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ABSTRACT
A McCormack TVD scheme is presented for the computation of Saint-Venant equations, in the context of coastal hydrodynamics. The dam-break
problem on wet and dry bottoms is used to evaluate and discuss the performances of the scheme. A run-up simulation on a sloping beach is then
presented and a comparison using an analytical solution is made. Finally, a bore propagation on a sloping beach is computed.

RÉSUMÉ
Un schéma McCormack TVD est présenté pour la résolution numérique des équations de Saint-Venant dans le cadre de l’hydrodynamique côtière. Le
problème du lâché de barrage sur fonds secs et mouillés est abordé pour évaluer et discuter les performances du schéma. Une simulation de propagation
d’un front d’eau sur une plage inclinée est alors présentée et une comparaison avec une solution analytique est effectuée. Finalement, la propagation
d’un ressaut sur une plage est simulée.

1 Introduction

The Saint-Venant (SV) shallow water equations are relevant to
describe waves in the coastal zone where the water depth is shal-
low in comparison to the characteristic horizontal lengthscale of
the motion. On a large scale, they can be applied to the analysis
of tidal oscillations or to the study of wave damage due to tsuna-
mis or storm waves. The SV equations are also appropriate to
describe phenomena on a smaller scale, such as broken-wave
(bore) propagation and run-up on beaches, which play a major
role in sediment transport and beach evolution. In both cases, a
correct estimation of levels and velocity fields in the very shallow
and transitional dry regions is a difficult numerical problem, es-
sentially because strong velocity gradients occur near the run-up
point, as demonstrated by Carrier and Greenspan [4] and Hibberd
and Peregrine [10]. Other difficulties arise from the non-linearity
and hyperbolicity of the SV equations which give rise to the ap-
pearance of discontinuous solutions, which are the mathematical
counterpart of physical phenomena such as bores.
To compute waves near the shoreline and bore propagation it is
necessary to use a shock-capturing numerical method. Hibberd
and Peregrine [10] and Kobayashi et al. [12] have chosen the
Lax-Wendroff scheme, which has become very popular for solv-
ing hyperbolic systems. This explicit finite-difference scheme,
second-order accurate in space and time, has been successfully
applied to solve numerous problems in gas dynamics. However,
in the presence of fronts, the dispersive properties of this scheme
introduce spurious numerical oscillations. To reduce these high-
frequency oscillations which tend to appear at the rear of the
wave front, Hibberd and Peregrine [10] and Kobayashi et al. [12]

included an additional dissipative term. As noticed by Hirsh [11],
this correction requires empiricism.
An alternative to this method is to use a TVD (total variation di-
minishing, Harten [9]) scheme, which represents a rational
method for the determination of artificial dissipation terms. In this
paper, we report the implementation of this method onto the
MacCormack time splitting scheme, and the ability of the result-
ing TVD scheme to simulate bore propagation, strong velocity
gradients near the run-up point, as well as dry/wet zone flow tran-
sition.

2 TVD MacCormack scheme

Referring to the definition sketch (figure 1), the one-dimensional
SV equations can be expressed in a vectorial form as follows:
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h(x,t) is the total depth of water, u(x,t) is the averaged velocity on
the water depth, Zf is the bed elevation and g is the gravitational
acceleration.
To precisely calculate the wave propagation, we have imple-
mented a classical hyperbolic solving method, the MacCormack
scheme, which was used successfully by Garcia and Kahawita [6]
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Fig. 1. Definition sketch
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for solving SV equations. As explained by LeVeque and Yee [13]
and Garcia-Navarro et al. [7], the main reason for choosing the
predictor-corrector step instead of the one-step Lax-Wendroff
formulation is that the former provides a natural way to include
the source terms S keeping second order accuracy in time and
space, whereas the one-step Lax-Wendroff scheme needs a spe-
cific treatment to do so (semi-implicit resolution method for ex-
ample). The McCormack scheme obtained yields very good solu-
tions in regular zones, but brings about oscillations when strong
water height or velocity gradients occur. Following the work of
Yee ([21]) for the Navier-Stokes compressible equations, we have
modified the MacCormack scheme with a TVD flux correction to
make it non-oscillating. The TVD MacCormack scheme so ob-
tained retains second-order precision in space and time in regular
zones and is oscillation-free across discontinuities. In this paper
we present the one-dimensional algorithm. The two-dimensional
one can be obtained in a straightforward manner and has been
described by Yee ([21]) for Navier-Stokes equations, and
Bonneton et al. [2] for SV equations.
Let be the numerical solution of equation (1) at andn

iq xix ∆=
, with the spatial mesh size and the time step;tnt ∆= x∆ t∆

λ=∆t /∆x. , , correspond to the lth component (l=1,2) of thelq lF lS

previously defined vectors. The TVD MacCormack scheme can
be expressed in three steps:

(a) predictor step

(b) corrector step

(c) TVD step

where the MacCormack TVD fluxes HT are build on the
combinaison of Upwind of first order and Lax-Wendroff approxi-
mations as follows

The notation corresponds to quantities estimated at the mesh
2
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interface (i,i+1). is a diagonal matrix whose elements corre-
2
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spond to limiter varying from 0 and 1. Each component of
2
1+i

Ψ

lead to an hybrid solution between low ( ) and high ( )0, =llΨ 1, =llΨ

order. The subscripts L, H and T refers to low order, high order

and TVD fluxes.

The steps (a) and (b) describe the classical MacCormack scheme
whereas the step (c) is a TVD flux correction. If we interpret 2

iq

as a solution resulting from a conservative discretisation of high
order, we have

Using equations (2-3), the MacCormack TVD scheme can be re-
written as

If we extract a numerical flux from equation (4),

we recover the general formulation of conservative TVD schemes

According for example to the work of Leveque [13], the numeri-
cal fluxes coming from first order and Lax-Wendroff
discretisations can be expressed as

where is the flux Jacobian matrix, ,q
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sponding diagonal eigenvalues matrix.
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Combining (5) and (6), we get

Developing with respect to the basis of the characteristic speeds,
we obtain

and finally
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. Other limiters such asll,Ψ

or

can be found in literature (Hirsch [11], Yee [21]), but they appear
to be more diffusive. The minmod function is defined by

At the interface of the meshes is determined by Roe’s [17]
2
1+i

q

averaging, which is an approximate Riemann solver (cf. Appen-
dix):

The solver a)-b)-c) is easy to implement and yields good results.
Similar approach have been implemented with success by Garcia
et al. [7] to solve the SV equations on flood processes and classi-
cal hydraulic problems. To avoid the scheme converging to non-

physical solutions, a classical entropy correction function ψ has
been used:

Thanks to (7), each component of can be rewritten as
1
2+

Φ
i

In our problem, the MacCormack TVD scheme brings the same
entropic solution with the entropy correction associated to a very
small ε and without this correction.

3 Dry zones and varying topography

The presence of dry zones is a crucial numerical problem to be
solved. Different techniques are commonly used in literature: ei-
ther you calculate only where the water is present and you have
to manage the dry/wet interface (Zhao and al. [23]) or you calcu-
late everywhere, imposing a thin water layer hd in the dry zones
(Wang [19]). We chose to use the second method: in the dry
zones, we take u = 0m.s-1 and hd = 10-4m whereas at the shoreline
(wet meshes next to dry meshes) a specific treatment is applied
in the momentum equation to the discretization of the horizontal
gradient of the surface elevation so that

.

It consists in omitting the landward spatial differences of this
term in the predictor and corrector steps.
The study of flows dealing with non-horizontal bottom involves
the presence of a source term in the SV equations. When the bot-
tom topography shows strong variations, it is necessary to de-
velop a special treatment of the source term to avoid the genera-
tion of artificial numerical waves due to bottom variations. Sev-
eral numerical methods exists such as extracting the term

2

2
h

g

from the flux function q and discretize it to verify compatibility
with S (Nujic [16]), or building Well-Balanced laws based on
exact Riemann solvers (Chinnayya and Le Roux [5]). Our pur-
pose is to build a numerical model to compute broken wave in the
inner surf zone over sandy beaches which are usually charac-
terised by even profiles. Balancing the space derivatives
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by a Finite Volume discretisation as follows
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our numerical model provide accurate solutions on linear slopes
(see section 5) and on real sandy beach profiles varying smoothly
(Bonneton et al [3]).

4 Tests on dam-break problem

To validate the shock--capturing ability of our method, we pres-
ent two frictionless transcritical flow problems: the dam-break on
wet bottom and the dam-break on dry bottom. The dam-break
simulation is a good way of validating our model because we are
familiar with analytical solutions from several articles discussing
this test (Nujic [16], Glaister [8], Zhao et al. [23] for example).

4.1 Dam-break on wet bottom

At the beginning of the calculations, the dam--break on wet bot-
tom is represented by a water step free surface. The upstream part
h1 corresponds to a water reserve behind a dam, whereas the
downstream part h2 represents a steady water layer.
Figure 2 presents a characteristic analysis of this problem. The
solution is split into a subcritical flow from x = - L/2 to x = 0 (Fr

< 1, where is the Froude number), where L is the do-gh

uFr=

main length, and a supercritical flow from x = 0 to x = L/2 (Fr >
1), where a shock spreads from x = 0 to x = L/2 (see fig. 2-left)
and an expansion wave appears in the subcritical flow between A
and B (fig. 2-right). A sonic point is located in x = 0.
Leading the characteristic theory, the analytical solution is then:
- from x = -L/2 to OA (OA is the curve), the analyticaltghx 1−=
solution is u = 0 and h = h1.
- from OA to OB (OB is the curve), we gettghx S−=

and .ghuS 1− − −= 2 2 x
3 3 t

+ 






g

t
xgh

h

2

1 33
2 −

=

- from OB to OS (OS corresponds to the x = s t curve, where s is
the shock velocity), the solutions hs and us left to the shock are
obtained solving the following system

- from OS to x = L/2, the solution is u = 0 and h = h2

Initially, the dam is located at x = 50 m with L = 100 m. The wa-
ter depth upstream is h1 = 10 m whereas the water depth down-
stream is h2 = 1 m. A grid of 200 points was used with ∆t = 0.01
s. A comparison between the analytical solution and the numeri-
cal simulations with the Mac-Cormack TVD scheme are shown
on fig. 3 and 4. The approximate solution is close to the analytical
one, especially in the regular zones, where the TVD scheme is of
high order. In the expansion and shock zones, even if small dis-
crepancies exist between the results because of the order one of
the scheme, one can see that the numerical solution fits well the
characteristic theory. We can observe that the sonic point located
in x = 50 m is well calculated (fig. 3 and 4). Near velocity or
depth discontinuities, no oscillation appears: the TVD property is
verified. The results proposed by Nujic [16] using Lax-Friedrichs
TVD and ENO schemes and by Zhao [23] with an Osher scheme
are comparable to our solutions.

4.2 Dam-break on dry bottom

This test is very interesting because it corresponds to wave propa-
gation on dry bottom. The upstream part h1 corresponds to a wa-
ter reserve behind a dam, whereas the downstream part h2 is a dry
zone.The analytical solution is deduced from the characteristic
theory (fig. 5), as in the previous dam test (Whitham [20]).
The analytical solution is separated into three zones:
- from x = -L/2 to OA, we obtain a steady state corresponding to

initial conditions. OA is the curve. The analytical solu-tghx 1−=

tion is u = 0 and h = h1
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Fig. 3. Water surface profile at t = 4 s - Comparison between the ana-
lytical solution (______) and the simulation (- - -) with the
MacCormack TVD scheme. 200 grid points are computed with
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Fig. 4. Velocity profile at t = 4 s - Comparison between the analytical
solution (______) and the simulation (- - -) with the
MacCormack TVD scheme. 200 grid points are computed with
∆t = 0.01.

Fig. 5. Left: description of the C+ characteristics curves, associated with the characteristic speed in the (x,t) plan - Initially, the dam--breakghu+
is located in x=0 - an expansion wave appears between A and x = 0. Right: description of the C- characteristics curves, associated with the
characteristic speed in the (x,t) plan - a shock wave appears in S.ghu−
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- from OA to OS, we get an expansion wave containing the sonic

point x = 0. OS is the curve. The solution istghx 12=

and

- from OS to x = L/2, we obtain a steady state corresponding to
initial conditions. The solution is u = 0 and h = h2.
The initial condition corresponds to a dam located at x = 5 m with
L = 100 m. The water depth upstream is h1 = 10 m whereas the
water depth downstream is h2 = 0 m. We use a grid of 200 points
with ∆t=0.01 s. If we compare the analytical solution and the nu-
merical simulations with the Mac-Cormack TVD scheme (fig. 6
and 7), we can observe that the approximate solution is very simi-
lar to the analytical one. The transition point between the wet
zone and the dry zone is correctly calculated with respect to h, but
some difficulties appear on the velocity. Indeed, as the solution
is similar to a peak in this zone, the TVD scheme becomes an
order 1 one and is diffusive. More than that, the thin water layer
kept in the dry zone modifies the dynamics near the transition
point creating approximation errors, which cause a delay in the
numerical solution. As explained by Ambrosi [1], when the eleva-
tion goes to 0, the velocity retains a finite value and the Froude
becomes infinity. We then understand that the SV equation sys-
tem loses its strict hyperbolicity and the two eigenvalues collapse
into λ = u. In fact, the characteristic theory cannot be applied in
the wet/dry transition point. When we do so, we introduce a small
error on one point of the solution. Nevertheless, the results are
globally accurate and totally non-oscillating. The results obtained
are comparable to Ambrosi’s ones.

5 Run-up and back-wash of a non-breaking wave

A non-linear and non-breaking standing wave reflecting on a con-
stant sloping beach can correspond to a long period wave
(infragravity waves for example), alternatively running up and
back washing on a dry beach zone. The transition between the dry
and wet zones makes the numerical problem rather difficult to
approximate. In the frictionless problem, analytical solutions ex-
ist(Carrier and Greenspan [4], Mei [15]).
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Fig. 6. Water surface profile at t = 2.5 s - Comparison between the ana-
lytical solution (______) and the simulation (- - -) with the
MacCormack TVD scheme. 200 grid points are computed with
∆t = 0.01.
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Fig. 7. Velocity profile at t = 2.5 s - Comparison between the analytical
solution (______) and the simulation (- - -) with the
MacCormack TVD scheme. 200 grid points are computed with
∆t = 0.01.
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Fig. 8. Initial condition of the run-up problem - u = 0 and h is chosen
at the moment when the dry beach zone is the largest

Rewriting the (SV) equations in a pair of characteristic equations
and taking into account the constant slope topography, we can
obtain Riemann invariants. Then, using a separation of the vari-
ables method, we obtain an implicit solution to the non-linear run-

up problem, which can be solved, for instance, with a Gauss-
Seidel iterative algorithm. T is the wave period, A is the wave
amplitude and is the beach slope. Non-breaking wavesθtan=∂

∂
x

Z f

solutions can be obtained from the SV equations when the break-
ing criterion

2

4
tan
π
θTg

A< 2

is respected; the maximum run-up is obtained when . Theθtan
Ax=

initial condition of the problem (fig. 8) corresponds to the maxi-
mum wave steeping of the analytical solution (u = 0 m/s). The
parameters are chosen as follow: A = 0.3 m, and T = 5 s.

8
πθ =

The numerical computations were done with a minimum water
depth of 10-4m on the beach. A grid of 200 points was used, with
∆t=0.005 s. At the seaward boundary, we impose the analytical
solution. A comparison between the numerical solution and the
analytical one is shown on fig. 11.. The non-linear wave climbing
the beach of constant slope is calculated in close accordance with
the Carrier and Greenspan analytical solution. The calculated sur-
face evolutions (see fig. 9-upper graph) and the velocity profiles
(see fig. 9-lower graph) are almost equal to the theoretical solu-
tion.
If we examine more precisely the solutions near the shoreline, we
can notice that the maximum numerical solving error occurs near
the maximum and minimum run-up. Indeed, in this zone, the
shoreline accelerates quickly, with a velocity increasing from 0
to 1.5 m/s when , which is very short with respect to the125.00 ≤≤

T
t

wave period. An almost periodic behaviour of the approximation
error on the shoreline position is observed (see fig. 10). We can
verify that the differences between the numerical and the theoreti-
cal solutions are increased near the maximum and minimum run--
up shoreline zone. Between these two states, the errors become
smaller and smaller. On the other hand, better accuracy is ob-
tained when the velocities and the accelerations decrease. The
approximation errors cause a slight delay due to the order 1 of our
TVD scheme in the shoreline zone and to the thin water layer
kept at the slope. However, the global numerical solution ob-
tained remains very satisfying: no oscillations appear, whereas the
velocity profiles are discontinuous, and the results are more accu-
rate than those of Hibbert and Peregrine [10].

6 Bore propagation on a sloping beach

The climb of a bore on a beach is investigated to illustrate the
ability of the MacCormack TVD scheme to simulate typical wave
propagation on beaches. The simulation describes an incident
bore of 0.5 m height during one running-up and back-washing
process onto a beach having a 2% slope. The results on 250 grid
points are presented on fig. 11. The domain length is 250 m. The
bore is initiated by a dam-break, seaward to the beach.
Before the back-wash process, two major phases are encountered:
on the one hand, during the collapse of the bore, the velocity
quickly increased whereas the bore spreads onto the beach (t=16
s and t=20 s); on the other hand, during the run-up, the bore van-
ishes and the velocity decreases progressively (t=28 s, t=36 s and
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Fig. 9. Comparison of the MacCormack TVD scheme (- - -) with the
analytical solution of Carrier and Greenspan [4] (______) - the
results are shown every 125 iterations during 5 seconds - the
figure describes the water surface evolutions (upper graph) and
the velocity profiles (lower graph). 200 grid points are com-
puted with ∆t= 0.005.
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Fig. 10. Evolution of the analytical and the calculated shoreline posi-
tion on one run-up period.
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Fig. 11. Climb of a bore on a beach - the numerical results correpond
to the times 0 s, 8 s, 16 s, 20 s, 28 s, 36 s, 40 s, 44 s, 48 s, 56
s, 60 s and 64 s - the figure describes the water surface evolu-
tions (upper graph) and the velocity profiles (lower graph).
250 grid points are computed with ∆t= 0.02.

t=40 s) until the equilibrium between gravity and inertia is
reached. Then, the flow is fully dominated by gravity and the
back-wash is initiated with strong velocities, which are oriented
seaward (t=44 s and t=48 s). The seaward water, which moves
more slowly than the back-wash water creates a back-wash bore,
animated by a strong velocity peak (t=56 s). This bore quickly
disappears as the water is evacuated to the sea.
The results presented in this section agree closely with those of
Hibbert and Peregrine [10]. Nevertheless, our calculated transi-
tion from bore to run-up is less smooth and progressive than that
of Hibbert and Peregrine’s. Following the work of Yeh et al [22],
we can maintain that the Hibbert and Peregrine scheme is too dif-
fusive and provides low precision solutions of the problem near
the shoreline.
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7 Conclusion

The use of the Saint-Venant equations to simulate strongly non-
linear coastal hydrodynamic free-surface flows, like bore propa-
gation on a sloping beach with an important run-up and back-
wash, needs specific mathematical calculation to correctly solve
the problem. The high order non-oscillatory Mac Cormack TVD
scheme presented in this article is a shock-capturing method ap-
propriate to describe bore propagation and run-up on beaches,
without introducing numerical dissipation near the wave fronts.
Since these fronts are supposed to physically represent an area
where energy is dissipated by turbulence motions, it would be
necessary to add locally turbulent dissipation based on physical
arguments (e.g. Svendsen and Madsen [18]). This method could
be an alternative to those of Hibberd and Peregrine [10] and
Kobayashi et al. [12], where the physical dissipation is replaced
by an important numerical dissipation, which introduces a depen-
dency of the results on the numerical resolution.
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Notations

q vector of conservative variables
F flux vector
S source term
A Jacobian matrix
L lengh of the calculation domain
R right-eigenvector matrix
U velocity in the x direction
C wave celerity
H total water depth
Zf bottom topography
h1 water level left to the dam
h2 water level right to the dam
g gravity acceleration
Fr Froude number
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8 Appendix

Defining the Jacobian matrix of A as

where , the system becomes:ghc=

Studying the characteristic polynomial of A, we get

, which leads to the corre-)2)(()det( 22 ghuauauaa +−+−−−=− IA

sponding eigenvalues and right eigenvectorscu
cua +
−=

cu−
1

and .cu+
1

The right eigenvector matrix R of the Jacobian matrix A and its

inverse are written as and .cucu +−= 11R
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To determine the Riemann problem Roe [17] suggested that the
following conditions should be imposed on A:

(i) the system is strictly hyperbolic; as a consequence, the
Jacobian matrix A is diagonalizable with real eigenvalues.

(ii) ( )
q

F
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∂=→++
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1 ii
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(iii) iiii qFqFqqA −=−+ ++ 11)
2
1(i

It is well known that the shallow water equations leads to a
strictly hyperbolic system ((i) is correct). To satisfy (iii), we have
to express and . However, A is fully non-linear and we

2
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i
u

2
1+i

h

cannot directly estimate the unknown variables at the interface.
Roe’s idea is to break up A in the multiplication of two linear
matrix. The vectors q and F can be expressed as quadratic func-
tions of the variable W defined by
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We can find a projection matrix B between q and W verifying
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The notation represents an arithmetic verage.
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An analogous calculation gives the crossing matrix C between F
and W
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We can observe that q and F are homogeneous functions of de-
gree two in W while B and C are homogeneous of degree one in
W. As , we can express q according to F:iiii WWqqB −=− ++

−
11

1

Using (iii), we get

Identifying the previous formulas, we find the linearised expres-
sion which allows us to calculate A by a linear matrix multiplica-
tion: .1

2
1i

−
+
=CBA

Knowing

we find the unknown variables estimated in i+1/2 as Roe’s aver-
ages:


