expect a counter-rotating vortex pair
appear in they/H50 vertical plane—as evident in the re
sults displayed in Fig. 16~a-ii!. Thus, these experiments con
firm the three-dimensional topological features expec
from the presence of toroidal vortices.

C. Spanwise alignment and scales

According to the proposed vortex model, the topology
either the horizontal (xy) or the frontal (yz8) planes consists
of a spanwise array of counter-rotating vortex structures
depicted in Fig. 15. This topology is in agreement with t
one inferred from the pathline patterns in the frontal pla
shown previously in Fig. 11 for a two-dimensional obstac
at Re5150. Pathline patterns in the horizontal plane, for t
same obstacle and Reynolds number magnitude, are sh
in Figs. 17~a! and 17~b!. In this plane two cameras wer
overlapped with separate zooms. The narrow zoom in F
17~b! clearly shows two counter-rotating vortex pairs align
in the spanwise direction. The wide zoom in Fig. 17~a! re-
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FIG. 16. Simultaneous particle-tracking results in the vertical (xz) plane aty/H50 and the horizontal (xy) plane atz/H52.5, intersecting the wave breaking
region. Re5580, quasi two-dimensional obstacle.~a! xz-plane:~i! Nt564, ~ii ! Nt5128; ~b! xy-plane:~i! Nt564, ~ii ! Nt5128.
in
re
t
e

vo
H

r-t
n
w

a
c

H
tal
t of
ape.
asi

am-
tors,
be
. It

n-
d

veals one additional pair and possibly two more. Assum
symmetry of the flow, about six vortex pairs are, therefo
aligned parallel to the obstacle crest, spanning about half
obstacle width. Outside of this region, three-dimensional
fects due to the presence of the walls are evident.

The spanwise separation between the centers of the
tex pairs apparent in Fig. 17 ranges from about 1–1.5
Given that six pairs span about 16 H, the average cente
center spacing is found to be about 1.3 H, implying that o
pair extends over 2.6 H. In the other planes of the flo
roughly the same scales were observed~cf., Figs. 11 and 5!,
suggesting that the structures are approximately ring-like
depicted in Fig. 14. For the quasi two-dimensional obsta
at Re5580 shown in Figs. 16~a-ii! and 16~b-ii!, the vortex
Downloaded 16 Sep 2009 to 147.210.120.5. Redistribution subject to AIP
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spacing, although slightly larger in this instance, is about 2
in both the simultaneously sampled vertical and horizon
planes, suggesting that the ring-like nature is independen
this Reynolds number range as well as the obstacle sh
The average wavelength of the vortex spacing for the qu
two-dimensional obstacles at both Reynolds numbers ex
ined also appears to be independent of these two fac
ranging from about 1 to 2H, while up to three pairs could
identified over the uniform section of the obstacle crest
can be noted that the numerical simulations at Re5200 over
a two-dimensional obstacle by Gheusiet al.28 revealed char-
acteristic lateral (y) wavelengths of about 2.4–4 H indepe
dently of the different types of initial perturbations applie
~white noise, harmonic or lateral walls!. These wavelengths
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1085Phys. Fluids, Vol. 12, No. 5, May 2000 Lee-wave breaking over obstacles in stratified flow
also correspond to a vortex spacing of 1.2–2 H, in agreem
with the range of experimental values.

VI. CONCLUSION

Experiments were carried out to characterize the l
wave breaking process and the resulting large-scale s
tures. The experiments with two dimensional Gaussi
shaped obstacles covered the low Reynolds num
magnitudes 102 and 103 and those with quasi two
dimensional Gaussian-shaped obstacles also covered th
bulent Reynolds number magnitude 104. Independent of
those Reynolds numbers or obstacle shapes, the results
shown that the initial wave steepening as well as the su
quent wave overturning into a S-shape are two-dimensio
As a result of this two-dimensional overturning a sing
roller parallel to the obstacle crest forms. This spanw
roller extends over a significant portion of the uniform se
tion of either the two dimensional or the quasi tw
dimensional obstacle. Subsequently, the flow in this reg
becomes highly three-dimensional, leading to coun
rotating vortex pairs in all three planes of the flow.

A vortex model is proposed to account for the domina
large-scale counter-rotating vortex pairs. It consists of to
dal or ring-like vortices aligned in the spanwise direction, t
planes of which are inclined with respect to the horizon
(;40°). The center-to-center vortex spacing of these ri
in all directions is about 1 to 2 H, roughly the height of th

FIG. 17. Pathlines in the horizontal (xy) plane atz/H52.5. Re5150,
Nt550, quasi two-dimensional obstacle.~a! Wide zoom with camera one
~b! Narrow zoom with camera two.
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overturning region, and was found to be independent of
Reynolds numbers or the obstacle shapes examined. In
case of the two-dimensional obstacle about six rings h
been identified, spanning roughly half the total obsta
width, beyond which the flow is three dimensional due to t
wall effects. For the quasi two-dimensional obstacle, up
three rings have been identified, spanning almost the ex
of the uniform section of the obstacle ridge.

The presence of separate ring-like structures explains
initially perplexing results in the vertical planes. The strea
lines in these planes were occasionally marked by the
sence of critical points in the wave-breaking zone, similar
the wave steepening but occurring after a period of stro
wave-breaking activity. Such an apparent relaminarization
the wave breaking region could be interpreted as a deca
the wave-breaking activity, if three-dimensional effects a
not considered. However, rather than being relaminariz
the strong wave-breaking activity is concentrated in sepa
zones whose large-scale organization takes the form of
vortices. Adjacent to such vortices, on the other hand,
flow is relatively calm with no critical points. Spanwise a
vection of the vortex structures will cause a shift in the flo
patterns observed in any fixed vertical plane and explain
apparent relaminarization.

The primary instability takes the form of a quasi tw
dimensional spanwise vortex. In analogy with similar she
and stratification profiles as those analyzed by Winters
Riley,24 the bulk Richardson number computed from the u
stable stratification and shear profiles just prior to the vor
formation suggests that this instability is essentially sh
driven since the contribution of convective instability in th
vertical (xz) plane is small. Winters and Riley24 predict that
convective instability in theyz-plane has a smaller growt
rate than the shear instability in thexz-plane which is con-
sistent with our observation of a quasi two-dimension
spanwise vortex without the appearance of signific
streamwise vortices. The results are also in agreement
Deardorff30 who showed that the critical Rayleigh number
the presence of shear is higher for spanwise than for stre
wise structures, implying that shear will inhibit streamwi
convective instability~yielding spanwise rolls!, but not span-
wise convective instability~yielding streamwise rolls!.

The ensuing secondary instability is highly thre
dimensional and displays some of the features of the sh
aligned convective instability mechanism observed by A
nasyev and Peltier9 in that a strong mode with streamwis
vortices is observed. These streamwise vortices, howe
are not in the shape of long streamwise rolls, but are inst
part of the inclined ring-vortices with significant componen
of vorticity in all directions. Each ring vortex is associate
with a strong central down-draft, so that the structu
closely resemble those resulting from a three-dimensio
Rayleigh–Taylor instability as shown numerically by Try
gvason and Unverdi.31 These authors examined the ful
three-dimensional deformation of an interface between
fluids in the limit of weak stratification in a rectangular d
main perturbed by a two-dimensional disturbance and fo
that as a ‘‘blob’’ of heavy fluid falls down, the baroclinicall
generated vorticity forms a closed vortex ring around t
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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blob. Jacobs and Catton32 who examined the case of a larg
density difference concluded that disturbances more or
equally proportioned in the lateral directions were favor
which would also be in agreement with the formation
ring-vortices.

The present work has examined the large-scale dynam
of lee-wave breaking and also provided the basis for the
Reynolds number direct numerical simulations using a n
hydrostatic atmospheric model~Meso-NH!.28 The next aim
is to study the turbulence characteristics of the wa
breaking region via velocity and density measurements in
wave-breaking region in the large tank at Re;104. This will
allow further validation of the numerical model, in particul
the sub-grid turbulence closures for high Re conditions. T
validated model can then be used to study atmospheric
ditions with Re5`.
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