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Abstract: A XBeach surfbeat model is used to explore the dynamics of natural headland rip circulation
under a broad range of incident wave conditions and tide level. The model was calibrated and
extensively validated against measurements collected in the vicinity of a 500-m rocky headland.
Modelled bulk hydrodynamic quantities were in good agreement with measurements for two wave
events during which deflection rips were captured. In particular, the model was able to reproduce the
tidal modulation and very-low-frequency fluctuations (≈1 h period) of the deflection rip during the
4-m wave event. For that event, the synoptic flow behaviour shows the large spatial coverage of the rip
which extended 1600 m offshore at low tide, when the surf zone limit extends beyond the headland tip.
These results emphasize a deflection mechanism different from conceptualised deflection mechanisms
based on the boundary length to surf zone width ratio. Further simulations indicate that the adjacent
embayment is responsible for the seaward extent of the rip under energetic wave conditions. The
present study shows that the circulation patterns along natural rugged coastlines are strongly
controlled by the natural variability of the coastal morphology, including headland shape and
adjacent embayments, which has implications on headland bypassing expressions.

Keywords: headland rips; extreme events; XBeach modelling

1. Introduction

Rip currents are narrow and intense offshore-directed flows that can extend from the
surf zone to potentially far seaward of the breaking point [1]. One of the main driving
mechanisms for rip currents is alongshore variations in breaking wave heights [2]. These
variations can be induced by different causes [3], which include alongshore variations of
surf zone morphology (channel rips; e.g., [4]) or a shadowing effect due to the presence of a
rigid boundary (shadow rips; e.g., [5]). Apart from alongshore variations in breaking wave
heights, the deflection of a longshore current against a rigid boundary can also drive a rip
current (deflection rips; e.g., [6]). Compared to transient hydrodynamically-controlled rips,
bathymetrically-controlled and boundary-controlled rips are persistent in time and space.
This makes them a critical component of the transport and the dispersion of sediments,
pollutants or nutrients between the surf zone and the inner shelf along wave-exposed
coasts. Channel rips have received much attention due to their ubiquity along open sandy
beaches e.g., [7–9]. On the other hand, there is still a scarcity of studies along embayed
beaches where boundary-controlled rips can potentially extend much further seaward than
other types of rips [10].

Embayed beaches are ubiquitous along rugged coastlines where beaches are bounded
by natural rocky headlands e.g., [11,12], and along artificial coastlines where man-made
structures such as jetties or groynes are present e.g., [5,6]. Embayments may host a variety
of circulation patterns depending on surf zone width and embayment length [13], as well as
incident wave obliquity [14]. For obliquely incident waves, a prominent feature of coastal
embayments is boundary-controlled rips, hereafter referred to as headland rips. Depending
on the offshore wave obliquity with respect to the boundary, a headland deflection rip
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or a headland shadow rip flows against the boundary. Very few studies focusing on
headland rips have been based on in-situ hydrodynamic measurements e.g., [5,6,15–17].
The field data-based studies of McCarroll et al. [16] and Scott et al. [6] have pointed out
the large offshore extent of headland deflection rips along embayed beaches, compared to
other types of rips (e.g., channel rips). For instance, McCarroll et al. [16] highlighted the
presence of a deflection rip extending from two to three surf zone widths offshore under
low-energy waves (with a significant wave height Hs of 1 m) along a headland-bounded
beach. For the same wave conditions, the authors showed that the shadow rip consisted
of a closed circulation cell with low offshore exit rates. Their findings are in line with the
modelling study along idealised embayed beaches of Castelle and Coco [10] who identified
deflection rips as the main conduit for transporting floating materials offshore along wide
embayments. For rips flowing against groynes, the experimental and modelling study of
Scott et al. [6] emphasised the large offshore extent of deflection rips and pointed out the
key role of the boundary length (distance from shoreline to boundary offshore tip) to surf
zone width ratio Lb/Xs in determining the circulation pattern. For a situation with a single
groyne, the authors developed the following conceptualised deflection mechanism: the
longshore current is fully transmitted to the other side of the boundary when Lb/Xs < 0.5
(no deflection scenario), a part of the longshore current is deflected offshore while the
other part is transmitted to the other side of the boundary when 0.5 < Lb/Xs < 1.25, and
the longshore current is fully deflected offshore by the boundary when Lb/Xs > 1.25 (full
deflection scenario). It should be noted that this deflection mechanism has been established
for idealised boundaries with sharp and well-defined edges. Therefore, it must be validated
with natural coasts where complex rocky headland morphologies and adjacent embayment
geometry resulting from inherited geology may alter the traditional deflection pattern.

The field data-based studies to date have addressed the headland rip dynamics for low-
to moderate-energy wave conditions (i.e., Hs < 2 m) and for weakly-varying wave and tide
conditions, thus preventing to frame an extensive synoptic view of these rips. In addition,
the modulation of rip flows at the very-low-frequency time scale (VLF; period higher than
tens of min) has been well investigated for channel rips along open sandy beaches e.g., [4],
but has never been described for headland rips. Accordingly, the spatio-temporal vari-
ability of headland rips at a natural beach is poorly understood (e.g., magnitude, spatial
scales, tidal and VLF modulation, response to varying incident wave conditions), in par-
ticular under high-energy obliquely-incident waves. Such understanding is crucial for
better assessing sediment pathways along headlands and, in turn, evaluating embayment
sediment budget. Indeed, few morphological studies suggest that headland rips can trans-
port significant sediment quantities offshore [18] and to the adjacent embayment through
headland sand bypassing mechanisms [17,19]. Headland rip channels can be sustained for
long periods (e.g., several months; [20]), implying that headland rip flow may persistently
transport sediment offshore. Headland deflection rips may provide sediment connections
between adjacent embayments [21], and thus impact multi embayment-scale dynamics.

Overall, the headland deflection rip dynamics is still poorly understood and needs
to be further addressed. With the aim of bridging such a knowledge gap, a three-week
field experiment was conducted at La Petite Chambre d’Amour beach (PCA; Anglet,
Southwest France) in October 2018 with the collection of an extensive dataset of waves and
currents in the vicinity of a 500-m rocky headland [22]. Among the three main circulation
configurations identified by Mouragues et al. [23], the deflection configuration featured
an intense tidally-modulated rip flowing against the headland from the surf zone to far
offshore, in particular during energetic wave conditions. For instance, under 4-m oblique
waves, time- and depth-averaged velocities of the deflection rip reached up to 0.7 m/s
800-m offshore in 12-m depth. At that location, VLF fluctuations were remarkably energetic,
increasing velocities up to two to three times their mean values. These measurements,
which were limited in both time and space, suggest that the rip extended very far seaward
of the headland tip.
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Following the dataset analysis of Mouragues et al. [23], a coupled wave-circulation
model is used to give a detailed and large-scale description of the nearshore circulation
and also new insight into natural headland rip flow under a broad range of incident wave
conditions and tide level. The goals are : (1) to frame a synoptic flow behaviour of the
large-scale deflection rips; (2) to assess the validity of idealised deflection rip patterns
for a natural beach with complex adjacent embayment and natural headland shape and
(3) to explore the spatio-temporal variability of natural headland rips such as its VLF and
tidal modulation along with its hydrodynamic response under a broad range of incident
wave conditions.

2. Materials and Methods
2.1. Field Site and Experimental Dataset

From the 3 to the 26 of October 2018, a field experiment was conducted at La Petite
Chambre d’Amour (PCA) beach located in Anglet along the Aquitaine south coast (SW
France; Figure 1a). This rugged coast is a mesotidal high-energy environment that is
regularly exposed to energetic Atlantic swells coming from the W-NW direction [24]. The
average tidal range reaches 3.94 m for spring tides and 1.69 m for neap tides. PCA is a
double-barred sandy beach located at the southern end of a 4-km embayment, comprising
six groynes, bounded by the Adour dike to the North and by the Saint Martin 500-m rocky
headland to the South (Figure 1b). The goal of the experiment was to study wave-induced
circulation at a high-energy geologically-constrained beach. To do so, Acoustic Doppler
Current Profilers (ADCPs; see SIG1, SIG2, SIG3 and AQ in Figure 1c) and surf-zone drifters
were deployed to collect spatially dense and high-frequency Eulerian and Lagrangian
velocity measurements. A more detailed description of the field site and the experiment
can be found in Mouragues et al. [22,23].

The dataset collected during two events for which a deflection rip was measured
(hereafter referred to as deflection events) is used to calibrate and validate a coupled wave-
circulation model. Both deflection events are presented in Section 2.2.2 while the model is
described in the following section.

2.2. Numerical Modelling
2.2.1. XBeach Model

The open-source XBeach model (version 2015-10-22 v1.22.4867 Kingsday) is set up
at PCA to investigate the deflection rip dynamics. XBeach is a morphodynamic model
initially developed to reproduce storm response on sandy beaches where infragravity
swash is dominant [25]. It solves the coupled two-dimensional horizontal (2DH) equations
for wave propagation, flow, sediment transport and bottom changes. In this paper, the
last two modules are disabled as only the deflection rip hydrodynamics is investigated.
The so-called surfbeat approach (XB-SB) is used and resolves motions at the wave group
(infragravity) scale while short waves are phase-averaged. This approach allows computing
the low-frequency variability of hydrodynamic processes with a lower computational cost
compared to the phase-resolving approach (see Appendix A for a brief description of
the model). XB-SB is therefore suitable for modelling both the tidal modulation and VLF
fluctuations of the deflection rip while being computationally efficient for large domains
(>O(1) km2) and events lasting several hours, as in the present study. XB-SB has been
widely used to address bathymetrically-controlled rip currents along natural open sandy
beaches e.g., [26] and boundary-controlled rips along artificial coastlines e.g., [6]. The
surfbeat approach has also been found to correctly reproduce mean infragravity and VLF
velocities along open rip-channelled beaches [27,28].



J. Mar. Sci. Eng. 2021, 9, 1161 4 of 20

Figure 1. (a) Location of Anglet along the Aquitaine south coast (SW France). (b) Map of Anglet
beaches showing the location of PCA, the Saint Martin headland, the groynes and the Adour dike.
UC and UL are the cross-shore and longshore velocities, respectively. (c) Bathymetry map of the field
site. Colour indicates elevation (Z) relative to mean sea level (MSL), with the blue contour showing
the MSL. Black contours are at 1-m separation. Coloured points show measurement locations (SIG1,
SIG2, SIG3 and AQ).

The XBeach model includes a number of free parameters that require to be calibrated
with measurements. A prior sensitivity study was conducted to identify the hydrodynamic
free parameters having the greatest impact on the deflection rip dynamics by comparing
modelled and measured bulk hydrodynamic quantities (see Section 2.3). Two free parame-
ters were chosen for further calibration: the breaking parameter γ controlling the surf zone
width, and a bed friction Chezy coefficient C indirectly controlling the alongshore current
magnitude. These two parameters were calibrated by minimizing, for both deflection
events, residuals between the measured and modelled bulk quantities. Best agreements
between the model and measurements were achieved with γ = 0.50 and C = 45 m1/2/s.
Hereafter, these two parameters are set to their calibrated values while all other parameters
are set to their default XBeach value. It should be noted that, in the present study, the
viscosity νh was also set to its default XBeach value which is a constant value of 0.5 m1/2/s.
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This sensitivity study included changing wave breaking and roller dissipation formulas
and the associated free parameter values. The latter did not strongly altered model results.

2.2.2. Model Implementation

Bathymetry
XB-SB was implemented on a regular grid rotated by 30◦ to a local coordinate system

extending 4000 m and 10,000 m in the cross-shore x and longshore y direction, respectively
(Figure 2a). The computational domain comprises offshore small-scale bedrock and a sand
deposit lobe (x < −2000 m) which play an important role in wave transformation [29,30].
Close to the shore, the domain comprises the Adour dike, the six groynes within Anglet
beaches, the field site PCA and the Saint-Martin headland, the GPB adjacent embayment
and its southern headland (GPB headland). Because the Anglet beach bathymetry was not
available, the latter was manually filled by the alongshore-averaged cross-shore transect
of PCA, from the southernmost groyne to the Adour dike (1000 m < y < 5000 m). To
apply periodic conditions at the lateral boundaries and to avoid boundary effects under
high-energy wave forcing, the bathymetry was extended in the longshore direction at both
boundaries using an alongshore-averaged cross-shore transect from the northern part of
the Adour dike. These lateral extensions were made large enough (2000 m and 1000 m at
the southern and the northern boundary, respectively) to prevent side effects due to the
presence of the GPB headland and the Adour dike. The mesh step size was set to 5 m at
PCA, gradually increasing to 25 m close to the boundaries (Figure 2b,c).

Figure 2. (a) Bathymetry used within the model. Colour indicates elevation (m + MSL), with the blue
contour showing the MSL. Black contours are at 2-m separation. (b,c) show the cross-shore (∆x) and
longshore (∆y) mesh step size, respectively.

Modelled scenarios
Modelled scenarios consist of two wave events for which a deflection rip was mea-

sured [23] . Both deflection events are characterized by different offshore wave conditions
(hereafter, event D1 and D2 in Figure 3). During both events, the measured deflection rip
flow was strongly modulated by the tide due to the control of tidal level on wave breaking
patterns and also extended well beyond the surf zone. During event D1 (Hs ≈ 1.75 m
and θp ≈ 10◦), the deflection rip extended at least 1000-m offshore in 14-m depth where
mean Lagrangian surface velocities reached 0.3 m/s during the rising tide. During event
D2 (Hs ≈ 4.0 m and θp ≈ 20◦), time- and depth-averaged Eulerian velocities displayed
energetic VLF fluctuations, with periods of energy peaks of around 30 min and 1 h, in-
creasing velocities up to 0.7 m/s at SIG1 located 800-m offshore in 12-m depth at low tide.
At that same location, velocities decreased below 0.1 m/s around full high tide which
indicated a strong tidal modulation. Events D1 and D2 are hereafter referred to as the low-
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and high-energy deflection event, respectively, and are used for the calibration and the
validation of the model.

Figure 3. Offshore wave and tide conditions during the field experiment, with low- and high-energy
deflection event (D1 and D2 shown by shaded areas). (a) Tidal level (ζtide; blue line; see right axis)
and significant wave height (Hs; black line). (b) Peak wave period (Tp; blue dots) and mean wave
period (Tm02; black line). (c) Peak wave angle of incidence with respect to the shore normal (θp; blue
dots) and its 12h-averaged values (black line). Positive values mean a deflection configuration (see
Figure 1c).

Model forcing datasets
XB-SB was forced by the time-varying directional wave spectrum measured by a

permanent directional wave buoy (Candhis buoy number 06402) moored in 50 m water
depth and located along the open boundary x = −4000 m. The input wave spectrum is
extrapolated to the entire open boundary. Based on the input wave spectrum, XB-SB uses
a random phase summation procedure to reconstruct time series of short-wave energy
varying at the wave-group scale, which were used to force the spectral wave model (see
Appendix A).

The wave model is coupled, through a radiation stress gradients approach, with a circu-
lation model which is forced by the incoming bound wave computed from Herbers et al. [31].
It should be noted that, due to the random phase summation procedure, times series of
modelled infragravity surface elevation and velocities can vary between one simulation
to another. To assess such variability, the model was run ten times using the same input
spectrum but using ten different set of phases (i.e., ten different time series of short-wave
energy and bound wave phases) which are randomly select by the model. Standard devi-
ation of modelled outputs computed from these ten simulations was calculated for each
simulated wave event (see Section 2.3).

Offshore wave spectrum and water level during events D1 and D2 are used to inves-
tigate the deflection rip dynamics (Figure 3). For model calibration and validation, the
input water level corresponds to the time-varying tidal signal. In Section 3.4, the water
level is kept constant to investigate the headland rip response to varying incident wave
conditions. To avoid initial transient effects which, based on preliminary tests are less than
4 h, wave and current characteristics were computed over the last 28 h out of the total
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32 h event duration. Because the wind speed during event D1 was low (<0.05 m/s; [23]),
wind effects were not included in the event D1 modelling experiment. During event D2,
the wind dataset was not available. For the latter high-energy event, wave breaking is the
main driving mechanism for the nearshore circulation.

2.3. Bulk Hydrodynamic Quantities

To assess the model skill in reproducing the headland rip dynamics, the following
wave and current bulk quantities were computed from the dataset (subscript M) and
XBeach (subscript XB) : the significant short wave height (Hm0,HF,M and Hm0,HF,XB), the
significant infragravity wave height (Hm0,LF,M and Hm0,LF,XB) and time-averaged velocities.

Significant short and infragravity wave heights were calculated over 30-min bursts.
For each burst, the measured significant wave heights were computed as four times the
bandpass-filtered surface elevation standard deviation:

Hm0,HF,M = 4σ(ηHF,M), (1a)

Hm0,LF,M = 4σ(ηLF,M), (1b)

where ηHF,M and ηLF,M refer to the measured surface elevation that has been filtered within
the gravity band (between fsplit and 0.5 Hz) and within the infragravity band (0.005 Hz
and fsplit), respectively. The split frequency fsplit is set to 60% of the peak frequency (0.6 fp
where fp is the peak frequency of the most offshore instrument). Note that surface elevation
spectra of both events were qualitatively checked to ensure that fsplit corresponds to the
frequency where energy between the gravity and infragravity band is minimum. The
modelled significant wave heights were computed following [32]:

Hm0,HF,XB =
√

2
√

H2rms + 8η2
HF,XB, (2a)

Hm0,LF,XB = 4σ(ηLF,XB), (2b)

where (.) corresponds to the 30-min time-averaging operator. Hrms is the modelled root-
mean-square height computed as

√
8Ew/ρg where Ew is the instantaneous wave energy,

ρ the water density and g the gravitational constant. ηHF,XB and ηLF,XB are the modelled
bandpass-filtered surface elevations, with similar gravity and infragravity frequency bands
as for the measured wave heights.

Time-averaged velocities were defined as: 30 min-averaged Eulerian velocity magni-
tudes (||U||30,M and ||U||30,XB) to quantitatively assess the model skill in reproducing the
tidal modulation of the rip flow and 5-min running-averaged Eulerian velocities (cross-
shore and longshore) to look into the modulation of the rip at the VLF scale. Time-averaged
Lagrangian velocities were also used to compare modelled mean velocity patterns with
drifter measurements. To quantify the variability due to the random phase procedures,
the time series of the standard deviation velocity resulting from the ten simulations was
computed. A confidence interval of velocities was computed, with the upper (lower) limit
of the confidence interval defined as the time series of the velocity from one individual
simulation plus (minus) one standard deviation.

The correlation coefficient (R2), the root-mean-squared error (RMSE) and its normal-
ized value (NRMSE) were used to quantitatively assess the model performance. The RMSE
was computed as:

RMSE =

√√√√ 1
N

N

∑
i=1

(XXB(i)− XM(i))2, (3)

where X corresponds to one of the bulk hydrodynamic quantities. For Hm0,HF (Hm0,LF),
the NRMSE corresponds to the RMSE divided by the average of all Hm0,HF,M (Hm0,LF,M).
For ||U||30, the NRMSE ocrresponds to the RMSE divided by the maximum of all ||U||30,M.
The latter definition prevents from obtaining biased errors when velocities are near zero.
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3. Results
3.1. Model Assessment

In this section, the calibrated model is compared against measurements for both
deflection events. Figure 4 shows the measured and modelled significant short wave
heights, significant infragravity wave heights and 30 min-averaged Eulerian velocity
magnitudes for both events at each instrument location. Note that AQ was not measuring
during event D1 while SIG2 and SIG3 were not measuring during event D2 [22]. Overall,
both significant short and infragravity wave heights are well predicted by XB-SB with R2

above 0.8 and relatively low RMSE (Figure 4a,b). XB-SB is also able to fairly well reproduce
the mean Eulerian magnitude for both events (R2 = 0.40), with the same order of magnitude
between the model and the dataset (NRMSE = 18%; Figure 4c).

Figure 4. Measurements (subscript M) versus model (subscript XB) for events D1 and D2 and
for each instrument. (a) Significant short wave height (Hm0,HF,M and Hm0,HF,XB); (b) Significant
infragravity wave height (Hm0,LF,M and Hm0,LF,XB); (c) 30 min-averaged velocity magnitude (||U||30,M

and ||U||30,XB). The corresponding coefficient of correlation R2 and normalized root-mean-squared
error (NRMSE) are indicated in each panel.

Table 1 shows the RMSE and NRMSE of each bulk quantities, for each event and
at each instrument location. It should be reminded that, for the sake of consistency, the
model calibration was conducted to find a single couple of free parameters (γ and C)
fitting bulk quantities for both deflection events, as opposed to finding one couple of
free parameters for one deflection event. This explains why some model performance
statistics presented in Table 1 are only fair. For instance, ||U||30 errors can be relatively
high (>20%) due to tidal modulation being slightly over- or under-estimated depending on
deflection events. However, these errors are associated with low velocities. Overall, the
model fairly reproduces all quantities considering the complexity of the study site which
comprises headland, sandbars and rocky outcrops all affecting the nearshore circulation.
To investigate the XB-SB ability to model both tidal and VLF modulations of deflection rips,
the 5-min running-averaged Eulerian velocities at each ADCP location computed from the
model are compared against the dataset for each event.
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Table 1. Root-mean-squared error (RMSE) and its normalized value (NRMSE) computed for each
event and at each instrument location.

Events Statistics Bulk Quantities SIG1 SIG2 SIG3 AQ

D1 RMSE Hm0,HF 0.19 m 0.20 m 0.29 m -
Hm0,LF 0.02 m 0.05 m 0.04 m -
||U||30 0.03 m/s 0.09 m/s 0.06 m/s -

NRMSE (%) Hm0,HF 12.5 12.8 19.9 -
Hm0,LF 15.0 27.4 21.0 -
||U||30 28.9 22.1 20.2 -

D2 RMSE Hm0,HF 0.29 m - - 10.1 m
Hm0,LF 0.08 m - - 15.7 m
||U||30 0.15 m/s - - 0.20 m/s

NRMSE (%) Hm0,HF 9.4 - - 11.1
Hm0,LF 24.3 - - 19.6
||U||30 30.5 - - 28.4

During event D1, both cross-shore and longshore velocity components of the deflection
rip are fairly well predicted by the model (Figure 5). The model is able to reproduce the
tidal modulation of the rip, with high velocities (>0.2 m/s) around low tide and near-zero
velocities at high tide. At each instrument location, the confidence interval of velocity is
relatively narrow suggesting that incident wave group and bound wave phases barely affect
time series of the running-averaged velocities. During the first low tide, the cross-shore
velocity at SIG2 is moderately overestimated by the model while the latter reproduces fairly
well both velocity components at SIG3. This period corresponds to when surf-zone drifters
were deployed close to the headland. This deployment allowed to map the measured mean
Lagrangian surface currents (Figure 6a; [23]), emphasising the large spatial coverage of the
deflection rip during the low-energy event. For the sake of model-data comparison, the
mean Lagrangian depth-averaged currents modelled by XB-SB are interpolated onto the
drifter spatial grid (Figure 6b). An analysis of the vertical variability of the flow has shown
that the deflection rip flow measured at SIG2 and SIG3 was depth-uniform (not presented
here). The drifter-derived surface currents are therefore representative of the flow inside
the water column, at least onshore of SIG2 and SIG3 locations i.e., inside the surf zone and
the deflection rip neck (x > −600 m). Within this area, the measured Lagrangian surface
currents and the modelled Lagrangian depth-averaged currents are in good agreement,
with both modelled and measured flow magnitude reaching around 0.2–0.3 m/s. Further
offshore (inside the deflection rip head; x < −600 m), the flow magnitude predicted by the
model is considerably underestimated. The modelled magnitude drops below 0.05 m/s
100 m seaward of the headland tip while the drifter surface magnitude reaches 0.4 m/s
300 m seaward of the tip. For such a low-energy deflection event, the model is therefore
unable to reproduce the seaward extension of the rip, which will be discussed in Section 4.
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Figure 5. Modelled mean water depth (h0; top panels). Modelled (black) and measured (blue) 5 min
running-averaged cross-shore (Uc; middle panels) and longshore velocities (UL; bottom panels) for
event D1 at SIG2 and SIG3 locations. Note that AQ was not measuring at this time. Black line and
grey area show the modelled velocities of one simulation and the confidence interval computed from
ten simulations (see Section 2.3).

Figure 6. Mean Lagrangian velocity field measured at the surface (Drifter measurements; left panel)
and mean modelled velocity field (XB-SB; right panel) interpolated onto the drifter grid. The top
white square shows the period of averaging and the corresponding offshore wave conditions (Hs, Tp,
θp) and tide level (ζtide).
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During event D2, modelled velocities of the deflection rip are in fair agreement with
measurements, both inside the surf zone (AQ) and inside the rip head (SIG1; Figure 7).
Well seaward of the outer edge of the surf zone, the strong tidal modulation is correctly
reproduced by the model with intense velocities around low tide and near-zero velocities
at high tide. Discrepancies between the model and measurements are however observed,
such as the weak negative longshore current component at SIG1 which is not captured
by the model. This indicates that the modelled rip head is directed offshore while the
measured rip head is slightly directed toward the south. Lastly, while the modelled energy
within the infragravity band is underestimated at SIG1, the energetic VLF fluctuations of
the deflection rip are well computed by the model. Levels of energy and characteristic
(peak) periods (order of 1 h and 30 min) of the measured and modelled VLF are of the same
order (Figure 8). In line with the narrow confidence interval shown in Figure 7, the standard
deviation of the root-mean-squared VLF magnitude computed from ten simulations is
relatively low at both instrument locations (0.01 m/s; Figure 8).

Figure 7. Modelled mean water depth (h0; top panels). Modelled (black) and measured (blue) 5 min
running-averaged cross-shore (Uc; middle panels) and longshore velocities (UL; bottom panels) for
event D2 at SIG1 and AQ locations. Note that measurements at SIG2 and SIG3 were not available at
this time. Black line and grey area show the modelled velocities of one simulation and the confidence
interval computed from ten simulations (see Section 2.3).

Overall, the calibrated model is able to correctly reproduce wave and current char-
acteristics as well as their tidal modulation for both deflection events. The energetic VLF
fluctuations captured during the high-energy deflection event are also well computed by
the model. During the low-energy deflection event, XB-SB is not able to reproduce the
seaward extension of the rip.
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Figure 8. Modelled (black; one simulation) and measured (blue) velocity magnitude spectrum at
low tide of event D2. Black vertical lines indicate the very low frequency band (VLF; f < 0.004 Hz)
and the infragravity band (IG; 0.004 Hz < f < 0.04 Hz) at SIG1 and AQ (top and bottom pan-
els, respectively). For each panel, the root mean square VLF velocity magnitudes Urms,VLF com-
puted following Reniers et al. [28] are indicated. Urms,VLF,M is the data while Uav,rms,VLF,XB and
Ustd,rms,VLF,XB are the mean rms magnitude averaged over ten simulations and its corresponding
standard deviation, respectively.

3.2. Deflection Mechanism

The model is now used to investigate the deflection rip flow pattern at PCA under
high-energy wave conditions. Figure 9 shows the modelled velocity field averaged at
low tide and high tide during event D2. These mean velocity patterns highlight the tidal
modulation and the large spatial scales of the deflection rip at PCA. At low tide, the
combination of a wide surf zone (≈600 m) and a strong longshore current (0.5–1.0 m/s)
induces a wide deflection rip extending around 1600 m offshore in 19-m water depth where
its magnitude reaches 0.2 m/s. Along the adjacent embayment (GPB), a longshore current
is flowing towards PCA at low tide. This GPB current is 200-m wide and is relatively
strong, with a magnitude reaching 0.–0.5 m/s. It contributes to the seaward deflection of
the remaining portion of the PCA longshore current that is not deflected by the headland.
This mechanism is ubiquitous at low tide when the surf zone extends beyond the headland
tip (Lb/Xs < 1). At high tide (Lb/Xs > 1), the deflection rip and the surf zone are narrow
and the PCA longshore current is fully deflected offshore against the headland. The GPB
current is still intense but directed offshore which has a much weaker impact on the
deflection pattern than at low tide.

These results emphasise a new deflection mechanism that is different from the previous
mechanism conceptualised for rips flowing around groynes based on Lb/Xs [6]. The
circulation at PCA shows a full deflection scenario, regardless of Lb/Xs. These results
suggest that the adjacent embayment and, more generally, the prominent morphological
features may exert significant control on the deflection rip pattern.
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Figure 9. Modelled velocity field averaged at low tide (left) and high tide (right) of the high-energy
deflection event. For each panel, the top-right white square shows the period of averaging, the
corresponding offshore wave conditions (Hs, Tp, θp) and tide level (ζtide). The red line represents the
outer edge of the surf zone computed as the cross-shore location where wave dissipation reaches 10%
of its cross-shore maximum (similar to [6]).

3.3. Morphological Control on Deflection Rip Pattern

To assess the morphological control on the deflection pattern, the model is run on
an idealised bathymetry excluding the most prominent morphological features of the
field site. Four different idealised bathymetry scenarios are considered: (1) excluding the
six groynes along Anglet beaches, (2) excluding both the groynes and the Adour dike,
(3) excluding the offshore small-scale bedrock and sand deposit lobe (hereafter referred to
as offshore bathymetric features) and (4) excluding the adjacent embayment. The model is
forced by the same time series of short-wave energy and long-wave surface elevation at
the offshore boundary as during event D2 to examine the potential effect of morphology
on the very-low-frequency fluctuations which occurred at SIG1 and AQ. While idealised
scenarios 1 and 2 do not affect the deflection rip dynamics (not presented here), the mean
flow patterns are substantially altered in idealised scenarios 3 and 4.

The upper panels of Figure 10 show time series of the modelled velocity magnitude at
SIG1 (a) and AQ (b) for the real bathymetry and for scenarios 3 and 4. The other panels
show the large-scale modelled velocity field averaged at low tide for each considered
scenario in the upper panels. Excluding the morphological features leads to a considerable
drop of velocity magnitude at SIG1, as mean values are halved (Figure 10a). This is because
SIG1 is nearly outside the deflection rip head for both idealised scenarios (Figure 10d,e).
The presence of offshore bathymetric features leads to a significant longshore variability
of the longshore current magnitude along Anglet beaches (at y ≈ 1600 m in Figure 10a).
Such a variability is caused by the longshore variability of wave height and wave angle
of incidence at breaking, enforced by wave refraction across the offshore bedrocks and
sand deposit lobe (not shown here; in line with [29,30]). Excluding offshore bathymetric
features leads to the smoothing of the longshore variability of the longshore current but
does not significantly affect the deflection pattern. A change of the deflection rip head,
becoming fully offshore-directed, is to be noted. On the other hand, excluding the adjacent
embayment strongly alters the deflection pattern (Figure 10e). For such a scenario, the
PCA longshore current is not deflected offshore and is transmitted to the other side of the
headland, as anticipated by the conceptualised mechanism of [6] when Lb/Xs < 1.25. These
findings highlight the crucial role of the adjacent embayment in the full deflection scenario
at PCA during event D2.
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Figure 10. Model output at low tide of event D2 for three bathymetries: real bathymetry, excluding
offshore bathymetry features and excluding the adjacent embayment. Top panels: modelled 5 min-
running averaged velocity magnitudes during the first low tide of event D2 at SIG1 (a) and AQ (b)
locations. Bottom panels (c–e): modelled mean velocity field plotted on the magnitude contours
(0.2-m/s spaced; black lines) and the bathymetry contours (2-m spaced; grey lines), averaged at low
tide of event D2. The black and blue points indicate SIG1 and AQ locations, respectively.

3.4. Headland Rip Response to Varying Incident Wave Conditions

The deflection mechanism along PCA-GPB has been identified for one specific wave
event. To explore the headland rip pattern response under a broader range of offshore wave
conditions, the model is forced by a Jonswap spectrum with varying offshore significant
wave height and angle of incidence. The offshore significant wave height Hs is varied from
1 to 9 m while the offshore angle of incidence θ is varied from −20◦ to +20◦, therefore
including the shadowed, shore-normal (relative to PCA) and deflection configuration
(Figure 11). The tide level is kept constant and is set to 2.0 m corresponding to a high tide.
The other Jonswap parameter values are kept as default: the offshore peak wave period
Tp is set to 12.5 s, the peak enhancement factor to 3.3 and the directional wave spreading
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to 24◦. It should be noted that changing the value of Tp does not significantly change
modelled mean flow patterns (not shown).

Figure 11 emphasises contrasting circulation patterns depending on offshore wave
conditions, in particular the angle of wave incidence. Overall, for shadowed configurations
and Hs < 5 m, the longshore current coming from GPB is deflected seaward by the headland
creating a deflection rip directed towards PCA. The seaward portion of deflected longshore
current decreases as the offshore wave height increases (Hs > 5 m). For very large waves,
the longshore current is essentially transmitted to the other side of the headland. This
mechanism is similar to the one from Scott et al. [6]. Note that the angle of wave incidence θ,
which is not included within Lb/Xs, plays an important role in determining the circulation
pattern for natural, asymmetric, headland / embayments. For a given Hs, the longshore
current at GPB will be more deflected seaward by the headland as waves become shore-
normal relative to PCA. For deflection configurations, the PCA longshore current is fully
deflected seaward, regardless of Hs and θ. The deflection rip head inclination is affected by
the offshore wave angle of incidence, with a more skewed rip head as waves become more
oblique. These results indicate that the deflection mechanism identified in Section 3.2 is
also present for any deflection configuration.

Figure 11. Modelled mean velocity field under various offshore significant wave height Hs and wave
angle of incidence θ at high tide (ζtide = 2.0 m). Black lines indicate the 0.4, 0.6, 0.8 and 1.0 m/s
contours. The grey line shows the mean sea level contour.

4. Discussion

In this study, a 2DH wave group-resolving model was calibrated and validated against
wave and current measurements collected against a 500-m rocky headland during two
deflection wave events. During the low-energy wave event, the offshore extent of the rip
was underestimated by the model (Figure 6) and may result from the vertical shear of the
flow far offshore the breaking point. Such depth dependence has been previously identified
for channel rips e.g., [33] and typically consists of a depth-uniform and -varying flow inside
and outside the surf zone, respectively. Outside the surf zone, the depth-varying rip flow
is commonly characterised by high velocities near the surface and low velocities near the
bottom, therefore resulting in underestimated surface flow velocities in the depth-averaged
model. The latter constitutes a model limitation that could be potentially improved using
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three-dimensional (3D) modelling approaches. Such approaches are still computationally
expensive for large domains and long event durations making phase-averaged 3D models
the most suitable approach to study deflection rips at Anglet-Biarritz.

During the high-energy wave event, VLF fluctuations of the rip were very energetic.
Energy levels and characteristic periods of these fluctuations measured 800-m offshore
around low tide were well reproduced by the surfbeat model. A sensitivity study of the
morphology to nearshore flow patterns has shown that the presence of offshore bedrocks
and the sand deposit lobe leads to longshore variations of the longshore current along
Anglet beaches which was found to be related to longshore variations of wave heights
at the breaking point (not shown). While the mean deflection patterns were not strongly
impacted by such variations, the latter can contribute, through longshore variations of
radiation stress gradients, to very-flow-frequency motions [34]. The present paper serves
as a model validation step for reproducing VLF motions and the driving mechanism of
these motions is currently under investigation.

The synoptic flow behaviour during the high-energy wave event indicates that the
deflection rip extended approximately 1400 m seawards, corresponding to two to three
surf zone widths, at both low tide and high tide (Figure 9). At low tide, the surf zone
edge extended seaward of the headland tip and the longshore current was fully deflected
offshore by the headland and the current coming from the adjacent embayment. The
intensity of adjacent embayment current may be potentially overestimated by the model as
the modelled and measured deflection rip head orientations were slightly different. Further
instrument deployments are required to better characterise the rip flow along the adjacent
embayment. The synoptic flow behaviour essentially highlights a deflection mechanism
different from traditional deflection patterns conceptualized around groynes. Simulations
on idealised bathymetries pointed out the crucial role of adjacent embayments in the
deflection pattern under high-energy wave conditions. Further simulations with smoothed
bathymetry were performed to assess the morphological control on the circulation along
the adjacent embayment (see Appendix B). They suggest that the morphological setup of
the GPB (e.g., curved shape, orientation) is responsible for the longshore current along
the adjacent embayment. More broadly, this paper shows that circulation patterns against
headlands and along embayments are strongly controlled by the natural variability of the
morphology. The results of this study have implications for headland bypassing which is
a critical component of the embayment sediment budget. Based on the findings of [6,35]
attempted to parametrise headland bypassing along an isolated headland as a function of
the boundary length to surf zone width ratio. Their empirical formula was further tested
against 29 natural headlands and extended to include morphological parameters such
as the headland toe depth [19]. Here, the adjacent embayment is shown to be a critical
morphological parameter for the quantification of headland bypassing. For high-energy
wave events examined in this paper, multi-embayment circulation occurs, under which
adjacent embayment circulation interacts with the rip against the headland of interest.
This type of circulation was first described by McCarroll et al. [36] and further identified
by Valiente et al. [37]. Under these conditions, bypass formulas should be applied with
caution [35]. Further modelling is required to include the effect of adjacent embayment
into headland bypassing expression.

5. Conclusions

An XBeach surfbeat model was implemented to explore the dynamics of natural
headland rips under a broad range of incident wave conditions and tide level. The model
was calibrated and extensively validated against data collected in the vicinity of a 500-m
rocky headland during two deflection wave events. Overall, the bulk hydrodynamics
parameters were well computed by the model for both events. In particular, the model was
able to reproduce time-averaged velocities and the strong tidal modulation of deflection
rips. During the high-energy wave event, the amplitude and period of fluctuations of the
rip at the VLF time scale were successfully simulated by the 2DH wave group-resolving
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model. These findings indicate that a 2DH model is able to reproduce the spatio-temporal
variability of natural headland rips. The use of 3D phase-averaged models to potentially
improve the results of this study will be tested in the future.

The validated model was further used to draw a synoptic flow behaviour of the large-
scale deflection rips and examine the spatio-temporal variability of natural headland rips
under different wave conditions. Unlike traditional deflection rip patterns, the longshore
current was found to be fully deflected offshore, regardless of the boundary length to
surf zone width ratio, creating a deflection rip extending two to three surf zone widths
offshore. Under deflection configurations, the deflection pattern identified during one
specific high-energy event was similar when varying the offshore wave height and angle
of incidence. Simulations on idealised bathymetries allowed to assess the morphological
control on the deflection rip patterns and showed the adjacent embayment to be responsible
for the seaward extent of the headland rip under energetic wave conditions. More broadly,
this study shows that the circulation patterns along natural rugged coastlines are strongly
controlled by the natural variability of the coastal morphology, including headland shape
and adjacent embayment(s). In this context, headland bypassing expression should be
applied with caution and further refined to take into account these characteristics.
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Appendix A. Model Description

Based on the input offshore directional wave spectrum, times series of the free surface
elevation are generated using random phase summation along the offshore wave boundary.
They are Hilbert-transformed to obtain time series of the incoming short-wave energy
varying at the wave group scale. Such energy is then propagated and dissipated through
the model domain using the following wave-action balance:

∂A
∂t

+
∂
(

Acg cos(θ)
)

∂x
+

∂
(

Acg sin(θ)
)

∂y
= −Dw

σ
, (A1)

where x and y are the cross-shore and longshore coordinates, respectively. A = Sw/σ, Sw
and σ are the wave action, the wave energy density and the radial frequency, respectively.
The mean wave direction θ and the group velocity cg are both computed using a stationary
wave model [32]. This method allows to preserve wave groupiness over large distances,
which in turn allows to properly compute nearshore infragravity motions.

The dissipation of wave energy due to breaking Dw is computed following [38] as
function of the so-called breaking parameter γ. To take into account the roller effect on the
circulation, Dw acts as a source term in the roller energy balance which is fully described
in [25,39].
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Spatial gradients of radiation stress including both wave and roller contributions force
currents and surface elevation varying at the wave-group (infragravity) scale with the
following non-linear shallow water equations:

∂η

∂t
+

∂huL

∂x
+

∂hvL

∂y
= 0, (A2a)

∂uL

∂t
+ uL ∂uL
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∂y
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(
∂2uL
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∂2uL

∂y2

)
= −

τE
bx

ρh
− g

∂η

∂x
+

Fx

ρh
, (A2b)
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∂y2

)
= −

τE
by

ρh
− g

∂η

∂y
+

Fy

ρh
. (A2c)

In Equation (A2), Fx and Fy are the cross-shore and longshore components of radiation
stress gradients, respectively. η is the surface elevation, uL and vL are the cross-shore and
longshore Lagrangian velocities, respectively. Along the offshore boundary, Equation (A2)
are forced with the incoming bound wave computed following [31].

The bottom friction associated with currents and infragravity waves is parametrised with

τE
bx = c f ρuE

√
(1.16urms)2 + (uE + vE)2, (A3a)

τE
by = c f ρvE

√
(1.16urms)2 + (uE + vE)2, (A3b)

where uE, vE and urms are the Eulerian velocities and the orbital velocity, respectively. c f is
a dimensionless bottom friction coefficient:

c f =

√
g

C2 , (A4)

with C the Chezy value constant over space and time.
The lateral momentum mixing is parametrized using an eddy viscosity νh. The latter

can be set as a constant value over space and time or can be varied over space and time
using the Smagoringsky model. In the present study, the eddy viscosity was set to its
default value which a constant value of 0.5 m1/2/s.
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Appendix B. Morphological Control on the Circulation along the Adjacent Embayment

Figure A1. Modelled velocity fields along the adjacent embayment for three idealised bathymetries:
real bathymetry (a), smoother GBP headland (b) and removing the GPB islands (c).
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