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d Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
e Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France

A R T I C L E  I N F O

Keywords:
Nearshore depth-inversion
Boussinesq theory
Surf zone
Lidar remote sensing

 A B S T R A C T

Accurate observations of the nearshore bathymetry, including within the breaking wave region, are critical 
for the prediction of coastal hazards, and improved understanding of sandy beach morphological response 
to storms. In this paper, we implement the recent Boussinesq theory-based depth inversion methodology of 
Martins et al. (Geophys. Res. Lett., 50 (2023), Article e2022GL100498) to single- and multibeam lidar datasets 
collected during a dedicated field experiment on a sandy Atlantic Ocean beach near Duck, North Carolina. 
Compared with common approaches based on passive remote sensing technology (e.g., optical imagery), lidar 
scanners present several key advantages, including the capacity to directly measure the beach topography, 
waveforms and the cross-shore variations in mean water levels due to wave action (e.g., the wave setup), 
leading to the seamless reconstruction of a vertically-referenced beach topo-bathymetry. Given the potentially 
gappy nature of lidar data, particular attention is paid to the robust computation of surface elevation spectral 
and bispectral quantities, which are at the base of the proposed non-linear depth inversion methodology. 
Promising results on the final topo/bathymetry are obtained under contrasting wave conditions in terms of 
non-linearity and peak period, with an overall root-mean square error below 0.3m obtained along a cross-shore 
transect covering both shoaling and breaking wave conditions. The accuracy of the final bathymetry in the 
shoaling and outer surf regions is generally found to be excellent, with similar skills as previously obtained 
in laboratory settings (relative error < 10 − 15%). Under the most energetic conditions, an underestimation of 
the wave phase velocity spectra is observed within the surf zone with all theoretical frameworks, potentially 
owing to surf zone vortical motions not yet accounted for in the present methodology. This underestimation 
of the wave phase velocities results in a relatively large overestimation of the mean water depth, between 
30% to 100% depending on the theoretical framework. With the methodology described herein, lidars bring 
new perspectives for seamlessly mapping the nearshore topo/bathymetry, and its temporal evolution across a 
wide range of scales. Although currently limited to a single cross-shore transect, we believe that opportunities 
exist to integrate multiple remote sensors, which could address individual sensor limitations, such as coverage 
(lidar) or the incapacity to directly measure waveforms (optical imagery).
1. Introduction

The coastal science community currently lacks insights into the 
rapid morphological evolution of sandy beaches during storms and ex-
treme events (Sherwood et al., 2022). This knowledge gap is largely due 
to the challenge of measuring nearshore seabed elevation (bathymetry) 
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with the necessary spatial and temporal resolution. Accurate bathy-
metric information, while critical for various oceanographic applica-
tions – such as navigation and coastal hazard prediction – remains 
difficult to obtain and track through time. Traditional methods, in-
cluding shipborne sonars (e.g., single or multibeam echo-sounders), 
offer centimeter-level resolution and accuracy but are constrained by 
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limited spatial coverage, are time-consuming, and can be prohibitively 
costly, making them more suitable for localized areas such as har-
bours. Airborne lidar techniques, routinely employed to map coastal 
topo-bathymetry at larger scales (𝑂(1–100 km)), take advantage of 
the relatively weak absorption of blue–green lasers in shallow, clear 
waters (e.g., see Lyzenga, 1985; Irish and Lillycrop, 1999). Satellites 
equipped with multispectral sensors can operate at even larger spatial 
scales, from regional to global, albeit with lower resolution. In envi-
ronments where water properties are well understood, these sensors 
can still provide reliable depth estimates (e.g., see Stumpf et al., 2003; 
Salameh et al., 2019). However, none of these methods is well-suited 
for mapping the surf zone, where energetic wave breaking occurs, and 
even less at temporal scales relevant for studying the morphological 
response of beach systems to storms. This limitation stems from either 
safety concerns or technical challenges, such as lasers and optical 
signals being blocked by foam and sea spray in this highly dynamic 
region (Reineman et al., 2009; Vrbancich et al., 2011). Consequently, 
alternative approaches are needed to effectively map the bathymetry in 
wave-dominated coastal environments, and its evolution through time.

Along wave-dominated coastlines, remote-sensing technologies such 
as video cameras or X-band radars, combined with depth inversion 
algorithms based on ocean wave dynamics, have emerged as some of 
the most promising approaches explored over the last few decades. 
These solutions provide well-resolved information at scales relevant to 
nearshore processes in a cost-effective manner, while minimizing the 
risks associated with human intervention or equipment maintenance 
requirements (Holman and Haller, 2013). Depth inversion approaches 
rely on the strong relationship between nearshore wave dynamics and 
bathymetry, which allows remotely-sensed wave quantities to be linked 
with the mean water depth. The linear dispersion relation is the most 
commonly used theoretical framework, as it provides – when neglecting 
currents – a direct relationship between the water depth ℎ and the 
dispersive properties of a linear wave field: 
𝜔2 = 𝑔𝜅𝐿 tanh (𝜅𝐿ℎ), (1)

where 𝜔 = 2𝜋𝑓 is the angular wave frequency, 𝑔 is the accelera-
tion of gravity and 𝜅𝐿 refers to the (single-valued) magnitude of the 
wavenumber solution to the linear wave dispersion relation. Hereafter, 
𝜅 will denote the wavenumber magnitude, which, together with 𝜔, 
defines the wave phase speed 𝑐(𝜔) = 𝜔∕𝜅(𝜔). Early nearshore depth 
inversion algorithms used spectral analysis of video imagery to es-
timate pairs of (𝜔, 𝜅(𝜔)) (Stockdon and Holman, 2000; Plant et al., 
2008), from which the mean water depth can be inferred through 
Eq. (1). A vertically-referenced bathymetry is then retrieved using an 
estimate of the referenced mean sea-surface elevation at the time the 
depth was estimated (e.g., from a nearby tide gauge). These efforts 
led to the development of cBathy (Holman et al., 2013), a community 
tool1 under continuous development that has now been applied to 
environments characterized by a relatively wide range of tidal and 
wave conditions  (e.g., see Bergsma et al., 2016; Brodie et al., 2018; 
Bouvier et al., 2020; Rodríguez-Padilla et al., 2022; Lange et al., 2023). 
A number of other algorithms based on optical imagery exist for 
extracting pairs of frequency and wavenumbers, such as those based 
on wavelet transforms or empirical mode decomposition of the wave 
field  (e.g., see Simarro et al., 2019; Gawehn et al., 2021; Santos et al., 
2022). Alternative approaches working in the time domain (i.e., by 
evaluating a mean or bulk wave celerity) have also been proposed and 
tested (Lippmann and Holman, 1991; Catalán and Haller, 2008; Almar 
et al., 2008; Yoo et al., 2011; Matsuba and Sato, 2018; Kim et al., 
2023b). As mentioned above, X-band marine radar products also offer 
the possibility of retrieving wavenumbers and frequency pairs, from 
which nearshore depths can be estimated with the linear wave disper-
sion (Honegger et al., 2019; Gawehn et al., 2020; Chernyshov et al., 

1 https://github.com/Coastal-Imaging-Research-Network/cBathy-Toolbox
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2020). These approaches are similar in essence as they all depend on 
the linear wave dispersion relation to estimate depths from remotely-
sensed wave dispersive properties, which are affected by modulation 
transfer functions (i.e., waveforms are not directly measured).

In intermediate water depths, the linear dispersion relation (Eq. (1)) 
accurately describes the dispersive properties of low-amplitude wave 
fields, leading to typical errors in estimated water depth as low as 
10% (e.g., see Dugan et al., 2001; Holland, 2001; Brodie et al., 2018; 
Martins et al., 2023). However, in the shoaling region and closer to 
the breaking point, non-linear amplitude dispersion effects intensify, 
causing significant deviations of dominant wavenumbers from the pre-
dictions of the linear wave dispersion relation (Thornton and Guza, 
1982; Elgar and Guza, 1985b; Herbers et al., 2002; Martins et al., 
2021b). The overestimation of dominant wavenumbers by the linear 
dispersion relation in the nearshore leads to a consistent overestimation 
of inverted water depths in the shoaling region (e.g., see Grilli, 1998; 
Brodie et al., 2018; Lange et al., 2023), with errors as high as 60 −
70% over prominent features such as sandbars (Bergsma and Almar, 
2018; Martins et al., 2023). In the surf zone, non-linear amplitude 
dispersion effects dominate over frequency dispersion, leading to errors 
typically exceeding 40−50%, even when the accuracy of extracted phase 
speeds is carefully controlled or when those originate from direct wave 
measurements (Catalán and Haller, 2008; Fiedler et al., 2021; Martins 
et al., 2023). In this region, errors obtained using cBathy typically 
range within 50 − 600%, and generally increase with incoming wave 
energy (Holland, 2001; Bergsma et al., 2016; Brodie et al., 2018). 
The linear theoretical framework used for depth retrieval explains 
part of this error in this region where waves exhibit strongly non-
linear behaviour; however, a significant portion of the error arises from 
uncertainties in the (𝜔, 𝜅(𝜔)) observations. In the shoaling region, the 
impact of the modulation transfer function, which relates remotely-
sensed wave properties to the actual waveform (e.g., see Stockdon and 
Holman, 2000; Bergsma et al., 2019), has received limited attention but 
is believed to have minimal impact on the robustness of wavenumber 
estimates. This is not the case near the breaking point, where dark 
pixels associated with steep breaking waves rapidly switch to bright and 
white pixels, causing sudden shifts in extracted wave phases (Brodie 
et al., 2018; Bergsma et al., 2019). As such, not only do traditional 
depth inversion algorithms based on the linear theoretical framework 
have strong limitations in the nearshore region (Martins et al., 2023), 
but wave dispersive properties cannot be reliably estimated from tradi-
tional optical imagery, severely limiting our ability to retrieve depths 
in the wave breaking region.

To address these challenges, recent studies have explored the pos-
sibility of using machine learning techniques to improve the accuracy 
of depth estimates using wave synthetic observations (e.g., see Collins 
et al., 2020) or proposed to combine both frequency-domain (such as
cBathy) and temporal methods to estimate wave dispersive properties 
in regions where each approach is most effective – outside the surf 
zone and within it, respectively (Lange et al., 2023). However, depth 
inversion methodologies based on passive sensors inherently suffer 
from other critical limitations for the long-term objective of monitoring 
nearshore morphological changes during storms. These include the 
inability to operate at night, and the systematic neglect of wave setup, 
which varies significantly within the surf zone (e.g., see Apotsos et al., 
2007; Martins et al., 2022) and can reach 1 m near the coastline during 
storms (Fiedler et al., 2015; Nicolae-Lerma et al., 2017; Guérin et al., 
2018).

In this work, we develop a methodology based on lidar technol-
ogy to estimate the nearshore topo-bathymetry seamlessly, from the 
shoaling region to the subaerial section of the beach. This method-
ology is tested and presented as Proof-of-Concept on multi-source 
(ground-based and airborne) lidar data collected during a dedicated 
field campaign organized in September 2022 at Duck, NC, USA. Over 
the past decade, lidar remote sensing technology has demonstrated 
its capability to continuously monitor the morphological evolution 
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of subaerial sections of beaches across temporal scales ranging from 
individual swash events (Vousdoukas et al., 2014; Bayle et al., 2023; 
Blenkinsopp et al., 2024), to storms (Brodie et al., 2012; Almeida et al., 
2015; Martins et al., 2016; Kim et al., 2023a) and seasons (Phillips 
et al., 2019; O’Dea and Brodie, 2024). In contrast with approaches 
based on optical imagery and marine radars, lidars also offer the 
significant advantage of directly measuring free surface elevation, pro-
viding high-resolution information on waveforms across the shoaling 
and breaking wave regions (Irish et al., 2006; Blenkinsopp et al., 
2010, 2012; Brodie et al., 2015; Martins et al., 2017a; Fiedler et al., 
2021; O’Dea et al., 2021a). Because lidar scanners are not affected 
by the modulation transfer function issue and inherently capture non-
linear wave dynamics, they present a highly promising remote sensing 
technology for robustly estimating nearshore topo-bathymetry, even 
within the challenging surf zone.

The framework we develop here builds upon Martins et al. (2023), 
who proposed a novel non-linear (Boussinesq-based) bathymetry-
inversion methodology adapted to highly-resolved maps of free surface 
elevation measurements. Given that it relies on spectral and bispectral 
estimates of free surface measurements, a significant portion of this 
article focuses on adapting an approach originally designed and tested 
on continuous wave gauge data to accommodate gappy data collected 
by multibeam lidars mounted on nearly-stationary airborne platforms 
(uncrewed aircraft systems, UAS). This adaptation is crucial for ex-
tending the applicability of the method to more dynamic and flexible 
data collection scenarios. A Monte Carlo-like methodology is also 
introduced for estimating statistical uncertainties on depth estimates. 
By addressing these challenges, we aim to demonstrate the robustness 
and versatility of the adapted methodology, paving the way for more 
reliable bathymetric estimates in the nearshore region, including the 
surf zone.

2. Field site and the BELS 2022 campaign

The ‘‘nearshore Bathymetry Estimate from Lidar Scanners’’ (BELS) 
field campaign was organized from 12 to 25 of September 2022 along 
a sandy beach facing the Atlantic Ocean near Duck, North Carolina, 
USA at the U.S. Army Engineer Research and Development Centre’s 
Field Research Facility (FRF). The FRF is one of the most well-studied 
coastal research sites in the world, and the comprehensive datasets 
of nearshore hydrodynamics and sediment transport collected at this 
site over the last four decades contributed to significantly advancing 
our understanding of nearshore dynamics. The objectives of the BELS 
field campaign were to adapt, apply, and assess the new non-linear 
(Boussinesq-based) depth inversion method of Martins et al. (2023) 
on real-world lidar datasets. Our efforts concentrated along the beach 
cross-shore transect located on the northern side of the pier at the 
approximate FRF longshore coordinate 𝑦 = 945m, where a fixed line-
scanning lidar is stationed on the dune crest (O’Dea et al., 2019). An 
overview of the 3D topo-bathymetry surveyed 2 weeks before the start 
of the experiments is displayed in Fig.  1, along with the experimental 
setup that is described next. The spatial data are presented in the FRF 
local coordinate system with cross- (’x’) and alongshore (’y’) axes, cen-
tred at 36.1776◦ N, 75.7497◦ W, respectively, and rotated 17.8◦ from 
true North.

2.1. Beach and free surface elevation lidar measurements

A total of three lidar systems, line-scanning and multibeam, were 
used to synchronously collect free surface elevation data across the 
shoaling, surf and swash zones. The line-scanning dune lidar (Riegl VZ-
1000, 1550 nm laser with a 0.3 mrad beam width) continuously scans 
for 30 min every hour along the cross-shore transect near 𝑦 = 945m, 
and uses a co-registration procedure to transform lidar measurements 
of beach and free surface elevation into real-world coordinates (Brodie 
et al., 2015; O’Dea et al., 2019). Due to the presence of a low-tide 
3 
terrace extending to 𝑥 ∼ 180 m during the experiments (see Fig.  1b), 
lidar returns were nearly continuous (i.e. without data gaps) up to 
this location for moderate energy conditions (significant wave height 
𝐻𝑚0 > 1 m). This line-scanning lidar was complemented by datasets 
collected by two multi-beam lidars mounted on multirotor small UASs, 
following the strategy of Fiedler et al. (2021) and Feddersen et al. 
(2024). Both the FRF and Scripps Institute of Oceanography (SIO) 
teams participating in these experiments possessed an autonomous 
system, referred to in the following as the FRF and SIO UAS lidars. 
The SIO UAS payload was a Phoenix Lidar Systems (PLS) miniRANGER 
LITE, consisting of a Velodyne VLP–32C on the 12–13 of September, 
and a line-scanning Riegl miniVUX–1UAV lidar on the 14 of September 
(no SIO flights after this date). The FRF UAS payload was a Phoenix 
Lidar Systems (PLS) miniRANGER LITE, consisting of a Velodyne HDL–
32E. Both FRF and SIO multibeam lidars emit 32 beams of 905 nm 
wavelength, but their specifications (precision, range, vertical resolu-
tion and field of view etc.) slightly vary so that the interested reader 
is invited to read the detailed manuals provided by the constructor. 
Below, the lidars differences and specificities will only be described 
qualitatively and raw data points are all processed in a similar fashion.

2.2. Beach topography and bathymetry surveys/monitoring

Topographic and bathymetric surveys around the FRF pier are 
regularly performed using a combination of amphibious vehicles/ves-
sels such as the Coastal Research Amphibious Buggy (CRAB). During 
comprehensive experiments like BELS, the frequency of these surveys 
can increase and they can be performed almost on a daily basis. Each 
day UAS flights were performed, the topo-bathymetry was surveyed 
by the CRAB at least until the last cross-shore position sensed by the 
multibeam lidars. Though performed daily, these surveys have practical 
limitations due to the size and wheels configuration of the CRAB: the 
minimal longshore distance of surveyed transects to the instrumented 
one is typically greater than 20 m and uncertainties exist on the vertical 
accuracy to describe bedforms with wavelengths smaller than a few 
meters. For this reason, surveys were complemented by an Amphibious 
Uncrewed Ground Vehicle (hereafter the ‘crawler’), which provided 
highly-detailed cross-shore topo-bathymetric surveys in a flexible man-
ner but only under low-energy wave conditions (Bak et al., 2023). At 
fixed locations in the shoaling and breaking wave regions (numbered 
#1 − 5, positions ranging 𝑥 = 130 − 180 m), five full backscatter 
ultrasonic altimeters (Echologger EA400) were deployed on the 16 
of September to capture rapid morphological changes. The altimeters 
were mounted to heavy, 0.08 m diameter, round pipes jetted a couple 
of meters into the seafloor from the CRAB. Except for #5, the elevation 
of the altimeters relative to NAVD88 was determined at low tide with 
RTK-GPS using corrections from a local base station. At altimeter #5, 
the elevation was indirectly retrieved from the co-located pressure 
sensor, whose position relative to the altimeter was known within a 
cm accuracy, by matching with the mean water levels measured at the 
pier under low energy conditions (negligible setup/setdown). Outside 
of the breaking region and under low to moderate energy conditions, 
the seabed elevation was estimated from bottom-finding algorithms 
using vertical profiles of acoustic backscatter (Brodie et al., 2018). 
Under breaking conditions, the backscatter intensity was too intense 
for these algorithms to work robustly. Instead, the seabed elevation 
was retrieved manually from timestacks of backscatter variances, which 
remains low and stable right under the seabed layer in contrast with the 
bottom of the water column.

2.3. In situ water levels and wave measurements

Mean water level data were continuously collected at the pier 
while a permanent array of pressure sensors deployed in 8 m-depth 
continuously provided estimates of the directional wave forcing in 
intermediate water depth (hereafter the 8 m array; see Long, 1996, 
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Fig. 1. Topography and bathymetry map of the sandy beach at the FRF (Duck, NC, USA) surveyed on the 22 of August 2022. The top panel (a) shows contour maps as well as 
an overview of the experimental setup, while the bottom panel (b) shows the cross-shore evolution of the beach profile around the instrumented transect. The grey-shaded area 
shows the envelope of bathymetric changes between 12 and 27 September 2022, providing insights on the morphological changes during the experiments. The coastline faces 
the Atlantic Ocean with an orientation of 71.2◦ with respect to the North. Spatial coordinates are displayed in the FRF coordinate system (𝑥: cross-shore coordinate; 𝑦: longshore 
coordinate) while the vertical elevation is given relative to the North American Vertical Datum of 1988 (NAVD 88). The red line corresponds to the line scanned by the dune 
lidar system. Altimeters #1 − #5 (violet points) were deployed approximately 12.5 m apart between 𝑥 = 130 − 180m along a transect around 𝑦 ∼ 940 m to minimize the risks of 
obstruction for the dune lidar. Two pressure sensors were bottom-mounted at the locations of altimeters #3 and #5. The green squares correspond to the two UAS multibeam lidar 
averaged hovering positions (𝑥 = 175 and 225m) while the yellow symbols show the location of the permanent sensors, including the 8 m pressure array from which the offshore 
wave forcing is estimated (Long, 1996).
for more details). Other permanent sensors at the FRF include the 
Nortek Signature1000 deployed in 3 m water depth (3m-SIG), which 
provides a good indication of the incident wave forcing at the most 
seaward location sensed by the lidars (𝑥 ∼ 250m). Bulk wave properties 
estimated from linear wave theory at the 8 m array and at 3 m-SIG 
are shown in Fig.  2. Two additional RBRsolo pressure sensors were 
deployed near the seabed at the cross-shore location of altimeters #3 
(𝑥 = 155m) and #5 (𝑥 = 180m). The data from these sensors is mostly 
used here to assess the accuracy of UAS lidar-derived wavenumber 
estimates and quantify vertical biases in the UAS lidar datasets. The free 
surface elevation was recovered from raw pressure signals corrected 
for atmospheric pressure measured at the pier using the moderately 
dispersive non-linear reconstruction method proposed by Martins et al. 
(2021a). This reconstruction uses the Boussinesq theory of Herbers 
et al. (2002) to estimate non-linear frequency and amplitude disper-
sion effects on wavenumbers. More details on this Boussinesq theory 
are given below, in Section 4.1, as the non-linear depth inversion 
methodology of Martins et al. (2023) is based upon it.
4 
2.4. Tidal and wave conditions during UAS flights

A total of 21 flights were performed during the BELS experiments, 
as weather and wind conditions allowed (Fig.  2a). Except for the first 
flight of 13 September (flight #3, 14:00–14:30 UTC), during which only 
the SIO UAS flew with a hovering cross-shore position at 𝑥 = 175m, 
the approximate hovering positions of the FRF and SIO UAS were 
𝑥 = 175m and 𝑥 = 225 m, respectively. During these 21 flights, a 
relatively wide range of tidal and wave conditions were covered, as 
illustrated in Fig.  2. The best datasets were collected over the first 
three days of the experiments (12–14 of September) during which the 
dune lidar and the two UAS lidars synchronously collected data. For 
these three days, the tidal range varied within 1–1.3 m and incoming 
waves corresponded to nearly shore-normal propagating swell (inci-
dence angle in 3 m-depth < 10◦ relative to shore, see Fig.  2d), with 
significant wave height and wave peak period decreasing from 1.5 m 
and 16 s on the 12th, respectively, to around 0.8 m and 12 s on the 
14th, respectively (Fig.  2bc). These conditions were followed by 5 to 
6 very calm days, during which no flights were undertaken since the 
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Fig. 2. Water levels and incident wave conditions during the BELS experiments (12–25 September 2022). Panel (a) shows the mean water surface elevation 𝜂 measured at the 
pier (NOAA station 8651370), with the corresponding surge anomaly. Lower panels display the wave conditions estimated at the 8 m array and at the 3 m-SIG (2.7 m mean 
water depth), including: the significant wave height 𝐻𝑚0 (b), the peak 𝑇𝑝 and mean 𝑇𝑚01 wave periods (c) and the mean wave direction relative to the mean shoreline orientation 
(d). In all panels, time windows where UAS flights were performed are indicated by the grey-shaded regions while the corresponding number, used throughout the manuscript, is 
indicated in panel a.
very narrow surf zone did not present much interest compared to the 
conditions experienced on the first days of the experiments. Two flights 
were performed with the UAS FRF during very mild conditions on the 
20 of September. Conditions were more energetic during flights #14– 19
on the 22 of September, just prior to the 22–23 September Nor’easter, 
but incident waves propagated towards shore with a large incident 
angle (20–25◦ relative to shore, see Fig.  2d). Under such conditions, 
an estimation of the mean wave angle throughout the surf zone is 
required for accurately estimating the bathymetry. As no theoretical 
or practical frameworks currently exist for estimating surf zone waves 
mean angles from free surface elevation datasets only, these flights 
were not considered for the depth inversion. Finally, the conditions 
found during the two last flights performed with the FRF UAS on the 24 
of September were particularly useful to cross-compare wavenumbers 
derived from the Boussinesq theory of Herbers et al. (2002) from both 
lidar and in situ pressure sensors that were deployed together with the 
altimeters.

3. Single and multibeam lidar data processing

3.1. A step-by-step procedure for merging and gridding multiple lidar data 
sources

During flights #1 to #11 (12–14 of September 2022, see Fig. 
2), up to three independent lidar systems (dune, FRF & SIO) were 
synchronously collecting upper beach topography and free surface 
elevation data over the swash, surf and shoaling zones. As the depth 
inversion approach of Martins et al. (2023) relies on time-gridded 
surface elevation data at fixed location in space (any sub-wavelength 
5 
spacing), an important step concerns the interpolation of raw lidar 
point clouds into spatial and temporal interpolation grids. One possi-
ble approach is to process each individual dataset in an independent 
manner, perform the depth inversion on each dataset, and merge the 
individual bathymetry estimates into a final product. A potentially 
more straightforward approach, followed here, is to work on a single 
surface elevation dataset (as in Martins et al., 2017b). As it will be 
shown later in this section, merging the raw lidar datasets instead of 
the individual derived bathymetry actually presents several advantages 
in terms of the final product’s accuracy. Though in principle the lidar 
systems work similarly (near infrared beams measuring a distance with 
the time-of-flight technique), each lidar system used here displayed 
specific characteristics that made the merging of their point cloud data 
a challenging task. This includes: a common GPS clock but different 
positioning systems and lidar firing times, line-scanning versus multi-
beam lidars, rotation rates that affect the effective sampling frequency, 
varying spatial resolutions and accuracy, different points of view and 
hence surface slope detected etc. This is illustrated in Fig.  3 with an 
instantaneous snapshot of the lidar point clouds around 19:23:16 UTC 
on the 12 of September 2022. Fig.  3a shows the entire lidar coverage on 
the xy horizontal plane, while Fig.  3b displays the dune lidar data and 
UAS lidar points found within 𝑦 = 944.5 − 945m (0.5 m-wide longshore 
swath) on the xz vertical plane.

The UAS hovering positions were chosen to maximize lidar coverage 
and capture wave transformation processes over a region as wide as 
possible, ideally covering shoaling, near-breaking, and breaking waves, 
eventually propagating into the swash zone, as shown in Fig.  3. During 
flight #1 on the 12 of September (19:00–19:30 UTC, low-tide), the 
mean breaking point was located around 𝑥 = 200–210 m. Seaward 
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Fig. 3. An example lidar scan from the three independent systems around 19:23:16 UTC on the 12 of September 2022 (flight #1, 19:00–19:30 UTC). In panel (a), the raw lidar 
points are shown in alongshore versus cross-shore coordinates (xy horizontal plane in the FRF coordinate system) and coloured by the vertical elevation relative to NAVD88. The 
two UAS hovering positions are indicated with the violet stars while the grey-shaded area indicates the modified ‘‘cross-shore’’ transect used for the depth inversion for this specific 
flight (see Step 2 in Section 3.1). Panel (b) shows the same data on the xz vertical plane and coloured for return intensity along the topo-bathymetric profile and the lidar-derived 
mean water levels (MWL). In panel (b), only data points found within 𝑦 = 944.5 − 945m are shown.
of this point, shoaling and steepening near-breaking waves were suc-
cessfully observed with the Velodyne VLP–32C (SIO lidar), the only 
lidar sensor here able to consistently detect the free surface elevation 
in the absence of remnant foam. In this area, returns intensity were 
generally low (< 10, see Fig.  3b), which is typical of very diffusive 
surfaces, except near nadir (𝑥 ∼ 228m) where they can reach 100. 
These values indicate that in this case, the water surface acts as a retro-
reflector (Velodyne manual). On the contrary, the Velodyne HDL–32E 
(FRF lidar) performed well only with large quantities of foam generated 
during breaking. This can be seen from the clear demarcation line 
around 𝑥 ∼ 210m from which no lidar returns are found seaward (Fig. 
3b), in contrast with the relatively high-intensity returns associated 
with broken waves shoreward to this location. For the swell observed 
on that day, the Mean Water Level (MWL) measured by the array 
of lidars and shown in Fig.  3b also helps to identify the transition 
between these nearshore regions where waves exhibit contrasting wave 
shapes. Prior to breaking (𝑥 ∼ 220–240 m), incident waves display 
a strong horizontal asymmetry (skewness), the MWL sitting nearly at 
trough levels. In contrast, asymmetry relative to the vertical axis largely 
dominates in the inner surf zone, where broken waves clearly exhibited 
a saw-tooth shape (Fig.  3b). This is consistent with past observations 
made both in the field (e.g., Elgar and Guza, 1985a) or in laboratory 
conditions (Martins et al., 2021b).
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In order to merge the lidar datasets and grid them for further 
analysis, we implemented the following procedure:

Step 1 — Lidar point clouds geo-rectification. At the very least, all lidar 
data must be expressed within the same geo-referential 
system. For the dune lidar system, this is done as part 
of a standard processing procedure (O’Dea et al., 2019), 
where the horizontal coordinates are expressed in the FRF 
coordinate system, and the vertical measurements are refer-
enced to the North American Vertical Datum of 1988 (NAVD 
88). For the UAS lidars, GNSS trajectory data were post-
processed and corrected to centimeter-level accuracy using 
an on-site National Geodetic Survey’s (NGS) Continuously 
Operating Reference Station (CORS station NCDU) with the 
lidar integration software. Using these post-processed trajec-
tories, raw laser data were then georectified into state plane 
coordinates (NAD83(2011), North Carolina State Plane, me-
ters). Finally, the output was transformed into the local FRF 
coordinates. For further processing workflows, the reader is 
referred to Fiedler et al. (2021), Feddersen et al. (2024).

Step 2 — Definition of a cross-shore transect. As shown in Fig.  3a, the 
line scanned by the dune lidar is not perfectly aligned with 
the cross-shore axis of the FRF coordinate system. Since 
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the theoretical hovering positions of the UAS lidars were 
determined assuming a perfectly cross-shore transect, this 
resulted in a mismatch between the dune lidar’s scanning 
line and the highest UAS data point density (Fig.  3a). To 
account for this, a small angle (≤ 2◦) was introduced at the 
point where the quality of the dune lidar signal began to 
degrade. For each flight, this angle was optimized to ensure 
that the modified transect passed directly beneath the UAS 
positions. Given the small magnitude of the angle, its effect 
on the estimation of cross-shore wave propagation speed 
from gridded lidar data is negligible (< 0.1% error). While 
bathymetric data will be computed at 1-meter intervals, a 
cross-shore spacing of 0.2 meters is applied between points 
along this modified transect for the free surface elevation 
interpolation.

Step 3 — Homogenizing lidar vertical offsets. As analysed below in Sec-
tion 3.2, the three lidar systems showed slight differences 
in their mean vertical elevations. Although the dune lidar 
system uses an advanced co-registration algorithm for each 
of the 30-min data collection (O’Dea et al., 2019), it may 
still develop vertical biases several hundred meters away 
from the scanner due to small uncertainties on the retrieved 
rotation matrix. The UAS lidars, measuring much closer to 
nadir, primarily experience vertical bias due to GPS errors, 
typically within a few centimeters. Here, the dune lidar 
system is treated as unbiased, meaning that it is assumed to 
collect data relative to a fixed vertical datum and the two 
UAS lidars were corrected to match it. We first corrected 
the bias within the FRF dataset by comparing differences 
in mean elevations with the dune lidar for each hover 
(up to 3 hovers per flight). This comparison was done by 
comparing individually-gridded versions of the two surface 
elevation datasets at the cross-shore location with the most 
overlapping returns. Once the bias was computed, it was 
considered spatially uniform but time-varying with a 2-min 
moving average, and corrected for on all FRF lidar points. 
The same process was then repeated for the SIO lidar point 
cloud, by comparing it with the corrected FRF dataset. As 
it will be shown, the vertical differences in mean elevations 
computed from the different lidar sources never exceeded 
8 cm for all 21 flights, demonstrating the accuracy and 
robustness of all systems.

Step 4 — Spatial and temporal gridding. The interpolation process starts 
by selecting a temporal grid 𝑇𝑖 and a spatial resolution 
𝛿𝑥. Except when specified otherwise, all spectral results de-
scribed in this manuscript, including bathymetry inversion, 
were obtained with a sampling frequency of 2 Hz and a 
spatial resolution of 𝛿𝑥 = 0.2 m. For each point 𝑡𝑖 of 𝑇𝑖, 
a 4-D (𝑡, 𝑥, 𝑦 and 𝑧) linear interpolant is generated using 
the equivalent of three full UAS lidar scans. Thus, for each 
interpolation at 𝑡𝑖, the algorithm searches for all data point 
collected at times within 0.16 s of 𝑡𝑖. Using more lidar full 
scans to create the interpolant (10 or 20 tested here) re-
sulted in a slight smoothing of the largest surface elevation 
gradients. It is worth noting that the corresponding decrease 
of energy levels, which increased with the time interval 
chosen, only affected the tail region (𝑓 ≳ 1 Hz). As these 
frequencies are not considered in the depth inversion pro-
cedure (described in Section 4), this choice has no impact 
in the final results here. The algorithm then iterates over 
the cross-shore grid and performs the interpolation only 
when sufficient data points in the original point cloud are 
available around that location (typically a minimum of 4
points within a 1-m radius). Combined, these two steps – 
first in time then space – ensure quality control and prevent 
the artificial filling of large spatio-temporal gaps.
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Below, datasets from individual lidar sources are also used in order 
to assess the accuracy of our data curation and processing strategy. For 
those, the same interpolation grids (Step 2) and methodology (Step 4) 
were used to ensure consistency between all datasets.

3.2. Accuracy of the lidar systems and the gridding procedure

The advantage of merging the raw lidar datasets prior to grid-
ding them is illustrated in Fig.  4b with the cross-shore variations of 
the percentage of returns on individual and merged gridded datasets. 
Fig.  4a shows the corresponding profiles of significant wave height 
along with water levels. For this specific flight (#1 on 12 Septem-
ber, 19:00–19:30 UTC), three hovers were performed with the FRF 
UAS lidar system while only two were performed with the SIO UAS. 
Time intervals between hovers were used to perform figure-eights in 
order to restabilize the IMU, explaining the reduced amount of data 
for both UAS lidar systems compared to the continuous acquisition 
from the dune lidar. It is worth noting that on the 24 of September 
(flights #20 and #21), complete 30 min-long flights were performed 
without affecting the drone horizontal stability or deteriorating the 
lidar vertical accuracy as compared with flights split in several hovers 
(Fig.  5ab). Thus, we now believe that splitting the flights in several 
hovers is unnecessary for the present application. Besides facilitating 
the depth inversion procedure, Fig.  4b shows that merging the lidars 
prior to gridding them results in overall more data being conserved. 
This is explained by the increased number of raw data points at a 
given location, thus overcoming potential filters based on the density 
of points cloud (see previous section), but also simply because of 
shadowing effects that are filled in by other lidars with different view 
angles. This is especially true around breaking, here typically between 
𝑥 = 180–220 m (Fig.  4b).

The accuracy of the lidar system is here first evaluated in terms of 
the UAS horizontal stability and lidar-derived mean water (vertical) 
elevation. Fig.  5a shows the variance of the detrended horizontal 
displacements measured by the Inertial Motion Unit (IMU) of the 
two UAS systems (FRF and SIO) for each flight. Note that the figure 
also provides an indication of which lidar package and when it was 
measuring during the flights. In terms of horizontal stability, the SIO 
UAS was surprisingly stable, with a displacement standard deviation 
𝜎𝑥𝑦 an order of magnitude lower than that of the FRF UAS. Wind 
gusts, displayed in Fig.  5c, did not seem to play a major role in the 
horizontal stability of the UAS as there is no clear trend between 
weakening wind gusts and increased stability. The accuracy in the 
vertical is analysed by comparing the differences between the UAS 
lidar-derived mean sea-surface elevations to that measured by the dune 
lidar system. This comparison is shown in Fig.  5b, where multiple 
points for a single flight correspond to the different hovers (i.e., one 
point per hover). Though of different horizontal stability, the two 
UAS lidars appear extremely stable in the vertical, with consistency 
throughout all flights. The differences in mean 𝑧 elevation relative to 
the dune lidar-derived values are of the order of the GPS accuracy, 
demonstrating the robustness of the UAS lidar systems. Differences 
between mean sea-surface elevations measured by the RBR#3 relative 
to the dune lidar are also shown in Fig.  5b. Interestingly, the vertical 
bias relative to the dune lidar system associated with the FRF lidar 
and RBR#3 display a very similar trend, with an excellent match and 
decreasing bias relative to the dune data for flights #12 to #15, and 
then later stabilizing with minor differences. This suggests that some of 
the relative differences shown here are actually inherited from the dune 
lidar co-registration procedure (O’Dea et al., 2019). Indeed, even very 
small errors in terms of optimal rotation matrix represent uncertainties 
of the order of several centimeters hundreds of meters away from the 
lidar. In the present case, this uncertainty is of the order of the GPS 
error and typically less than a few centimeters. While uncertainties 
associated with the GPS positioning of the UAS do not affect the lidar-
inverted depth, it does impact the final bathymetry since it is retrieved 
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Fig. 4. Overview on the quality of individual and merged gridded lidar datasets during flight #1 on 12 September 2022 (19:00–19:30 UTC). Panel (a) shows the cross-shore 
evolution of the significant wave height along with mean water levels (data points with less than 50% returns in the series were removed). Panel (b) shows the percentage of 
returns for each individual dataset (dune, UAS FRF and SIO) and merged gridded dataset at 2 Hz.
Fig. 5. Panel (a) shows the horizontal stability of the two UAS systems (FRF & SIO), assessed through the standard deviation of its horizontal position during each hover (i.e., 
variations relative to its mean position. Panel (b) compares the differences in mean sea-surface elevation measured by the UAS lidars relative to the dune lidar. For flights performed 
after 16 September 2022, on which the sensor was deployed, data points from the RBR#3 are also shown. Panel (c) shows the mean wind gusts measured at approximately 19 m 
above MSL during the corresponding flight. Wind gusts are defined as the highest 5 s average velocities, as in the meteorological products from the FRF (see Acknowledgements 
for further details on data access).
by subtracting the inverted depth from the lidar-derived mean sea-
surface elevation. An uncertainty of around 5–6 cm on the UAS vertical 
positioning, as obtained here (Fig.  5), is found acceptable in the present 
situation given the desired accuracy of the depth inversion system 
and that of the surveys used for the method’s assessment (the CRAB, 
surveying 20+ m either side of the monitored transect).

A more thorough evaluation of the lidar-derived timeseries of free 
surface elevation 𝜁 (detrended sea-surface elevation) was also per-
formed through spectral and cross-spectral analyses (see Appendix for 
details). In Fig.  6ab, we compare the energy spectra of individually-
gridded lidar datasets at two contrasting locations annotated by the 
green stars in Fig.  4a: in the inner surf zone (dune vs. FRF, panel a) 
and in the outer surf zone (FRF vs. SIO, panel b). For each location, 
the energy spectra of the free surface elevation difference timeseries 
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is also shown. In terms of energy density, an excellent match is found 
between the FRF and dune lidar datasets in the inner surf zone (Fig. 
6a) and between the FRF and SIO lidar datasets in the outer surf 
zone (Fig.  6b). Around the mean breaking point (Fig.  6b), the energy 
spectra of the difference 𝜁𝐹𝑅𝐹 − 𝜁𝑆𝐼𝑂 appears as a white spectra whose 
energy level is 3 orders of magnitude lower than the swell energy peak 
(equivalent to a ∼ 1 millimeter error for a 1 m-amplitude wave). Similar 
behaviour is observed in the inner surf zone, where both dune and 
UAS FRF lidars accurately describe the 𝑓−2 energy spectrum tail, which 
characterizes saw-tooth waves in this region (e.g., Kirby and Kaihatu, 
1997; Bonneton, 2023). The spectral analysis is complemented by cross-
spectral analysis between the two corresponding timeseries, which 
provides a coherence between the two signals (Fig.  6cd) and the relative 
phase difference (Fig.  6ef). At both locations, the individually-gridded 
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Fig. 6. Spectral and cross-spectral analysis of gridded free surface elevation 𝜁 timeseries collected on 12 September (19:00–19:30 UTC, flight #1) by the three individual lidar 
systems (dune, FRF and SIO). Left panels focus on 𝜁 timeseries collected in the inner surf zone (𝑥 = 162 m, see Fig. fig:4a) by the dune and FRF UAS lidars while right panels 
concern 𝜁 timeseries collected in the outer surf zone (𝑥 = 195 m) by the FRF and SIO UAS lidars. Top panels (ab) show the spectral energy densities from the two lidar-derived 
timeseries at the respective locations and their difference. Middle (cd) and lower (ef) panels show the squared coherence between the corresponding two timeseries and their 
relative phase difference, respectively.
signals show a great coherence (𝛾2 > 0.99, see Fig.  6cd) at the fre-
quencies of interest for the Boussinesq-based depth inversion method, 
that is roughly between 0.05 Hz and 0.25 Hz. At these frequencies, 
the relative phase difference is near zero, meaning both lidars strictly 
measure the same signal, providing great confidence in the merging 
and the gridding procedures explained in the previous sub-section. 
This is consistent with the very weak energy levels computed from the 
difference timeseries shown in Fig.  6ab, as phase differences between 
the two series would result in greater energy, with well-defined peaks 
in spectra.

In this Section, we have developed a robust data processing chain 
for individual and/or multiple lidar data sources, which can originate 
from either single- or multibeam types of scanners. This allows for a 
great control over the characteristics and quality of the final gridded 
free surface elevation data, whose mean vertical accuracy is typically 
within the GPS accuracy, which is more than acceptable for most depth 
inversion applications. The next Section presents the depth inversion 
methodology itself, its specific implementation on lidar data as well as 
a novel approach for estimating an uncertainty on the final bathymetry 
estimate.

4. Implementation of the Boussinesq-based depth inversion ap-
proach to lidar datasets

4.1. Boussinesq-based depth inversion approach of Martins et al. (2023)

Compared with other wave-based depth inversion algorithms based 
on optical imagery (e.g., Holman et al., 2013; Simarro et al., 2019) 
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or radar (e.g., Honegger et al., 2019; Chernyshov et al., 2020), the 
methodology proposed by Martins et al. (2023) and applied here to 
lidar is novel in two main aspects: (1) it uses direct measurements of 
the free surface elevation, as opposed to other types of remote sensing 
technology that are affected by a modulation transfer function (e.g., 
passive light or electromagnetic backscatter); and (2) it is based on 
a non-linear (Boussinesq) theory to predict frequency and amplitude 
dispersion effects on wavenumbers. Using geo-referenced lidar data has 
another significant advantage as it is not only the depth that can be 
estimated but a geo-referenced bathymetry thanks to the lidar-derived 
mean sea-surface elevation.

As with most existing algorithms, the depth inversion approach 
developed in Martins et al. (2023) for free surface elevation data 
estimates depth by matching, through a minimization procedure, ob-
served and predicted wavenumbers at a given location. Wavenumbers 
are here predicted following the Boussinesq theory of Herbers et al. 
(2002), which estimates dominant wavenumber spectra 𝜅𝑟𝑚𝑠 directly 
from spectral and bispectral products of the free surface elevation 𝜁 as: 

𝜅𝑟𝑚𝑠(𝜔) =
𝜔
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Fig. 7. Comparison of spectral and bispectral products computed on lidar and pressure-based free surface elevation timeseries collected at 𝑥 = 180m on the 24 of September 
(13:00–13:30 UTC, flight #20). Panel a) shows the spectral energy densities of the lidar (𝜁lidar ) direct measurements and the pressure-derived reconstructions: the hydrostatic 𝜁ℎ𝑦𝑑 , 
the fully-dispersive linear 𝜁𝐿,𝜅𝐿  and the moderately dispersive non-linear 𝜁𝑁𝐿,𝜅𝑟𝑚𝑠  of Martins et al. (2021a). Panel (b) compares the 𝜅𝑟𝑚𝑠 wavenumbers (Eq. (2)) computed from 𝜁ℎ𝑦𝑑 , 
𝜁𝑁𝐿,𝜅𝑟𝑚𝑠  and 𝜁lidar , together with linear and Boussinesq wavenumber predictions without amplitude dispersion effects (𝛾𝑎𝑚 = 0 in Eq. (2)). Panel (c) shows the equivalent wave phase 
velocity spectra 𝑐𝑟𝑚𝑠 = 𝜔∕𝜅𝑟𝑚𝑠.
where 𝜔 = 2𝜋𝑓 is the angular frequency, ℎ is the mean water depth, 𝐸
and 𝐵 are the spectral and bispectral densities of 𝜁 , respectively, and 
Re{.} denotes the real part. In Eq. (2), the leading-order term corre-
sponds to the wavenumber for non-dispersive shallow-water waves. The 
terms ℎ𝛾𝑓𝑟 and 𝛾𝑎𝑚∕ℎ correspond to frequency and amplitude dispersion 
terms, respectively. Compared to the notation of Herbers et al. (2002), 
these dispersion terms were expressed in a way that 𝛾𝑓𝑟 and 𝛾𝑎𝑚 are 
independent of ℎ, which facilitates the depth inversion procedure.

Observed wavenumbers were obtained from cross-spectral analyses 
of free surface elevation data, following a similar strategy as in Martins 
et al. (2023). Obtaining robust estimates of wavenumber, or equiva-
lently phase velocity spectra, in the field can be a challenging task (e.g., 
Thornton and Guza, 1982; Elgar and Guza, 1985b), even more so when 
based on short (≲30 min) timeseries of potentially gappy lidar data. In 
order to estimate wavenumbers at a given location, we use all possi-
ble combinations of gauges around and equidistant to that location, 
and which were separated by a distance within 8–20% of the peak 
wavelength. The latter was computed from a first estimate of the bulk 
celerity and the peak wave period, estimated from spectral analysis at 
the most seaward lidar gauge. This procedure ensured that we obtain 
statistically robust estimates by averaging several individual estimates 
and removing statistically abnormal values. It also leverages potential 
wavelength-related bias that can be introduced when computing cross-
spectra with a fixed distance between adjacent wave gauges. Details 
on the computation of spectral, bispectral and cross-spectral estimates 
and their statistical uncertainties are provided in  Appendix. As lidars 
can be naturally gappy, special care needs to be taken for computing 
spectral products through Fourier analysis, which require continuous 
signals. Here, we only used data blocks with more than 90% returns, 
or equivalently with less than 10% of non-returns (NaNs). Blocks with 
more NaNs than this threshold were simply rejected. Gaps in surface 
elevation timeseries were then linearly interpolated prior to applying 
Fast Fourier Transforms (FFT). Given the cross-shore variation in the 
total amount of lidar data available for analysis (e.g., see Fig.  4b for 
the example of flight #1), this resulted in a cross-shore variation of 
the number of data blocks used and the uncertainties of the spectral 
estimates.
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The accuracy of spectral and bispectral estimates computed from 
gridded lidar data is here evaluated with comparisons against bottom 
pressure-based data from the RBR#5 (𝑥 = 180m) collected during the 
flight #20 on the 24 of September (13:00–13:30 UTC). This corresponds 
to an outer surf zone situation, where the largest waves were starting to 
break at this location. Fig.  7a first shows the spectral energy densities of 
the free surface elevation directly measured by the UAS FRF lidar and 
that reconstructed from the bottom pressure signal. Three reconstruc-
tions are considered: the hydrostatic, the fully-dispersive linear (e.g., 
Bishop and Donelan, 1987) and the moderately dispersive non-linear 
reconstruction of Martins et al. (2021a), in which a cutoff frequency at 
0.7 Hz has been applied. The latter reconstruction method employs the 
𝜅𝑟𝑚𝑠 Boussinesq predictions from Herbers et al. (2000) to predict non-
linear effects in the wave dispersion relation (Eq. (2)). The moderately 
dispersive non-linear approach of Martins et al. (2021a) reconstructs 
the free surface elevation very accurately, with a correct description 
of energy levels up to very high frequencies (here shown up to 2 Hz, 
see Fig.  7a). Although the two sensors (lidar and pressure sensor) 
measured two distinct signals, an excellent match is obtained between 
𝜅𝑟𝑚𝑠 spectra computed from the lidar and the 𝜁𝑁𝐿,𝜅𝑟𝑚𝑠  reconstruction, 
showing that representative wavenumbers can be reliably estimated 
from short-duration lidar timeseries. As in Martins et al. (2021a), com-
puting 𝜅𝑟𝑚𝑠 wavenumbers from the hydrostatic reconstruction (Herbers 
et al., 2002) provides a good first-order estimate of both frequency and 
amplitude dispersion effects, but with a 5 − 10% overestimation that is 
well identified in wave phase velocity spectra in Fig.  7c. It is important 
to note that the reliability of 𝜅𝑟𝑚𝑠 spectra estimated from short lidar 
timeseries is also explained by the definition of 𝜅𝑟𝑚𝑠 itself (Eq. (2)). 
Indeed, though bispectral estimates naturally show large statistical 
uncertainties when computed over such short timeseries, the 𝛾𝑎𝑚 term 
in Eq. (3) is actually computed from an integral over all frequencies of 
these bispectral estimates. This has for effect to significantly reduce the 
final uncertainty on 𝜅𝑟𝑚𝑠(𝜔) due to bispectrum computations.

4.2. Uncertainties on inverted water depths

The uncertainty on inverted water depths and hence, on the ref-
erenced bathymetry, directly depends on the type and number of 
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observations used during the minimization procedure. Some differences 
are thus expected between the linear and Boussinesq approaches, since 
they used different spectral wave estimates. The objective of this Sec-
tion is to implement a procedure to estimate an uncertainty on the 
inverted depths, such as the 95% confidence interval.

In practice, the mean water depth estimated at each observation 
location from Boussinesq theory corresponds to the depth ℎ that mini-
mizes the following expression:
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where 𝛼𝑖 are weights taken from the observed cross-spectra coherence 
and [𝜔min;𝜔max] defines the frequency range over which the minimiza-
tion is performed (Martins et al., 2023). The range of frequencies 
corresponds to 0.8𝑓𝑝, 𝑓𝑝 being the peak frequency, to 0.25 Hz, an 
upper limit suggested by Herbers et al. (2002) for the validity of their 
theory under a wide range of conditions in shallow water depths as 
those considered here. As opposed to an algorithm like cBathy, where 
only few specific frequencies are picked (e.g., the four most coherent 
ones), all frequencies within this range are here used for the inversion. 
Thus, the total number of spectral estimates depends on the frequency 
resolution, which is controlled by the length of the data block used for 
computing FFTs. In Eq. (5), statistical uncertainties lie within the ob-
served wavenumber spectra 𝜅𝑜𝑏𝑠 (cross-spectrum), and in the predicted 
wavenumber spectra 𝜅𝑟𝑚𝑠 through the amplitude dispersion term 𝛾𝑎𝑚
(spectra and integrated bispectra). As described in the Appendix, the 
statistical uncertainty for each spectral, bispectral and cross-spectral 
estimate can be theoretically calculated. However, how these translate 
into a depth uncertainty when such quantities are integrated (as for the 
bispectrum 𝐵, see Eq. (4)) or combined, is not. One possible manner 
to tackle this problem is through a Monte-Carlo simulation approach, 
which was implemented as follows. Knowing the uncertainties on 
individual spectral estimate, we randomly draw surrogate values for 
each estimate in its own 95% confidence interval, and compute a 
bathymetry using those surrogate values as observations. Here, the 
95% confidence interval for each spectral estimate is approximated 
as ±2𝜎, 𝜎 being the square-root of the theoretical spectral estimate 
variance (i.e., the standard deviation; see also Appendix). By repeating 
this operation a certain number of realizations 𝑁 (here > 2000), this 
procedure provides a probability density function for the bathymetry, 
from which an uncertainty can be computed. A similar approach is 
also employed to evaluate the statistical uncertainty on the mean 
water depth computed from the linear wave dispersion relation, which 
minimizes the following expression: 

𝜔max
∑

𝜔𝑖=𝜔min

𝛼𝑖

(

ℎ − 1
𝜅𝑜𝑏𝑠(𝜔𝑖)

tanh−1
[

𝜔2
𝑖

𝜅𝑜𝑏𝑠(𝜔𝑖)𝑔

])2

(6)

It is worth noting that the uncertainty for the depth estimated using the 
linear wave dispersion originates only from the observed wavenumbers 
𝜅𝑜𝑏𝑠, that is from the cross-spectral analyses.

An example of this Monte-Carlo approach is provided in Fig.  8 using 
data from the 12 of September (19:00–19:30 UTC, flight #1) in two 
distinct regions: an inner surf zone situation (𝑥 = 175m, left panels) 
and a shoaling situation (𝑥 = 225m, right panels). Wave phase velocity 
spectra (𝑐 = 𝜔∕𝜅(𝜔)) computed at these two locations from cross-
spectral analyses of the free surface elevation data are shown in Fig. 
8cd. The Monte-Carlo approach described above was applied to the 
corresponding wavenumber spectra 𝜅, to get the inverted water depth 
probability density functions shown in Fig.  8ef. The first observation 
that can be made is that the probability density functions computed 
from Boussinesq and linear theory are of similar shape, the latter 
being slightly more peaky. Given that the linear theory estimates are 
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only impacted by uncertainties originating from the observed cross-
spectral values (see Eq. (6)), this indicates that statistical uncertainties 
on predicted wavenumbers 𝜅𝑟𝑚𝑠 (i.e., spectral densities and bispectrum 
integrals, see Eq. (4)) are of minor importance. As already mentioned 
earlier, this is explained by the fact that bispectral products are in-
tegrated over all frequencies, significantly reducing the uncertainties 
associated with individual bispectral estimates. The estimated water 
depth distribution are almost symmetrical, displaying small but not null 
skewness values. For this reason, we use the median of the distribution 
as the final depth estimate throughout this manuscript. For all the cases 
analysed here, the 95% confidence interval was found to accurately 
match the ±2𝜎ℎ range around the median value (maximum error <
1%), where 𝜎ℎ is the standard deviation of the distribution of depth 
estimates. Thus, in the following ±2𝜎ℎ is used to compute the 95% con-
fidence interval of the mean water depth estimate. This 95% confidence 
interval naturally increases with the water depth (𝜎ℎ ∼ 0.1 m in the 
shoaling region against 0.04 m in the inner surf zone). However, once 
normalized by the surveyed local water depth, it remains relatively 
stable, representing approximately between 20 and 30% of the local 
depth, with a maximum reached around the mean breaking point. An 
important remark on the accuracy of the final depth estimate should 
be made at this point. For the selected flight, the Boussinesq theory 
provides excellent results in the shoaling region (relative error less than 
5%, Fig.  8f), which contrasts with the relatively large overestimation 
obtained in the surf zone (Fig.  8e). It is important to stress that the 
uncertainty as computed here should be purely interpreted from a 
statistical point of view. It informs on the sensitivity of the final depth 
estimate to the observations and their statistical robustness, as opposed 
to the uncertainty associated with the choice of the underlying depth-
inversion theoretical framework. The results of the depth inversion 
procedure described at these two specific locations are further de-
scribed in the next section, dedicated to the bathymetric inversion 
results.

5. Nearshore topo-bathymetry reconstruction from lidars

In this Section, we analyse and discuss the performances of the 
methodology described above to reconstruct the topo-bathymetry cross-
shore profiles along the transect 𝑦 ∼ 945m. We focus on two flights, 
flights #1 (12 September 2022, 19:00–19:30 UTC) and #8 (13 Septem-
ber 2022, 19:00–19:30 UTC), for which the tide and wave conditions 
allowed a nearly-continuous coverage from the shoreline until the 
shoaling region, around 𝑥 ∼ 250m.

During flight #1, the results previously presented in the shoaling 
(𝑥 = 225m, Fig.  8a-c-e) and breaking (𝑥 = 175m, Fig.  8b-d-f) wave 
regions are quite representative of the behaviour observed elsewhere 
within these specific regions (Fig.  9). In the shoaling region, Boussinesq 
phase velocity spectra 𝑐𝑟𝑚𝑠 computed with the surveyed water depth ac-
curately match the observed spectra 𝑐𝑜𝑏𝑠 up to relatively high frequency 
(𝑓 ∼ 0.4 Hz, see Fig.  8d). These good prediction skills are also found 
over the entire shoaling and outer surf region (up to 𝑥 = 210m), as 
shown with the good match between observed and Boussinesq predic-
tions of the frequency-averaged phase velocities ⟨𝑐⟩𝑓  (Fig.  9c). Overall, 
this suggests that the Boussinesq approximation of Herbers et al. (2002) 
is very accurate in predicting wave dispersive properties in shoaling 
and nearly breaking conditions, which is consistent with previous 
assessments in both field (Herbers et al., 2002) and laboratory (Martins 
et al., 2021a) conditions. Over this cross-section (𝑥 = 210−250m), mean 
water depths are precisely estimated with the Boussinesq approach, 
leading to relative errors on the final and referenced bathymetry within 
5 − 10% (Fig.  9c), which corresponds to the accuracy obtained in 
laboratory conditions with similar methodology (Martins et al., 2023). 
These performances obtained for shoaling waves slightly deteriorate 
at the same location on the next day (flight #8, see Fig.  9d) but 
still remain satisfactory, with underestimations of the seabed elevation 
corresponding to 10 − 15% of the local water depth.



K. Martins et al. Coastal Engineering 199 (2025) 104748 
Fig. 8. Results from the Monte-Carlo approach to estimate the water depth in a surf zone (left panels) and shoaling (right panels) situation on the 12 of September (flight#1, 
19:00–19:30 UTC). The top panels (ab) show the spectral energy densities of the lidar measurements at the corresponding location together with the bottom pressure-derived 
estimated at the 8 m array (offshore forcing). Central panels (cd) show a comparison between observed wave phase velocity spectra 𝑐𝑜𝑏𝑠 with predictions by the Boussinesq theory 
(𝑐𝑟𝑚𝑠) and the linear wave dispersion 𝑐𝐿. Boussinesq predictions were made with two different water depths, the surveyed one and the depth that minimizes Eq. (5). Lower panels 
(ef) show the probability density function of the water depth estimates obtained with the Monte-Carlo simulation approach (Boussinesq: black; linear wave theory: red).
Within the surf zone, the performance of the Boussinesq-based 
depth inversion method deteriorates for flight #1, as evidenced by 
the negative bias on the predicted seabed elevation developing from 
𝑥 ∼ 195m, and extending landwards until the shoreline (Fig.  9c). In 
terms of statistical errors, this translates into a net increase of the root-
mean-square error (RMSE) passing from 8 cm outside the surf zone 
(𝑥 ≳ 210m) to 36 cm within the surf zone (130 ≲ 𝑥 ≲ 210m), while 
the overall RMSE is 24 cm (including the beach topography). The drop 
in performances arising landwards of 𝑥 ∼ 195m originates from the 
underestimation of phase velocities by the Boussinesq theory from this 
cross-shore position (Fig.  9a). Phase velocities ⟨𝑐𝑜𝑏𝑠⟩𝑓  observed in the 
surf zone are on average 0.5 m/s larger than those predicted by the 
Boussinesq theory with the surveyed water depth, while this is over 
1 m/s for those predicted with the linear wave theory. This drop in 
performances observed during flight #1 contrasts with the excellent 
results obtained within the surf zone and up to the shoreline during 
flight #8 (Fig.  9d), with RMSE of 8 cm for 𝑥 ≲ 200m (17 cm overall). 
Notably, the transition around the mean breaking point, between the 
shoaling and breaking wave region, is smooth during flight #8 both in 
terms of phase velocities and final seabed elevation.

In the present methodology, the impact of wave currents on cross-
shore wave propagation speeds, and thus 𝜅(𝜔), is ignored, which could 
explain the water depth overestimation obtained in the surf zone during 
flight #1. Wave group-forced surf zone eddies – ubiquitous at Duck, 
NC (Noyes et al., 2004; Long and Özkan-Haller, 2009; O’Dea et al., 
2021b) – have the potential to generate transient mean cross-shore 
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current reaching several dozens of cm/s. Alternatively, energetic swell 
breaking over 3D morphological features such as narrow channels have 
the potential to drive strong mean cross-shore currents (e.g., see Dooley 
et al., 2024). The energetic swell experienced during flight #1 was 
characterized by a slight Northern offshore incidence of 5−10◦(see Fig. 
2). Combined with the 3D bottom feature developing on the Southern 
side of the monitored transect (see small rip channel around 𝑦 ∼ 920m, 
Fig.  1), this potentially caused relatively intense surf zone vortical 
motions, which could reach 0.4−0.5 m/s in the cross-shore direction. 
Conditions during flight #8 were much less energetic and non-linear, 
with smaller and shorter waves breaking over deeper water depths. 
This can be expressed in terms of non-linear parameter 𝜖 = 𝐻𝑚0∕2ℎ, 
which reaches 0.5 in the inner surf zone during flight #1, compared 
to a value of 0.32 the following day (𝑥 = 160m taken as reference). 
In terms of Ursell number, computed as the ratio between 𝜖 and the 
shallowness parameter 𝜇 = (𝜅𝐿(𝑓𝑝)ℎ)2, it is three times higher during 
flight #1 (50 against 16.5). The milder conditions encountered on 
the 13 of September are potentially less prone to generate surf zone 
eddies sufficiently strong to affect the waves’ dispersive properties. To 
first order, an estimate of the mean current speed in the cross-shore 
direction could help improve the water depth estimate by accounting 
for it in the minimization procedure.

Interestingly, the contrasting conditions experienced during the two 
flights in terms of non-linearity also explain the contrasting perfor-
mances obtained with the linear dispersion relation. For flight #8, the 
RMSE obtained with the linear approach is 0.45 cm overall (negative 
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Fig. 9. Topo-bathymetry reconstruction for flight #1 (12 of September, 19:00–19:30 UTC; left panels) and flight #8 (13 of September, 19:00–19:30 UTC; right panels). The 
top panels (ab) show the cross-shore evolution of observed wave phase velocity spectra ⟨𝑐𝑜𝑏𝑠⟩𝑓 , frequency-averaged over [0.8𝑓𝑝, 0.25 Hz], with predictions by the Boussinesq 
theory ⟨𝑐𝑟𝑚𝑠⟩𝑓  and the linear wave dispersion ⟨𝑐𝐿⟩𝑓 . Bulk celerities 𝑐𝑐𝑜𝑟 were estimated from simple surface elevation timeseries cross-correlations. Bottom panels (cd) show the 
topo-bathymetry reconstructed with each method. The error bar on the linear and Boussinesq prediction represent the 95% confidence interval obtained through the Monte Carlo 
method described in Section 4.2. For consistency, the bathymetry estimated with shallow water wave celerity predictors (√𝑔ℎ and √𝑔ℎ(1 + 𝜖), with 𝜖 a non-linear parameter 
defined as 𝜖 = 𝐻𝑚0∕2ℎ) are computed from the bulk celerity 𝑐𝑐𝑜𝑟, not ⟨𝑐𝑜𝑏𝑠⟩𝑓 . The direct lidar estimates of the beach face topography was extracted using a single lidar scan at the 
time the most seaward rundown limit was reached during the corresponding flight.
bias of 27 cm) while it reaches 0.56 cm overall during flight #1 (neg-
ative bias of 38 cm). This can be attributed to the stronger non-linear 
amplitude dispersive effects experienced during flight #1, as evidenced 
by the deviations of observed and predicted frequency-averaged phase 
velocities ⟨𝑐⟩𝑓  from the shallow water wave celerity predictor 

√

𝑔ℎ, 
computed with the surveyed mean wave depth (see Fig.  9a, and also 
Fig.  8d for phase velocity spectrum at 𝑥 = 225m). The differences are 
relatively small at the most seaward location surveyed here, between 
0.2 and 0.3 m/s at 𝑥 = 250m depending on the flight. However, 
they exceed 1.2 m/s around the mean breaking point during flight 
#1 while these are at most 0.8 m/s during flight #8. This directly 
explains the limitations of the methods based on the linear wave 
dispersion relation or the shallow water wave predictor (𝑐 ∼

√

𝑔ℎ) to 
retrieve the water depth across the shoaling region, and the contrasting 
performances around the mean breaking point. Under the highly non-
linear conditions of flight #1, the linear and shallow water-based 
approaches result in a final underestimation of the seabed elevation of 
the order of the water depth (100% error) around the mean breaking 
point (𝑥 = 200−210 m). Under the milder conditions of flight #8, these 
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underestimations are of the order of 40% of the local water depth, 
which is closer to the numbers obtained by Martins et al. (2023) in 
similar shoaling, nearly-breaking situations. In these contrasting wave 
conditions, the results are significantly improved with the modified 
shallow water wave celerity predictor (𝑐 ∼

√

𝑔ℎ(1 + 𝜖)), which treats 
non-linear amplitude effects empirically (Booij, 1981; Tissier et al., 
2011; Martins et al., 2018). In laboratory conditions, Martins et al. 
(2023) showed that this predictor resulted in poor estimates of the 
mean depth in the shoaling and outer surf regions, with normalized 
errors typically within 20−40%. Here, this is the case only during flight 
#1 (40% error around 𝑥 ∼ 210m), but this predictor actually improves 
the results during flight #8 compared to the Boussinesq-based method 
(Fig.  9c–d). In the surf zone, the performances of the two methods are 
relatively close, which is consistent with the results of Martins et al. 
(2023).

6. Summary and concluding remarks

Mapping the nearshore bathymetry and tracking its evolution over 
time – a prerequisite for studying beach morphological responses to 
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storms – continues to challenge the coastal science community. Depth 
inversion techniques, which utilize remotely-sensed surface wave prop-
erties, are promising solutions that have been widely explored over 
the last few decades, mostly through video imagery. However, none 
of the solutions developed so far are capable of retrieving the surf 
zone bathymetry with sufficient accuracy to consider analysing the 
morphological evolution of this dynamic region. This study contributes 
towards this goal, by implementing the Boussinesq-based methodology 
of Martins et al. (2023) to multi-source shoaling and breaking wave 
lidar data collected in the field. In laboratory conditions, and for unidi-
rectional waves, this methodology significantly advanced our capacity 
to retrieve the nearshore bathymetry by reducing errors to within 10% 
of the local water depth, including in the breaking wave region. These 
promising results motivated the planning of the BELS experiments that 
were presented herein.

Overall, the implementation of the Boussinesq-based depth inver-
sion method of Martins et al. (2023) on field lidar data is considered 
to be successful. For the two flights considered in the previous Section, 
RMSEs less than ∼ 0.3 m were obtained on the vertically-referenced 
topo-bathymetry elevations over a beach cross-shore section covering 
both shoaling and breaking situations. Furthermore, these results were 
obtained under contrasting wave conditions in terms of dispersion 
and non-linear intensity. For the most non-linear conditions analysed 
here (flight #1, 12 September 2022), a sudden drop in performances 
is obtained in the surf zone, where Boussinesq predictions underesti-
mate the observed phase velocities by as much as 0.5 m/s. Here, this 
underestimation was attributed to the potential presence of mean cross-
shore currents associated with energetic swell breaking in very shallow 
water depths and in the vicinity of a narrow channel. Another potential 
explanation lies in the assumption of a weakly non-linear wave field 
in the Boussinesq theory of Herbers and Burton (1997), which is used 
by Herbers et al. (2002) to derive their 𝜅𝑟𝑚𝑠 approximation. The degree 
of non-linearity found in the surf zone during flight #1 might be too 
strong to obtain depth estimates as accurate as during flight #8 or 
in laboratory conditions (Martins et al., 2023). Only through future 
field investigations covering more energetic conditions and with access 
to mean current fields, a more comprehensive understanding of the 
practical limitations of the present Boussinesq-based depth inversion 
method will be gained.

As described in Sections 3 and 4, the preparation phase of the 
field lidar data prior to proceeding with the Boussinesq-based depth 
inversion of Martins et al. (2023) required significant effort. These 
efforts were beneficial for improving and enhancing the robustness 
of (bi)spectral analysis of lidar data. Though working with gappy 
data slightly complicates data curation and analysis, the active remote 
sensing nature of lidar systems is a key advantage for inverting topo-
bathymetric profiles compared to traditional passive remote sensing 
instrumentation. Indeed, a single lidar system allows for the estimation 
of wavenumbers not affected by modulation transfer function effects, 
the measurements of mean water levels – including the wave setup 
and its cross-shore variation – as well as the upper beach face, and 
its temporal evolution at the scale of wave groups. Thus, lidars are 
arguably the most powerful and well-suited remote sensing technol-
ogy to capture, with sufficient spatio-temporal resolution the complex 
hydro-sediment interactions occurring at the land/sea interface, in-
cluding during storms. Through the present methodology, or its future 
developments, future investigations under energetic conditions have 
the potential to reveal new insights into beach morphodynamics at 
temporal scales ranging from wave groups to entire storm events. 
However, barring any major technological breakthrough, the typical 
lidar coverage currently limits the present methodology to a few hun-
dreds of meters in the cross-shore along a single cross-shore transect 
(∼ 10–20 m-width). Though much valuable knowledge can already be 
gained with such coverage, exploring alternative approaches – such as 
remote sensing fusion techniques – could be the focus of concurrent 
efforts to improve spatial coverage and overcome the limitations of 
individual remote sensing technologies.
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Research data

Part of the data used in this research (bathymetry, water levels, 
and wave forcing) is publicly available through the U.S. Army Engineer 
Research and Development Centre at http://chlthredds.erdc.dren.mil/ 
The MATLAB toolboxes developed for this research are hosted at: https:
//github.com/ke-martins/lidar-toolbox/ In the ‘examples’ directory, a 
complete workflow example is included for reproducing the depth-
inversion results at specific locations. The raw or pre-processed datasets 
can be made available upon reasonable request to the corresponding 
author.
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Appendix. Spectral, cross-spectral and bispectral estimates of 𝜻

The present depth inversion procedure requires the computation 
of spectral, cross-spectral and bispectral estimates of the free surface 
elevation 𝜁 collected by lidars. More details on these quantities, and 
their associated uncertainty, are given in this Appendix.

Let 𝐸 and 𝐵 denote the spectral and bispectral densities of the 
time-varying detrended free surface elevation signal 𝜁 (𝑡) at location 𝑥, 
respectively. The energy spectra 𝐸 of 𝜁 is here given by: 
𝐸(𝜔) = 2 

[

𝐴(𝜔)𝐴∗(𝜔)
]

, (A.1)

where 𝜔 = 2𝜋𝑓 is the angular frequency, 𝐴 are the complex Fourier 
coefficients of 𝜁 , ∗ denotes the complex conjugate and  is an expected, 
or ensemble-average, value. This ensemble-average is estimated using 
Welch’s overlapped segment averaging spectral estimator. Data blocks 
were tapered using a Hann window and an overlap of 75% was used 

http://chlthredds.erdc.dren.mil/
https://github.com/ke-martins/lidar-toolbox/
https://github.com/ke-martins/lidar-toolbox/
https://github.com/ke-martins/lidar-toolbox/
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as it maximizes the effective number of degrees of freedom. For non-
fully independent overlapping segments of real-world physical data, 
estimating the effective number of degrees of freedom of a spectral esti-
mate is non-trivial (e.g., Elgar, 1987). Here, we used the approximation 
for the equivalent number of degrees of freedom for different window 
techniques and overlap given by Percival and Walden (1993, their 
Eq. 292b). As already mentioned in the manuscript, only data blocks 
of sufficient ‘‘quality’’ (typically more than 90% of returns) are used. 
Thus, the cross-shore variation in the total amount of lidar data used to 
compute spectral estimates naturally results in a cross-shore variation 
of the equivalent number of degrees of freedom and the associated 
uncertainties. The 95% confidence interval is classically computed from 
the chi-square distribution using this estimate of the equivalent number 
of degrees of freedom.

The bispectrum of 𝜁 is here computed following Kim and Powers 
(1979) as: 
𝐵(𝜔1, 𝜔2) = 

[

𝐴(𝜔1)𝐴(𝜔2)𝐴∗(𝜔1 + 𝜔2)
]

. (A.2)

These bispectral estimates are computed following a similar Welch 
approach as above except that data segments are not tapered. Indeed, as 
already observed in Martins et al. (2021b), tapering data blocks results 
in a mismatch between bispectrum-derived and statistical definitions 
of skewness and asymmetry. Here, it also resulted in larger predicted 
wave phase velocities compared values obtained without tapering data 
blocks, potentially because of an overestimated contribution from non-
linear amplitude effects in the Boussinesq 𝜅𝑟𝑚𝑠 formulation (i.e., of 
non-linear coupling). Thus, we here choose to preserve the third-order 
moments of the timeseries (e.g., skewness and asymmetry) by not 
tapering the segments. Note that this is consistent with the bispectral 
estimates in recent studies by the first author for quantifying non-linear 
effects in nearshore wave dispersion relations, both for depth inversion 
purposes (Martins et al., 2021a) or for recovering the surface eleva-
tion from bottom hydrodynamic measurements (Martins et al., 2023). 
Finally, the variance of bispectral estimate is required in the Monte-
Carlo approach developed above for computing a 95% confidence limit 
on the final mean water depth estimate. This variance is given by Kim 
and Powers (1979) as: 

var
(

𝐵(𝜔1, 𝜔2)
)

≈ 1
𝑀

𝑃 (𝜔1)𝑃 (𝜔2)𝑃 (𝜔1 + 𝜔2)
[

1 − 𝑏2(𝜔1, 𝜔2)
]

, (A.3)

where 𝑀 is the number of segments, 𝑃  is the power spectrum (related 
to the energy spectrum as 𝑃 = 𝐸∕2) and 𝑏 is a quadratic correlation 
coefficient, sometimes referred to as the bicoherence: 

𝑏2(𝜔1, 𝜔2) =
|𝐵(𝜔1, 𝜔2)|

2


[

|𝐴(𝜔1)𝐴(𝜔2)|
]


[

|𝐴(𝜔1 + 𝜔2)|
2]

(A.4)

Observed (dominant) wavenumber spectra 𝜅𝑜𝑏𝑠 are estimated using 
cross-spectral analyses performed on lidar-derived 𝜁 data following the 
methodology developed in Martins et al. (2021b) and Martins et al. 
(2023) for spatially-dense wave gauges. Let 𝐶𝑥1 , 𝑥2  denote the cross-
spectrum computed from the detrended free surface elevation signal 
𝜁 measured at two adjacent gauges located at cross-shore positions 𝑥1
and 𝑥2: 

𝐶𝑥1 , 𝑥2 (𝜔) = 
[

𝐴𝑥1 (𝜔)𝐴
∗
𝑥2
(𝜔)

]

(A.5)

The (squared) coherence 𝛾2(𝜔) and relative phase 𝜙(𝜔) spectra com-
puted between 𝑥1 and 𝑥2 are then given by:

𝛾2𝑥1 , 𝑥2 (𝜔) =
|𝐶𝑥1 , 𝑥2 (𝜔)|

2

𝐶𝑥1 , 𝑥1 (𝜔)𝐶𝑥2 , 𝑥2 (𝜔)
(A.6)

𝜙𝑥1 , 𝑥2 (𝜔) = arctan

[

Im{𝐶𝑥1 , 𝑥2 (𝜔)}
Re{𝐶𝑥1 , 𝑥2 (𝜔)}

]

, (A.7)

where Re{⋅} and Im{⋅} are the real and imaginary parts of the cross-
spectra, respectively. The time delay (in sec) per frequency is obtained 
from the unwrapped phase 𝜙𝑢𝑛𝑤. In the case of progressive nearshore 
waves in the sea-swell range of frequencies, phase jumps are clearly 
15 
identified so that the delays per frequency can be estimated unam-
biguously. The wavenumber 𝜅𝑜𝑏𝑠(𝜔) magnitude is finally computed as: 

𝜅𝑜𝑏𝑠(𝜔) = 𝜙𝑢𝑛𝑤
𝑥1 , 𝑥2

(𝜔)
/

𝛥𝑥, (A.8)

where 𝛥𝑥 is the spacing between the two wave gauges. The phase 
velocity spectra are also readily obtained as 𝑐𝑜𝑏𝑠(𝜔) = 𝜔∕𝜅𝑜𝑏𝑠(𝜔). 𝜅𝑜𝑏𝑠
refers to the single-valued cross-shore wavenumber magnitude and 
is representative of the energy spread across both forced and free 
components at a given frequency (Herbers et al., 2002; Martins et al., 
2021b). In practice, 𝜅𝑜𝑏𝑠 and 𝑐𝑜𝑏𝑠 are estimates at the location 𝑥𝑚 = (𝑥1+
𝑥2)∕2 of the dominant wavenumber (in an energy-averaged sense) and 
the corresponding cross-shore propagation velocity, respectively. As 
for spectra and bispectra, cross-spectral estimates are computed using 
Welch’s method using blocks of data overlapping by 75% and tapered 
with a Hann window. Given the linear relation between wavenumbers 
and the cross-spectrum phase, the variance of the phase can be used to 
estimate the uncertainty of wavenumber estimates. The phase variance 
is here approximated following Hinich and Clay (1968) as: 

var
(

𝜙𝑥1 , 𝑥2 (𝜔)
)

≈ 1
2𝑀

[

𝛾−2𝑥1 , 𝑥2
(𝜔) − 1

]

. (A.9)

Similar to the variance of bispectral estimate, this is used above for 
computing a 95% confidence limit on the final mean water depth 
estimate through a Monte-Carlo approach described in the main text.

Data availability

Data statement made in the manuscript and in cover letter.
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