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SUMMARY

We consider numerical solutions of the two-dimensional non-linear shallow water equations with a bed
slope source term. These equations are well-suited for the study of many geophysical phenomena, including
coastal engineering where wetting and drying processes are commonly observed. To accurately describe
the evolution of moving shorelines over strongly varying topography, we first investigate two well-balanced
methods of Godunov-type, relying on the resolution of non-homogeneous Riemann problems. But even
if these schemes were previously proved to be efficient in many simulations involving occurrences of
dry zones, they fail to compute accurately moving shorelines. From this, we investigate a new model,
called SURF WB, especially designed for the simulation of wave transformations over strongly varying
topography. This model relies on a recent reconstruction method for the treatment of the bed-slope source
term and is able to handle strong variations of topography and to preserve the steady states at rest. In
addition, the use of the recent VFRoe-ncv Riemann solver leads to a robust treatment of wetting and drying
phenomena. An adapted ‘second order’ reconstruction generates accurate bore-capturing abilities. This
scheme is validated against several analytical solutions, involving varying topography, time dependent
moving shorelines and convergences toward steady states. This model should have an impact in the
prediction of 2D moving shorelines over strongly irregular topography. Copyright q 2006 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Non-linear shallow water (NSW) equations model the dynamic of a shallow layer of homogeneous
incompressible fluid and are used to describe vertically averaged flows in three-dimensional do-
mains, in terms of horizontal velocity and depth variation. The usual conservative form of NSW
equations introduced in Reference [1] is written as a first-order hyperbolic system with source
terms. This set of equations is well-suited for the simulation of geophysical phenomena, such
as river and oceanic flows, or even avalanches with adapted source terms. This model is also
extensively used in coastal engineering, for the study of nearshore flows involving run-up and
run-down on sloping beaches or coastal structures.

Wave run-up on a sloping beach is a highly complex phenomenon and computational models
based on the NSW equations have been developed since a few decades, beginning with the works
of Hibbert and Peregrine [2] and Kobayashi et al. [3]. The first difficulty which appears in the
numerical simulation of run-up concerns the description of the moving shoreline. Flow properties
change rapidly near the shoreline, as the water depth vanishes and the position of the shoreline
is always evolving. Actually, the position of the shoreward boundary is part of the solution itself.
Several methods have been proposed to track the shoreline location in the framework of finite
difference methods, often only suitable for slowly varying flows, like for instance the TRIM model
of Casulli [4], the artificial porosity method of Van’t Hof et al. [5] or the recent works of Stelling
et al. [6] which enable to compute rapidly varying flows as well. In a finite volume framework,
various methods have also been proposed and there is essentially two approaches. The first one
relies on coordinate transformations, which aim at generating a map between the time-varying
physical domain and a time invariant computational domain. A Lagrangian description of the
flow seems well suited for this approach and we refer to the work of Zelt [7] based on a finite
elements method and to Özkan-Haller and Kirby [8] who used a spectral Fourier–Chebychev
collocation. More recently, Brocchini et al. [9] proposed a boundary condition based on coordinate
transformations and a fourth-order predictor–corrector scheme. However, these methods are not
well-suited for the simulation of bore-propagation and can be difficult to use in realistic and large-
scale simulations. The second approach is based on conservative schemes with fixed grids, and
the direct computation of flow properties is used to predict the shoreline location. A numerical
treatment of the wetting and drying processes has to be introduced and the shoreline motions can
be computed with high resolution bore-capturing schemes.

The first attempt in this direction relies on Lax–Wendroff schemes [2]. Later, finite volume
methods with bore-capturing abilities were developed for NSW equations. In this context, Hu
et al. [10] proposed to use a HLL Riemann solver for the simulation of overtopping phenomenon.
Recently, in References [9, 11], Brocchini et al. used the weight averaged flux (WAF) method
introduced by Toro in Reference [12]. In the two-dimensional case, Hubbard and Dodd [13] have
developed a model based on the Riemann solver of Roe. Our investigations lie in this context.

The second difficulty arising in the study of wave transformations on a sloping beach concerns
the way the bed slope source term is discretized. Actually, most of the methods proposed above
rely on fractional step methods (FSM). The reader is referred to Reference [14] for a description
of this class of methods. Many authors such as Hu et al. [10] or Brocchini et al. [11] have applied
it to take into account the varying topography in their model. This is well known today that FSM
are unable to deal with strong varying topography, as they generate non-physical oscillations.
The generation of errors with FSM is due to the imbalance between flux gradient and the bed
slope source term. In addition, this class of method cannot preserve steady states at the discrete
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level and is clearly unable to compute the convergence towards a steady state or at least small
evolutions around such states, since the splitting algorithm may introduce discretization errors
which are greater than the signal itself. Therefore, numerical computation of source terms in
hyperbolic systems of conservation laws has recently been improved. For the NSW equations,
since the early works of Greenberg and Leroux [15] with their exact Riemann solvers on varying
bottom and the quasi-steady wave propagation algorithm of Leveque [16], discretizations of the
bed slope source term especially designed to preserve steady states and avoid the drawbacks of
FSM have been pointed out. These methods are usually called well-balanced methods since they
rely on the preservation of balancing properties for steady states. We can refer to the upwind
discretization of the bed slope proposed by Vasquez-Cendon in Reference [17] and extended for
two-dimensional problems in Reference [18], the surface gradient method of Zhou et al. [19], the
flux-vector splitting scheme of Gosse [20] and more recently the VFRoe schemes of Gallouët
et al. [21]. The application of such methods to the simulation of wave transformations on a sloping
beach may be fruitful.

In this context we first propose to apply two well-balanced schemes, namely the exact well-
balanced Riemann solver of Greenberg and Leroux and the well-balanced VFRoe-ncv solver, to
a classical run-up problem over a sloping beach. These two solvers rely on the elegant approach
which consists in directly solving Riemann problems on a non-flat bottom and have previously
been validated in several test cases involving bores, steady-states preservation, multiple occurrence
of dry zone and transitions between subcritical and supercritical flows over varying topography
[21, 22]. From these results, these two schemes seem to be suitable for our purpose. However, we
highlight their limitations and the poor results provided is the study of wave run-up, emphasizing
by this way the need of better properties concerning the preservation of the water depth positivity.

Thus we introduce a new ‘second order’ well-balanced computational model with bore-capturing
abilities and able to deal with the occurrence of dry areas. It relies on the ‘hydrostatic reconstruction’
introduced in Reference [23]. This method enables to take into account strong topography variations
and to preserve steady states. But whereas this method was initially introduced with the use of a
kinetic homogeneous solver, we choose here to use the simple VFRoe-ncv solver. The robustness
and the low computational cost of this bore-capturing solver has been emphasized in Reference [21].
A symmetrizing change of variable enables this solver to properly deal with dry area, providing
better properties concerning the preservation of the positivity of the water depth than the usual Roe
scheme (see Reference [24]). As highlighted with extensive numerical validation against 1D and
2D analytical solutions involving moving shorelines on varying topographies, this scheme is able
to accurately simulate periodic run-up and run-down phenomena and to compute with precision
the preservation and the convergence towards steady states. These properties should be useful for
the study of nearshore flows.

2. GOVERNING EQUATIONS AND FINITE VOLUME FORMULATION

The two-dimensional NSW equations with topography may be written as follows:

U,t + F(U),x + G(U),y = S(U)

U=
⎛
⎝ h
hu
hv

⎞
⎠ , F(U) =

⎛
⎜⎝

hu

hu2 + g

2
h2

huv

⎞
⎟⎠ , (1)
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Figure 1. Surface elevation, water depth and topography.
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−ghdy
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⎟⎟⎠

where ( ),x (resp. ( ),y) stands for the derivate along the x direction (resp. the y direction), u= t (u, v)

is the depth-averaged velocity with u and v the scalar components in the horizontal x , y directions
and h is the local water depth (see Figure 1). U is the vector for the conservative variables, F(U)

and G(U) stand for the flux functions respectively along the x and y directions and S(U) represents
the bed slope source term with the bed slope ∇d = t (d,x , d,y). A two-dimensional semi-discrete
finite volume formulation [25] of system (1) is given by

d

dt
Ui j (t) + 1

�x
(F∗

i+1/2, j − F∗
i−1/2, j ) + 1

�y
(G∗

i, j+1/2 − G∗
i, j−1/2) =Si j (2)

where the cell-centred vector of conservative discrete variables is Ui j = t (hi, j , hi, j ui, j , hi, jvi, j ),
F∗
i±1/2, j and G∗

i, j±1/2 stands, respectively, for the numerical flux functions through the �i±1/2, j

and �i, j±1/2 interfaces (see Figure 2) and Si j represents a discretization of the source term.
To define the finite volume method, we must choose a discretization method in order to compute

the numerical fluxes F∗
i±1/2, j , G

∗
i, j±1/2 and the source terms Si j .

3. WELL-BALANCED SCHEMES AND MOVING SHORELINE

The competition between the convective term and the bed-slope source term in system (1) can be
highlighted when we consider that steady states are a particular kind of solutions of (1) which are
independent of time. In the one-dimensional case, we obtain the following balance equation:

F(U),x = S(U) (3)

The solutions of system (3) are important since they are often obtained as limits when time tends
to infinity of the solutions of system (1). Thus, the ability of a numerical scheme to accurately
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Figure 2. Discretization cell, interfaces (on the left) and numerical fluxes (on the right).

compute the convergence towards a steady state is directly linked to the way this balance property
is preserved at the discrete level.

To numerically preserve this balance, several methods have been proposed, as stated above.
An efficient and elegant approach is to directly solve Riemann problems with piecewise constant
topography. This approach, introduced by Greenberg and Leroux [15] and extended later by
Gallouët et al. [21] for linearized Riemann problems is the more general, since it can preserves
all the steady states. We briefly recall here the formalism of these two well-balanced methods and
we observe on a simple case their limitations in the prediction of moving shoreline problems.

3.1. The exact well-balanced Riemann solver

In Reference [15], Greenberg and Leroux proposed to approximate the topography with a piecewise
constant function. Then, considering the topography as a new variable, an equation describing the
evolution of d is added leading to a non-homogeneous Riemann problem:⎧⎪⎪⎨

⎪⎪⎩
Ut + F(U)x = S(U)

U(x, 0) =
{

(dL, hL, (hu)L) if x<0

(dR, hR, (hu)R) if x>0

(4)

where

U=

⎛
⎜⎜⎝

d

h

hu

⎞
⎟⎟⎠ , F(U)=

⎛
⎜⎜⎜⎝

0

hu

hu2 + g

2
h2

⎞
⎟⎟⎟⎠ , Sx (U)=

⎛
⎜⎜⎝

0

0

−ghd,x

⎞
⎟⎟⎠

The source term −ghd,x is reduced to a sum of Dirac masses occurring on each interface. The
exact solution of the Riemann problem (4) with a bottom step is then computed. This solution is
achieved by solving first the regularized Riemann problem obtained when substituting the step by
a ramp. The solution for the ramp is obtained by considering all the interactions between shock
waves and rarefactions arising from the left and the right side of the interface. Then, considering
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the limit in which the ramp angle increases to 90◦, the solution for the step is obtained. The
complete algorithm can be found in Reference [22]. This solution admits a stationary contact
discontinuity located at the interface [15]. Thus, instead of computing the interface value needed
to evaluate the numerical fluxes across the interface, we may compute the values at each side of
the stationary contact discontinuities, denoted by Ui+1/2(0−,Ui ,Ui+1) and Ui−1/2(0+,Ui , Ui+1)

where Ui+1/2(x/t,Ui ,Ui+1) is the exact solution of the Riemann problem (4). The semi-discrete
formulation becomes

d

dt
Ui (t) + 1

�x
(F(Ui+1/2(0−,Ui ,Ui+1)) − F(Ui−1/2(0+,Ui ,Ui+1)))= 0 (5)

Note that the source term only contributes to the computation of the solution Ui+1/2(x/t,Ui ,Ui+1)

and does not appear explicitly in (5).
The solver based on this method is robust, allowing the preservation of all steady states.

Numerical benchmarks involving generations or even flooding of dry zones over varying bottom
have proved the ability of the solver to deal with dry zones [22].

3.2. The well-balanced VFRoe-ncv solver

The exact well-balanced Riemann solver is more expensive than a usual Godunov method since the
computation of the exact solution of problem (4) is not straightforward. To improve this, Gallouët
et al. [21] proposed to compute exact solutions U∗

i+1/2(x/t,Ui ,Ui+1) of linearized Riemann
problems, instead of solving directly problem (4). The second idea is to use symmetrizing non-
conservative variables, leading to better properties for the preservation of the water depth’s positivity
in the flat case than the classical Roe or HLL solvers [24]. This class of method is called VFRoe-ncv
solvers. Following Reference [21], we briefly recall the formalism of this solver:

• First, the initial Riemann problem is written under a non-conservative form, with the
change of variable W(U) = t (d, 2c, u), introducing the convection matrix Cx (W). The new
Riemann problem is then linearized, averaging the convection matrix around the state
W̃= (WL + WR)/2. It reads:⎧⎪⎪⎨

⎪⎪⎩
W,t + Cx (W̃)W,x = 0

W(x, 0) =
{
WL =W(UL) if x<0

WR =W(UR) if x>0

(6)

• Then, eigenvalues and associated left and right eigenvectors of the convection matrix Cx (W̃)

are introduced, respectively noted (�̃k)k = 1,2,3, (l̃k)k = 1,2,3 and (r̃k)k=1,2,3. The exact solution
of the Riemann problem (6) is defined as follows, where [W]RL =WR − WL:

W∗
(( x

t

)−
,WL,WR

)
=WL + ∑

x
t >�̃k

(t l̃k · [W]RL) r̃k

W∗
(( x

t

)+
,WL,WR

)
=WR − ∑

x
t <�̃k

(t l̃k · [W]RL)r̃k

(7)
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• We can finally compute the solution in terms of conservative variable, using the inverse
change of variable:

U∗
i+1/2

( x
t
,Ui ,Ui+1

)
=U

(
W∗

i+1/2

( x
t
,Wi ,Wi+1

))
(8)

and compute the corresponding numerical fluxes using F∗
i+1/2 = F(U∗

i+1/2).

The two values W∗((x/t)−,WL,WR) and W∗((x/t)+,WL,WR) are equal when x/t �= �̃k . The
cases x/t = 0 is linked to a stationary contact discontinuity, as for the exact Riemann solver, and
we have therefore to compute the solution at each side of the interface. These values are then
injected into the finite volume formulation (5).

This scheme is easier to implement than the exact well-balanced Riemann solver, with a far less
expensive computational cost (between 10 and 100 times lower), and provides accurate results in
a large number of situations. It has been validated against numerous benchmarks, involving for
instance occurrences of dry zone by a double rarefaction wave over a step [21].

3.3. Numerical investigations for moving shoreline problems

From the literature, these two solvers seem to be well-suited for the study of moving shoreline
problems and they have been implemented in a Godunov-like finite-volumes model. No special
tracking procedure has been used for the shoreline and we have only consider a distinction
between wet cells and dry cells, in which the depth of water is less than a specified threshold
value hmin = 10−5. After extensive numerical validations against hydraulic benchmarks, we focus
on a test for run-up phenomenon, namely the Carrier and Greenspan’s periodic solution [26].
A description of this analytical solution is given in Section 5 and we only say here that this
solution stands for a monochromatic wave which is let run-up and run-down on a sloping beach.
Value of �x∗ = 0.002 and CFL= 0.7 are used (see Section 5 for details).

In Figure 3 we show the comparison between numerical results provided by the exact Riemann
solver and the analytical solution for different time values during the first half period of evolution.
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Figure 3. The Carrier and Greenspan’s periodic wave solution. Comparison between numerical (solid
lines) and analytical (dashed lines) results. Profiles of dimensionless water surface elevation h∗ are plotted

versus the onshore dimensionless coordinate x∗ for the exact well-balanced Riemann solver.
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Figure 4. The Carrier and Greenspan’s periodic wave solution. Comparison between numerical (solid
lines) and analytical (dashed lines) results. Profiles of dimensionless water surface elevation h∗ are plotted

versus the onshore dimensionless coordinate x∗ for the VFroe-ncv solver.

Discrepancies in the computation of the shoreline become obvious after a short time, greatly
amplified during the next periods of evolution and leading to instability. Only a half period of
oscillations was accurately computed with a two-times finer mesh.

Concerning the VFRoe-ncv solver, Figure 4 shows spurious oscillations propagating from the
initial shoreline location and discrepancies at the shoreline also occur in the following periods. For
large values of time, distortions become too important, generating instability. These non-physical
oscillations may be partially justified by the fact that this scheme is not defined in the particular
case of vanishing eigenvalues �̃k [21].

It appears from this that even if these two schemes provide accurate simulations in many
situations involving wetting and drying phenomena, they fail to compute satisfying results for this
moving shoreline problems. The main reason, for both schemes, may be the lack of properties
concerning the preservation of the water depth positivity near the shoreline. Actually, numerical
investigations have shown that the exact Riemann solver of Greenberg and Leroux is not able to
preserve such positivity in particular cases involving slowly varying topography. In the same way,
if the VFRoe-ncv solver on flat bottom provides interesting properties concerning the preservation
of the water depth’s positivity [24], it is not rigorously extended to the well-balanced version with
varying topography. That is why we present in the next section a new model which provides better
properties concerning the occurrence of dry areas over varying bottom, combined with a very
simple formalism and a sufficiently low computational cost for practical applications, in coastal
engineering for instance.

4. THE SURF WB MODEL

We propose here to use the recent hydrostatic reconstruction of Audusse et al., [23]. The name
‘hydrostatic reconstruction’ means that the reconstruction is performed from the study of nearly
static flows (i.e. flows with very small Froude number). Whereas the original method was combined
with a kinetic solver, we choose here to use the VFRoe-ncv solver for homogeneous system.
The main reason for this choice is that this solver is able to deal with the occurrence of dry
zone [24] and the properties obtained in Reference [24] provide a better theoretical support for
the preservation of the water depth positivity than the linearized solver of Roe for instance, with
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similar simple implementation and low computational cost. As it is shown in the next section, the
results are excellent in practice. The reconstruction method of Audusse et al., is also a simple and
efficient way to obtain positivity preservation properties with varying topography and to preserve
steady states ‘at rest’. In the sequel we describe briefly the VFRoe-ncv solver on flat bottom and
the method proposed in Reference [23].

4.1. The VFRoe-ncv solver for homogeneous system

The computation of the F∗
i±1/2, j fluxes is developed here. As developed in Reference [24], the

symmetrizing change of variables enables to prove that intermediate states (states computed at the
interfaces of the mesh) provided by the VFRoe solver remains positive and that this solver can
preserve the non-negativity of the water depth at least for interface values. Due to the averaging
procedure, this does not mean that cell values of water height remain positive, since the scheme does
not construct the projection of the approximate solution. However, it is shown in Reference [24] that
close to a wall boundary, the cell value of water height remains positive when a strong rarefaction
wave develops, under a suitable CFL condition. Furthermore, numerical investigations show that
in practice, cell values of the water height remains positive and that the VFRoe-ncv properties
lead to excellent results for moving shoreline problems, as it is highlighted in the next section.
This is not true for other approximate solvers, like the Roe or the HLL solvers. The symmetrizing
change of variable W(U) = t (2c, u, v) leads to the following system:

W,t + Cx (W)W,x + Cy(W)W,y = 0 (9)

Cx (W) =
⎛
⎜⎝
u c 0

c u 0

0 0 u

⎞
⎟⎠ and Cy(W) =

⎛
⎜⎝

v 0 c

0 v 0

c 0 v

⎞
⎟⎠ (10)

where Cx (W) and Cy(W) are the convection matrix in the x and y directions. Considering the
Riemann problem in the x direction, with this choice of 0symmetrizing variables, we obtain⎧⎪⎨

⎪⎩
W,t + Cx (W)W,x = 0

W(x, 0) =
{

((2c)L, uL, vL) if x<0

((2c)R, uR, vR) if x>0

(11)

This Riemann problem is then linearized around the averaged value W̃= (WL + WR)/2. The
eigenvalues of the linearized convection matrix Cx (W̃) are

�̃1 = ũ − c̃, �̃2 = ũ, �̃3 = ũ + c̃

where c= √
gh. Then, using relations (7), the exact solution of the linearized Riemann problem

is given by the sign of the eigenvalues �̃k . Only two cases are significant:

• If �̃1>0 or �̃3<0, then the flow is super-critical and we recover a classical upwinding. The
interface value is defined as follows:

W∗
i+1/2, j =

{
Wi if �̃k>0 ∀k
Wi+1 if �̃k<0 ∀k (12)
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• If �̃1<0 and �̃3>0 then the flow is subcritical and we use relations (7) to obtain the interface
values. We obtain

c∗
i+1/2, j = c̃ − 1

4 (ui+1, j − ui, j ) (13)

and

u∗
i+1/2, j = ũ − (ci+1, j − ci, j ) (14)

The value of v∗
i+1/2, j is obtained from the sign of �̃2:

v∗
i+1/2, j =

⎧⎨
⎩

vi, j if �̃2>0

vi+1, j if �̃2<0
(15)

We can finally recover conservative variables, using the inverse change of variable, and compute
the numerical fluxes F∗

i+1/2, j . Similar expressions result for fluxes in the y direction. It raises a
fast solver with bore-capturing abilities, easy to implement, and able to deal with dry zone without
any clipping treatment.

4.2. The hydrostatic reconstruction

We briefly recall here how to obtain a ‘second order’ well-balanced scheme satisfying the preser-
vation of steady states ‘at rest’, using the method proposed in Reference [23]. This method ensures
that the ability of the previous VFRoe-ncv solver to deal with the occurrence of dry areas is
preserved even with a non-flat bottom [23]. The method is described in the one-dimensional case,
for the sake of clarity.

The first step is to built a limited linear reconstruction of the values at each side of the mesh
interfaces, following the formalism of the MUSCL method of Van Leer [27]. Considering the cell
i , we compute first linear reconstructions Ui,r and Ui,l respectively at i + 1/2− and i − 1/2+,
using a minmod limiter. Values of Hi,l and Hi,r , where H = h+d , are also reconstructed, and we
deduce reconstructions of the topography di,l = Hi,l − hi,l and di,r = Hi,r − hi,r . It ensures that if
ui = 0 and Hi = Hi+1 for all i , then ui,l = ui,r = 0 and Hi,l = Hi,r = Hi for all i .

In a second step, we perform the ‘hydrostatic reconstruction’ of the values at each side of the
mesh interfaces, taking into account the variations of the bottom and the balance obtained for
flows with very small Froude number, which are considered as static flows. Interface topography
values di+1/2, j are defined as follows:

di+1/2 = max(di,r , di+1,l) (16)

Then, the reconstruction of the water height on each side of the considered interface, which must
be positivity preserving, is defined as follows:

hi+1/2− = max(0, hi,r + di,r − di+1/2), hi+1/2+ = max(0, hi+1,l + di+1,l − di+1/2) (17)

and we deduce from it the complete reconstructed values on each side of the interface:

Ui+1/2− =
(

hi+1/2−

hi+1/2−ui,r

)
, Ui+1/2+ =

(
hi+1/2+

hi+1/2+ui+1,l

)
(18)
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These reconstructed values are then used instead of Ui and Ui+1 to compute the interface solution
with the VFRoe-ncv solver on flat bottom. The numerical flux function F∗

i+1/2, j is thus defined as
follows:

F∗
i+1/2 = F(U∗

i+1/2(0,Ui+1/2−,Ui+1/2+)) (19)

where U∗
i+1/2(0,Ui+1/2−,Ui+1/2+) is the interface value computed with the VFRoe-ncv solver on

flat bottom, using the new reconstructed values Ui+1/2− and Ui+1/2+ at each side of the considered
interface. In the mean time, the source term Si is discretized and distributed to the cell interfaces,
using the reconstructed values of the water height. It gives

Si =Si+1/2− + Si−1/2+ =
⎛
⎝ 0

g

2
h2i+1/2− − g

2
h2i,r

⎞
⎠+

⎛
⎝ 0

g

2
h2i,l − g

2
h2i−1/2+

⎞
⎠ (20)

This choice is motivated by the balancing requirement for static flows, with vanishing velocity. A
centred source term Sc,i is added to preserve consistency and well-balancing, as developed in next
subsection

Sc,i =
⎛
⎜⎝

0

g
hi,l + hi,r

2
(di,l − di,r )

⎞
⎟⎠ (21)

Then, we obtain the following one-dimensional semi-discrete formulation:

d

dt
Ui (t) + 1

�x
(F−

i+1/2 − F+
i−1/2) =Sc,i (22)

with left and right numerical fluxes through the mesh interfaces defined as follows:

F−
i+1/2 =F∗

i+1/2 + Si+1/2− = F(U∗
i+1/2(0,Ui+1/2−,Ui+1/2+)) +

⎛
⎝ 0

g

2
h2i,r − g

2
h2i+1/2−

⎞
⎠ (23)

F+
i+1/2 =F∗

i+1/2 + Si+1/2+ = F(U∗
i+1/2(0,Ui+1/2−,Ui+1/2+)) +

⎛
⎝ 0

g

2
h2i+1,l − g

2
h2i+1/2+

⎞
⎠ (24)

The extension to the two-dimensional framework on Cartesian meshes is straightforward. It raises a
very compact formulation of the flux functions, relying on the previous homogeneous VFRoe-ncv
solver, taking into account the variations of topography and able to deal with the occurrence or
the flooding of dry areas. As shown in the next section, this scheme is robust and provides an
accurate numerical tracking of the shoreline.

This scheme is combined with a second-order Runge–Kutta scheme, namely the Heun scheme,
for time discretization.

The accuracy of this reconstruction and the slope-limiting process has been validated against
classical benchmarks. The rate of convergence of the ‘second order’ scheme is increased compared
to the classical first order model and the scheme is far less diffusive.
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4.3. Well-balancing

Assuming that H = h + d is constant at time t and that u = 0, we have Hi,r = Hi,l and so:

hi+1/2− = max(0, Hi,r − di+1/2) = max(0, Hi,l − di+1/2) = hi+1/2+ (25)

and by construction:

Ui+1/2− =
(
hi+1/2−

0

)
=
(
hi+1/2+

0

)
=Ui+1/2+ (26)

From this, considering (23) and (24), we obtain

F−
i+1/2 =

⎛
⎝ 0

g

2
h2i,r

⎞
⎠ and F+

i−1/2 =
⎛
⎝ 0

g

2
h2i,l

⎞
⎠ (27)

and the semi-discrete formulation (22) leads to

�x
d

dt

(
hi (t)

(hiui )(t)

)
+
⎛
⎝ 0

g

2
h2i,r

⎞
⎠−

⎛
⎝ 0

g

2
h2i,l

⎞
⎠ =

⎛
⎜⎝

0

g
hi,l + hi,r

2
(di,l − di,r )

⎞
⎟⎠ (28)

Therefore, we have

�x
d

dt
(hiui )(t) = g

hi,l + hi,r
2

(hi,l − hi,r ) + g
hi,l + hi,r

2
((Hi,l − hi,l) − (Hi,r − hi,r )) (29)

and

�x
d

dt
(hiui )(t)= g

hi,l + hi,r
2

(Hi,r − Hi,l) = 0 (30)

We have proved that:

d

dt
Ui (t) = 0 (31)

and the steady states ‘at rest’ are preserved within this ‘second order’ approach. In the two-
dimensional case on a Cartesian mesh, it is obvious, from the expressions of the fluxes, that we
also have (d/dt)(hivi )(t) = 0 and the extension to the two-dimensional framework on Cartesian
meshes is straightforward. These well-balanced properties are highlighted in Appendix A, with
two classical test cases.

4.4. Boundary conditions

We use two types of boundary conditions for the test cases presented in the following. The first is
a transmissive boundary condition. Boundary cells are overwritten with the solution values in the
cells of the computational domain along the boundary. It leads to a simple absorbing boundary
condition, efficient for outflows configurations.

The second type is an absorbing/generating inlet boundary condition. We impose the values
of water depth at the inlet boundary cell, to force the motion. Then characteristic curves and
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Riemann invariants are used to compute the corresponding values of the velocity, in a subcritical
flow configuration. To allow the possible reflected waves to exit the domain without reflection,
we use the method proposed by Kobayashi et al. [28]. This method has been implemented relying
on the one-dimensional characteristic curves and therefore we only consider waves of normal
incidence with respect to the mesh orientation.

4.5. Numerical treatment for the shoreline

We emphasize that no special ‘clipping’ treatment is used (i.e. we do not artificially set to zero
non-physical negative values of the water depth). Moreover, no special tracking method is used to
compute the location of the shoreline and we only use the direct computation of flow properties,
introducing a distinction between wet and dry cells (cell drying procedure). In dry cells, the water
depth h is less than a specified threshold value hmin, which can be a very small number. For such
cells, the water depth is forced to be hmin, in order to avoid any division by zero, and the velocity is
set to zero. Then, we compute the shoreline by solving Riemann problems at the interfaces between
wet and dry cells, which generates no further difficulties. During the computation of the new flow
properties, no special procedures are implemented to deal with the three possible configurations
(wet/wet, wet/dry and dry/dry), thanks to the robustness of the VFRoe-ncv solver. The key point
is that cell values issued from the hydrostatic reconstruction are given to the Riemann solver as
stated above. Therefore the cell drying procedure is performed from these reconstructed values
and not from the ‘natural’ cell values, giving excellent results in practice. The shoreline is then
constructed from the mesh interfaces between wet and dry cells, without any interpolation or
extrapolation as in Reference [29] for instance. In practice, we have defined hmin = 10−20 m. This
value has been used in the cases presented in the next section.

4.6. Numerical stability

Explicit schemes require a careful selection of the time step to fulfil stability requirements.
Classically, the time step needs to be restricted in such a way that no interaction is possible
between waves from different cells during each time step. Courant, Friedrichs and Lewy defined a
stability criterion for fully explicit schemes given by CFL<1 where CFL is known as the Courant
number. Various definitions of this number have been proposed, leading to different time step
restrictions. We choose here to define the time step as follows:

�t�CFL
min (�x,�y)

maxi, j (|Ui, j | + ci, j )
(32)

where c= √
gh. The maximum is evaluated over all the possible values of (i, j) in the computational

domain.

5. NUMERICAL VALIDATION FOR WETTING AND DRYING PROCEDURE

The SURF WB model has been extensively validated against numerous hydraulic cases but in this
section we focus on moving shoreline problems in the one and two-dimensional framework. In the
one-dimensional case, we perform comparisons with analytical solutions for waves propagating over
a uniform sloping beach with run-up, run-down and eventually reflexion. In the two-dimensional
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case, we validate the model against analytical solutions for periodic oscillating motions with
moving boundaries in a parabolic basin. The ‘second order’ scheme is used for all the cases
presented here. The grids are uniform, with �x = �y in the two-dimensional case.

5.1. 1D assessments

5.1.1. The Carrier and Greenspan transient solution. As a first validation of the shoreline de-
scription, the initial water surface elevation is assumed to be depressed near the shoreline, the fluid
held motionless and then released at t = 0. This initial condition is the lower curve in Figure 5.
Let l be the typical length scale of this specific problem and � the beach slope. Non-dimensional
variables are defined as follows:

x∗ = x/ l, �∗ = �/(� l), u∗ = u/
√
g�l, t∗ = t/

√
l/�g, c∗ =

√
(�∗ − x∗) (33)

Carrier and Greenspan [26] used a hodograph transformation to solve the NSW equations and
obtain an analytical solution, relying on the introduction of the two dimensionless variables �∗ and
�∗, respectively, linked to the space and time coordinate. These variables are defined as follows:

�∗ = 4c∗, �∗ = 2(u∗ + c∗) (34)
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Figure 5. The Carrier and Greenspan’s transient solution. Comparison between numerical results (in solid
lines) and analytical solutions (in dotted lines) for the surface elevation. Profiles of water depth h∗/e are

plotted versus the onshore coordinate x∗, for: (a) t∗ = 0 s; (b) t∗ = 1; (c) t∗ = 2; and (d) t∗ = 10.
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Figure 6. The Carrier and Greenspan’s transient solution. Comparison between numerical results (in solid
lines) and analytical solutions (in dotted lines) for the surface elevation. Zoomed profiles of water depth
h∗/e are plotted versus the onshore coordinate x∗, for different values of time t∗, increasing from t∗ = 0

(bottom curves) to t∗ = 1.4 (top curves).

Starting from the one-parameter family of wave-forms at t = 0:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�∗ = e

[
1 − 5

2

a3

(a2 + �∗2)3/2
+ 3

2

a5

(a2 + �∗ 2)5/2

]

x∗ = −�∗ 2

16
+ e

[
1 − 5

2

a3

(a2 + �∗ 2)3/2
+ 3

2

a5

(a2 + �∗ 2)5/2

] (35)

where a = 3
2 (1+0.9e)1/2 and e is a small parameter which characterizes the surface elevation profile,

Carrier and Greenspan [26] have obtained the analytical solution, using some relations between
dimensionless ordinary variables, hodograph coordinates and a potential function depending on
this specific problem. This set of equations is solved by iterative processes and we use the values
of this analytical solution at the left boundary as the inlet left boundary condition in order to
generate the motion.

During the evolution, the maximum penetration distance attained by the wave occurs when the
coastline velocity is zero. The shoreline rises above the mean sea level of value e and then the water
surface elevation asymptotically settles back to it. The bottom slope � is taken to be 1

50 , the results
are presented here for e= 0.1 and the initial surface profile (35) is imposed in the dimensional
case with the length scale l = 20m. Values of �x∗ = 0.002 and CFL= 0.7 have been used for
this test. Figures 5 and 6 show comparisons between numerical results and analytical solutions
for the surface elevation. These surface elevation profiles have been scaled with the parameter e.
We show in Figure 5 the whole surface elevation profiles at four values of time. This highlights
the accuracy of the computation for large values of t∗ and during the asymptotic convergence
towards the mean level. In Figure 6, zoomed surface elevation profiles near the shoreline are
plotted versus the onshore coordinate. We see on both figures that the SURF WB model provides
excellent agreements with the analytical solution at the two level of scaling. Lastly, we show in
Figure 7 the time series of the shoreline surface elevation. The shoreline position asymptotically
settles to e and the model provides stability and a good accuracy in the computation of this slow
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Figure 7. The Carrier and Greenspan’s transient solution. Comparison between numerical results (in solid
line) and the analytical solution (in dotted lines) for the motion of the shoreline. Surface elevation of the

dimensionless shoreline h∗
s /e is plotted versus dimensionless time coordinate t∗.

convergence. We emphasize that the use of FSM for this test leads to instabilities for large values
of time, since errors induced by the discretization may become greater than the variations of the
solution. For this reason, numerical results for large values of t∗ are rarely shows in the literature.

5.1.2. The Carrier and Greenspan periodic wave solution. In this test, a monochromatic wave
is let run-up and run-down on a plane beach. This represents the motion of a periodic wave of
dimensionless amplitude A∗ and frequency �∗ travelling shoreward and being reflected out to sea,
generating a standing wave. The previous dimensionless quantities (33) are used and the analytical
solution is obtained using the hodograph coordinates (34). We obtain for this specific problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u∗ = − A∗ J1(�∗) sin(�∗)
�∗

�∗ = A∗

4
J0(�

∗) cos(�∗) − u∗ 2

4

t∗ = 1

2
�∗ − u∗; x∗ = �∗ − �∗ 2

16

(36)

where J0 and J1 are the Bessel functions of zero and first order and the dimensionless frequency
�∗ is equal to one. This analytical solution is frequently used to validate the ability of numerical
models to deal with run-up and run-down phenomenon and to study the dynamic of waves near
a continental shelf and we refer to Reference [26] for a complete description. This expression is
only valid for 0�A∗�1 and A∗/4 represents the maximum vertical excursion of the shoreline.
The value of this solution at t = 0 is supplied as initial condition and the analytical variation of
the surface elevation at the left boundary is used as an offshore boundary condition.

We compute this numerical solution with a dimensionless amplitude A∗ = 0.6, a length scale
l = 20m and a bottom slope � = 1/30. Extensive numerical investigations show that SURF WB
is robust enough to deal with a large range of bottom slope. The numerical results are compared
to the analytical solution for a significant range of time, to ensure that small instabilities, which
may eventually be amplified later, are not generated. We show in Figure 8 the comparison for
the surface elevation, at different values of time t∗ between 3T ∗ and 3T ∗ + T ∗/2, where T ∗ is
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Figure 8. The Carrier and Greenspan’s periodic wave solution. Comparison between numerical
results (solid lines) and analytical solutions (dotted lines) for the surface elevation. Profiles of water
surface elevation h∗ are plotted versus the onshore coordinate x∗ for different values of time t∗

increasing from t∗ = 3T ∗ to t∗ = 3T ∗ + T ∗/2.
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Figure 9. The Carrier and Greenspan periodic wave solution. Comparison between numerical results and
the analytical solution for the vertical motion of the shoreline. Water surface elevation of the shoreline

h∗
s is plotted versus the dimensionless time coordinate t∗, during three periods.

the dimensionless period of the oscillations. Value of �x∗ = 0.002 and CFL= 0.7 are used. We
observe that the moving shoreline is accurately computed even after a few periods. We can observe
in Figure 9 time series of the surface elevation at the shoreline. The accuracy of the results is
obvious and a comparison with results found in the literature (see Reference [9] for instance),
highlights the quality of these results. In addition, it is worth mentioning that the L2 error is not
amplified and never goes over three per cent during ten periods. We can see in Figure 10 the
L2-convergence curves for the water height and the velocity. The used L2-error is defined at the
nth time for h and u as follows:

ErrL2(h)=
{∑

i, j (h
n
i j − ha)2∑
i, j h

2
a

}1/2

(37)
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Figure 10. The Carrier and Greenspan’s periodic solution. L2-convergence curves for the surface
elevation h∗ (in solid line) and the velocity u∗ (in dashed–dots line) at t∗ = 1.5. log(L2-error) is

plotted versus log(�x) at t∗ = 1.5.

ErrL2(u) =
{∑

i, j [(uni j − ua)2 + (vni j − va)
2]∑

i, j [u2a + v2a]

}1/2

(38)

whereUa = t (ha, (hu)a, (hv)a) represents the analytical solution at the appropriate time. This error
measure takes into account the numerical errors in the computation of the surface elevation and
the velocity for all computational points at a given time. The measured rate of convergence are
above 1.66 for the water height and 1.63 for the velocity.

5.1.3. The Synolakis run-up solution. Solitary wave run-up phenomenon were investigated
experimentally and numerically by Synolakis [30]. Although it is well known that solitary waves
are not classical solutions of the NSW equations, it has been found that for small amplitudes
and over limited distances, the Synolakis solution provides a good model of beach inundation
and reflection by a solitary wave. This solution has been extensively used in order to validate
experimental and numerical models.

In this test, a solitary wave travelling from the shoreward is let run-up and run-down on a plane
beach, before being fully reflected and evacuated from the computational domain. The topography
for this test of wave run-up and reflection is made of a constant depth area juxtaposed with a plane
sloping beach of slope �.

The initial condition is a solitary wave, centred at a distance x1 from the toe of the beach equal
to its half wave length:

h(x, t = 0) = H

D
sech 2(�(x − x1))

u(x, t = 0) =
√

g

D
· h0(x)

(39)
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Figure 11. Definition sketch for the initial condition of the Synolakis’ solution.

where

� =
√
3H

4D
and x1 =

√
4D

3H
arcosh

(√
1

0.05

)
(40)

is the initial position of the centre of the solitary wave (see Figure 11). The initial amplitude
is set to be H = 0.019m, the mean water depth is D = 1.0m and the beach slope is defined
with cot (�) = 19.85. The analytical solution, obtained by the combination of the Carrier and
Greenspan’s hodograph transformation and a Fourier transform is provided in the original paper
of Synolakis [30]. A simplified form is exposed in Reference [10]. For this test, we have used
�x = 0.02 and the CFL is set to 0.8. The numerical results are compared with the analytic solution
in Figure 12 for different values of time between the initial condition and the complete evacuation
of the wave from the computational domain. No discrepancies are observable. Time series of the
evolution of water height at x = 72.5m are presented in Figure 13. We emphasize that after the
total reflection of the incident wave, the convergence towards the steady state at rest is accurately
computed whereas FSM are simply unable to provide any valuable results since non-physical
oscillations are generated. In the literature, such results showing the computation of this steady
states using bore-capturing finite-volumes methods are not shown.

5.2. 2D assessments

Few analytical solutions are available for the two-dimensional NSW equations with free moving
boundary. In his study, Thacker [31] provides two different classes of solutions corresponding to
time-dependent non-linear oscillations in parabolic basins. The motion is oscillatory with a small
enough amplitude, imposed by the long wave assumption, and there is no energy dissipation. For
these two tests, the flow takes place inside a parabola of revolution defined as

d(r) =−h0

(
1 − r2

a2

)
(41)

on the computational domain [−2, 2] × [−2, 2], where h0 is the depth of water at the centre point
for a zero elevation and a is the distance from the centre point to the zero elevation of the shoreline
(see Figure 14). For the two following tests, we use �x = �y = 0.008m and the CFL is set to 0.6.
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Figure 12. The Synolakis run-up solution. Comparison between numerical results (solid lines)
and analytical solution (dotted lines) for the surface elevation. Profiles of water depth h are
plotted versus the onshore coordinate x for: (a) t = 3.0 s; (b) t = 9.0 s; (c) t = 17.0 s; (d) t = 19.5 s;

(e) t = 23.0 s; (f ) t = 28.0 s; (g) t = 32.5 s; and (h) t = 75.0 s.
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5.2.1. Thacker’s curved solution. The curved solution provides in Reference [31] is given by

h(r, t) = h0

[
(1 − A2)1/2

1 − A cos(�t)
− 1 − r2

a2

(
1 − A2

(1 − A cos(�t))2
− 1

)]

u = 1

1 − A cos(�t)

(
1

2
�x A sin(�t)

)
, v = 1

1 − A cos(�t)

(
1

2
�yA sin(�t)

) (42)

where the frequency � is given by � =√8gh0/a2, r is the distance from the centre point, r0 the
distance from the centre point to the point where the shoreline is initially located (see Figure 14)
and A= (a2 − r20 )/(a

2 + r20 ).
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Figure 15. Thacker’s curved solution. Comparison between numerical results (in solid lines) and analytical
solution (in dotted lines) for the centreline free surface profile. Water surface elevation profiles h are plotted
versus the x coordinate, for y = 0, for: (a) t = 3T ; (b) t = 3T+T/6; (c) t = 3T+T/3; and (d) t = 3T+T/2,

where T is the oscillations period.

The analytical solution at t = 0 is supplied as initial condition. The depth profile for the basin
and the definition of a, r0 and h0 are shown in Figure 14. The values used for this numerical
test are a = 1, r0 = 0.8m and h0 = 0.1m. The centreline initial condition (for y = 0) is shown in
Figure 15(a) together with comparisons between numerical and analytical results at three different
times. The surface elevation profiles are computed after three periods T and are in excellent
agreement with the analytical solution. Furthermore, it seems that no spurious oscillations are
present near the shoreline even after three periods.

In Figure 16, we focus on the run-up and run-down phenomena during a half period. We see
on this zoom that actually, very small distortions appear in the intermediates states between the
minimum and maximum surface elevation. But these distortions are small enough to be smoothed
during the next numerical iterations and thus, they do not propagate. These results are very
satisfying when compared to those introduced in Lynett et al. [29], where a complex extrapolation
method is used, combined with smoothing procedures to avoid non-physical instabilities.

We show in Figure 17 the L2-convergence curves for the water height h and the velocity u. The
rate of convergence is around 1.4 for the water height and 1.2 for the velocity.

5.2.2. Thacker’s planar solution. This test case is perhaps the most difficult for the numerical
model since it involves a wetting and drying procedure on a no radially symmetric configuration.
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Figure 16. Thacker’s curved solution. Zoomed centreline free surface profiles for the surface elevation,
near the shoreline. Analytical and numerical profiles are plotted versus the x coordinate, for y = 0 for
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Figure 17. Thacker’s curved solution. L2-convergence curves for the surface elevation h (in solid line)
and the velocity u (in dashed–dots line). log(L2-error) is plotted versus log(�x) at t = 3 s.

The exact periodic solution provided in Reference [31] is given by

h(x, y, t) = �h0
a2

(2x cos(�t) + 2y sin(�t) − �)

u = −�� sin(�t), v = �� cos(�t)

(43)

where �= √
2gh0/a. The values used for this numerical test are a = 1, � = 0.5m and h0 = 0.1m.

This solution evaluated at t = 0 is used as an initial condition. The moving shoreline is a circle
in the (x, y) plane and the motion is such that the centre of the circle orbits the centre of the
basin, while the surface remains planar with constant gradient at any given instant. Numerical
results are compared to the analytical solution in Figure 18. We observe an accurate matching
even after two periods. We note a small distortion near the shoreline, which can be reduced with
a finer mesh. The moving shoreline is accurately computed during several periods with no signs
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Figure 18. Thacker’s planar solution. Comparison between numerical results (in solid lines) and
analytical solution (in dotted lines). Centreline free surface profiles for the surface elevation h
are plotted versus the x coordinate, for y = 0, at: (a) t = 2T , t = 2T +T/6T , t = 2T +T/5T ;

and (b) t = 2T + T/4, t = 2T + T/3, t = 2T + T/2.

of amplified spurious oscillations. Once again, these results are very satisfying when compared to
those obtained by Hubbard and Dodd [13], using an adaptive mesh refinement algorithm.

6. CONCLUSION

We introduce in this paper a new two-dimensional NSW model, named SURF WB, for predicting
wetting and drying processes on varying topographies. This model relies on the combination of the
VFRoe-ncv Riemann solver for homogeneous systems, which is able to deal with the occurrence
of dry areas, and the recent hydrostatic reconstruction which provides a well-balanced treatment
of the bed slope source term. In addition, a MUSCL reconstruction is performed to achieve
a ‘second order’ accuracy. It raises a fast and accurate bore-capturing well-balanced method,
easy to implement and able to preserve steady states at rest. This model has been validated
against analytical solutions in situations involving multiple moving shorelines, strong variations
of bed slope and convergence towards a steady state. This scheme introduces very little artificial
viscosity and numerical results are in very good agreement with analytical solutions. Furthermore,
we have shown that the application of well-balanced schemes for this class of problems is not
trivial, since two others schemes, which have been extensively validated in situations involving
occurrence of dry area and strong bottom variations, have failed to provide accurate results in
moving shoreline problems. From these investigations, the SURF WB model appears as an efficient
tool which can be of a great utility for simulations of wave’s run-up and run-down, especially
in coastal engineering. A qualitative comparison with models introduced in the literature shows
that SURF WB results are at least as accurate as those presented by Brocchini et al. [9] with their
fixed grid method and sometimes even with their complex coordinates transformation method.
Concerning the two-dimensional cases, the results introduced here are almost as accurate as results
obtained in the literature with extrapolation methods and adaptive mesh refinement algorithms. In
addition SURF WB enables us to overcome the problems due to the fractional step method which
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is used in these models. From these assessments, it can also be noticed that SURF WB is able to
deal with strong variations of topography as well as the robust and accurate exact well-balanced
Riemann solver of Leroux et al., and ensures more accurate results for moving shoreline problems.

In recent studies [32] we investigate the use of this model for the simulation of two-dimensional
run-up in coastal areas and the study of wave-induced mean currents and macro-vorticity in the
surf and swash zone, over realistic topographies. As it has been emphasized in Reference [33],
spurious vorticity may be generated by the imbalance between flux gradient and source term of
their model. The use of SURF WB helps to overcome these drawbacks.

APPENDIX A

This section is devoted to the numerical validation of the SURF WB model against several classical
test cases.

A.1. Transcritical flow over a bump

We present here a classical test of a constant discharge transcritical flow without shock over a
bump and we refer to Reference [34] for a complete description of this test. The main inter-
est is to study the convergence towards a steady state and the improvement obtained within the
well-balanced approach. The topography is defined as in Reference [21]. The test is performed
with 200 cells and the CFL number is set to 0.4. The boundary conditions are a positive im-
posed discharge Qin = 1.53m2/s on the left boundary, and a imposed height hout = 0.66m on
the right boundary. The initial condition is set to h0 = hout and Q = 0. The analytical solution for
the surface elevation is smooth with a decreasing part, including a sonic point. The solution at the
right of this sonic point is supercritical and the boundary condition hout is only used when the
flow is subcritical, during the transient part of the simulation. The results are plotted at t = 200 s.
We can observe in Figure A1(a) that, as we are far from a steady state ‘at rest’, the results for
the surface elevation provided by SURF WB and the FSM (also based on the VFRoe-ncv solver for
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Figure A3. 2D flow at rest. Centreline profiles of: (a) the surface elevation;
and (b) the discharge, at t = 400 s.

homogeneous system) are similar and very close to the analytical solution. This situation is not
true for the discharge and we can observe in Figure A1(b) the real improvement brought up by the
well-balanced approach since the discharge Q computed by SURF WB is almost constant, whereas
the FSM induces non-physical oscillations over topography variations.

A.2. A two-dimensional flow at rest with a dry area

The initial condition of this test is a two-dimensional flow at rest. This test aims at showing
that the ‘second order’ accuracy well-balanced approach used in SURF WB is able to preserve a
steady state ‘at rest’, as expected from the hydrostatic reconstruction, and that the two-dimensional
extension on Cartesian meshes does not modify this property. We impose h + d = max(d, 0.3)m
and Q = 0m2/s over the whole domain, which contains 150×150 cells. The topography is defined
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as follows:

d(x, y)= 0.5 exp(−(r/�)2) (A1)

where r =√x2 + y2, �= 0.5 and (x0, y0) = (5, 5). The initial condition at rest is plotted in
Figure A2. We can observe in Figures A3(a) and (b) the results obtained at t = 400 s for the
centerline profiles at y = 0 of surface elevation and discharge. As expected, the SURF WB model
exactly preserves the steady state. Though it is not shown here, the results remains reliable even
when the initial conditions are h + d = max(d, 0.6)m (no dry cells) or h = 0m (no water).
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25. Eymard R, Gallouët T, Herbin R. Finite volume methods. In Handbook of Numerical Analysis, Ciarlet PG,
Lions JL (eds), vol. III. North-Holland: Amsterdam, 2000; 729–1020.

26. Carrier GF, Greenspan HP. Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics
1958; 4:97–109.

27. Van Leer B. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method.
Journal of Computational Physics 1979; 32:101–136.

28. Kobayashi N, Desilva GS, Watson KD. Wave transformation and swash oscillation on gentle and steep slopes.
Journal of Geophysical Research 1989; 94:951–966.

29. Lynett PJ, Wu TR, Liu PL-F. Modeling wave run-up with depth-integrated equations. Coastal Engineering 2002;
46:89–107.

30. Synolakis CE. The runup of solitary waves. Journal of Fluid Mechanics 1987; 185:523–545.
31. Thacker WC. Some exact solutions to the nonlinear shallow-water wave equations. Journal of Fluid Mechanics

1981; 107:499–508.
32. Marche F, Bonneton P. A simple and efficient well-balanced scheme for 2D bore propagation and run-up over

a sloping beach. Proceedings of the International Conference on Coastal Engineering ICCE, 2006, in press.
33. Brocchini M, Bernetti R, Mancinelli A, Soldini L. Structure-generated macrovortices and their evolution in very

shallow depths. Proceedings of the 28th International Conference on Coastal Engineering, vol. 1. ASCE, 2002;
772–783.

34. Goutal N, Maurel F. Proceedings of the 2nd Workshop on Dam-Break Wave Simulation, EDF-DER Report
HE-43/97/016/B, 1997.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:867–894
DOI: 10.1002/fld


