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SUMMARY

This paper supplements the validation of the fourth-order compact finite volume Boussinesq-type model
presented by Cienfuegos et al. (Int. J. Numer. Meth. Fluids 2006, in press). We discuss several issues
related to the application of the model for realistic wave propagation problems where boundary conditions
and uneven bathymetries must be considered. We implement a moving shoreline boundary condition
following the lines given by Lynett et al. (Coastal Eng. 2002; 46:89–107), while an absorbing-generating
seaward boundary and an impermeable vertical wall boundary are approximated using a characteristic
decomposition of the Serre equations. Using several benchmark tests, both numerical and experimental, we
show that the new finite volume model is able to correctly describe nonlinear wave processes from shallow
waters and up to wavelengths which correspond to the theoretical deep water limit. The results compare
favourably with those reported using former fully nonlinear and weakly dispersive Boussinesq-type solvers
even when time integration is conducted with Courant numbers greater than 1.0. Furthermore, excellent
nonlinear performance is observed when numerical computations are compared with several experimental
tests on solitary waves shoaling over planar beaches up to breaking. A preliminary test including the
wave-breaking parameterization described by Cienfuegos (Fifth International Symposium on Ocean Wave
Measurement Analysis, Madrid, Spain, 2005) shows that the Boussinesq model can be extended to deal
with surf zone waves. Finally, practical aspects related to the application of a high-order implicit filter
as given by Gaitonde et al. (Int. J. Numer. Methods Engng 1999; 45:1849–1869) to damp out unphysical
wavelengths, and the numerical robustness of the finite volume scheme are also discussed. Copyright q
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the companion paper [1], analytical properties of a new fourth-order compact finite volume
scheme used to integrate Boussinesq-type equations were investigated. In particular, linear stability,
spectral resolution and nonlinear performance of the scheme were analysed in the framework of
wave propagation over flat bottoms. In the present work, practical considerations intended to
apply model equations to realistic problems of wave propagation over uneven bathymetries are
considered. Experimental test cases will provide additional insight concerning model performance
when used to describe complex wave processes.

The set of mass and momentum conservation equations has already been presented in
Reference [1]. Here we only recall the weak quasi-conservative form that has been discretized
with the compact finite volume method. This particular fully nonlinear and weakly dispersive set
of Boussinesq-type equations reads,

ht + Fx = 0 (1)

qt + Gx = S (2)

q = (1 + r)u − 1

3h
(h3ux )x − ��2uxx (3)

where the different flux functions, source term and dependent variable are defined, respectively, as

F = hu (4)

G = qu+g(h+�) − 1
2u

2(1+�2x )+(�xu − 1
2hux )hux−��2[u2x+uuxx+g(h + �)xx ] (5)

S = − 2���x [uux + g(h + �)x ]x (6)

r = (hx + �x )�x + 1
2h�xx (7)

Here h is the total water depth, u is the depth-averaged horizontal velocity of the fluid, z = � is the
vertical coordinate of the bottom, g is gravitational acceleration, and � is an adjustable parameter
associated with the dispersion correction term as given in References [2, 3]. The latter provides
an extension of this shallow water set to deeper water wave propagation problems. The cartesian
system of coordinates and a sketch of the problem are presented in Figure 1.

In the companion paper [1], details on the application of a high-order compact finite volume
scheme to this set of equations have been given and thoroughly analysed for wave propagation over
horizontal bottoms. For the reader’s convenience, the main features of the numerical scheme are
summarized here: (i) cell-face values are reconstructed from calculated cell-averaged ones using
a compact strategy developed in References [4, 5]; (ii) high-order dispersive terms are discretized
using compact finite difference formulae [6]; (iii) a standard four-stage Runge–Kutta method is
used to integrate the discrete system in time; (iv) fourth-order accuracy in both space and time
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a

Bottom profile
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Free surface

Figure 1. Definition sketch for wave propagation over unveven bathymetries. z = � is the free surface
elevation, z = � is the bottom location (here � has a negative value), and h = �−� is the total water depth.

is achieved; and (v) stable non-damping solutions are obtained if the Courant number is taken to
be less than 2.0 when using a grid size �x = 0.1 h0 (h0 being a representative value for the still
water depth).

In the following, we will pursue the validation of the proposed model using both numerical tests
and experimental measurements for wave propagation over uneven bathymetries. The important
question of conceiving and discretizing suitable boundary conditions for this system of equations
will also be addressed. We are specifically interested in developing boundary conditions able to
accurately describe several nonlinear wave processes taking place in a nearshore context.

The present paper is organized as follows: in Section 2, dispersive properties of the model are
studied, while Section 3 deals with the numerical implementation of different types of boundary
conditions. In Section 4 a high-order filtering technique is discussed and applied to damp out
non-physical wavelengths not resolved by the model, and in Section 5 a complete validation of
the proposed scheme is presented using both analytical and experimental examples.

2. OPTIMUM VALUE FOR THE DISPERSION CORRECTION PARAMETER

Improvements in dispersive characteristics embedded in the Boussinesq-type model can be achieved
by adjusting the �-parameter associated with the high-order dispersion correction term. From an
analytical point of view it was shown by Barthélemy [7] that a Padé (2, 2) approximation for the
exact linear Stokes dispersion relation is obtained by choosing � = 1

15 . Therefore, this extended
system of Serre equations can adequately match the Stokes relation up to � = �h0 � �, where �
is a characteristic wave number and h0 is a typical water depth. Comparisons between dispersion
characteristics for the partial differential equation (PDE) set and theoretical Stokes phase speed
and group velocity are presented in Figure 2 for different values of �.

Similarly, a Stokes expansion analysis was performed in the same Reference [7] to investigate
the nonlinear properties of this particular system and this will not be repeated here. Nevertheless,
bearing in mind that linear wave propagation properties of the set of PDE will theoretically allow
for the description of wavelengths up to, say �m = �h0 = 3.0, one can try to find an optimum
value for � by minimizing the joint root mean square (RMS) error of the phase and group velocity
estimates. Therefore, instead of choosing the �-value, which produces the exact Padé (2, 2) Stokes
expansion, we will tune this parameter in order to minimize phase and group velocity errors over
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Figure 2. Comparisons between linear dispersion characteristics of the model and exact Stokes relations
for different values of �: (−) � = 0; (−−) �= 1/10; (− · −) � = 1/15; (··) �= 1/20; (−�−) �= 1/25:

(a) phase speeds; and (b) group velocities.

the dispersive range 0���3. This can be done by introducing the following quadratic form for
the joint error:

Err=
√√√√∫ �m

0 (Cth − CStokes)
2 d�∫ �m

0 C2
Stokes d�

+
∫ �m
0 (Cg th − Cg Stokes)

2 d�∫ �m
0 C2

g Stokes d�
(8)

where Cth and CStokes represent, respectively, linear phase speeds associated with the PDE system
and the Stokes theory, while Cg th and Cg Stokes correspond to group velocities. They read,

Cth

C0
=

√
1 + ��2

1 + (1/3 + �)�2
(9)

CStokes

C0
=

√
tanh �

�
(10)

Cg th

C0
= �(1/3 + �)�4 + 2��2 + 1√[(1/3 + �)�2 + 1]3(1 + ��2)

(11)

Cg Stokes

C0
= tanh � + �(1 − tanh2 �)

2
√

� tanh �
(12)

with C0 =√
gh0.
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Figure 3. Optimum adjustment of dispersion correction parameter � over the range 0���3.0:
(a) joint RMS error for phase and group velocities as a function of �; and (b) comparison between
model phase and group velocities and theoretical Stokes relations for the optimum value �= 0.053:

(−) Cth/CStokes, and (−−) Cg th/Cg Stokes.

Hence, the optimization process consists in minimizing the error function (8) over 0���3. The
associated error as a function of � is plotted in Figure 3(a). It is clearly seen that the joint RMSE
has an absolute minimum in this dispersive range. The optimum value for � is 0.053 (� 1

19 ), which
is smaller than the analytical result given in Reference [7]. In Figure 3(b) the phase and group
velocities obtained with this �-value are plotted and compared with the corresponding Stokes
relations. The agreement between the modelled dispersion relation and the theoretical one is fairly
good over this �-range. Larger discrepancies exist for the group velocity but the maximum error
remains below 6% for all the physical wavelengths that the model is able to describe. Nevertheless,
the error in group velocities starts to grow rapidly when ��2.3, showing that this property will be
overestimated in this range.

Unless explicitly stated, all numerical examples that we will present in the following sections
will have the dispersion correction parameter fixed at the optimum value determined here, i.e.
� = 0.053.

3. BOUNDARY CONDITIONS

It is worth emphasizing that boundary conditions (BCs) affect the numerical properties of the
scheme being implemented. Stability and accuracy of high-order methods can be dramatically
reduced if boundary treatment is not performed carefully [8, 9]. In the case of hyperbolic systems
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it is generally acknowledged that the formal spatial accuracy of an inner N th-order scheme is
preserved if the system is closed by discretizing BCs with at least an (N − 1)th-order numerical
approximation (see for instance Reference [10]). In the present work no analytical investigation
of the numerical treatment of BCs is performed because of the complexity of the high-order
method implemented. Instead, this important property is studied using a heuristic approach based
on several benchmark tests. Our objective is to ensure that the discretized counterpart of BCs does
not introduce any numerical instability in the system and at the same time preserves the spatial
accuracy of the numerical scheme used in the inner region.

The numerical strategies intended to reproduce the physical properties of the system of equations
at the boundaries must closely follow its intrinsic mathematical nature. Hence, analysis of the BCs
will begin by studying the set of PDEs from a mathematical standpoint. Writing Serre equations
in characteristic directions provides useful information for developing suitable BC’s for this set.
We focus on BCs able to reproduce important physical processes in a nearshore context, namely,
an open sea BC, a moving shoreline strategy for the swash zone and a wall-type BC.

3.1. Decomposition of Serre equations in characteristic directions

Serre equations, which are recovered from (1)–(3) when � = 0 and bottom variations are neglected,
can be recast into a first-order system of equations by introducing auxiliary variables following
the lines given in Reference [11], i.e.

ht + uhx + uxh = 0 (13)

ut + uux + ghx + 2
3 hx� + 1

3 h�x = 0 (14)

�=wt + uwx (15)

w = − hux (16)

where w is the vertical velocity evaluated at the free surface, and � is related to the vertical
acceleration of the fluid evaluated at the same location. Thus, all dispersive terms associated with
the free surface curvature are contained in �. The mathematical properties of this first-order set of
PDEs can be studied by writing it in characteristic form; the development is not reproduced here
but further details can be found in References [11, 12]. This analysis shows that Serre equations
possess two double characteristic directions expressed by

dx

dt
= u, u and

dx

dt
= ∞, ∞ (17)

and consequently the system is not of strictly hyperbolic type. From a mathematical point of view,
this means that it is not possible to find Riemann invariants for this PDE set. Nevertheless, in
order to write BCs which would reflect this hyperbolic–parabolic mathematical nature, it is useful
to recast the Serre equations in the following quasi-hyperbolic form,

dR+

dt
=− 1

3h

�
�x

(h2�) along
dx

dt
= u + √

gh (18)

dR−

dt
=− 1

3h

�
�x

(h2�) along
dx

dt
= u − √

gh (19)
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introducing positive and negative Riemann functions, R+ = u + 2
√
gh and R− = u − 2

√
gh.

Hence, vertical accelerations, which are neglected in nonlinear shallow water equations (NSWE),
are responsible for the loss of hyperbolicity in Boussinesq-type equations by introducing a hor-
izontal dependence in the characteristic plane (x, t). It is important to recall that in this form,
Equations (18)–(19) can only be applied at topographically uniform boundaries.

It is worth noting that, from a physical point of view, time scales associated to dispersive effects
are likely to be larger than those associated with nonlinearities from intermediate to shallow waters.
It may therefore be assumed that, over short distances/times, Riemann variables might be locally
conserved along the characteristics. We will use this physical argument in what follows to develop
suitable BCs for the finite volume resolution of the extended system of Serre equations.

3.2. Open sea boundary condition

The cross-shore Boussinesq model will be used to describe waves propagating over non-uniform
beach profiles. Hence, an absorbing/generating BC is required at the seaward boundary. We
need to prescribe an incident wave field there, allowing residual reflected waves to leave the
computational domain without causing spurious oscillations. The numerical strategy consists in
separating incident and outgoing waves on the basis of the quasi-hyperbolic form derived in the
previous subsection. This kind of approach has been applied to Boussinesq-type equations in
References [13, 14] following the lines given by Van Dongeren and Svendsen [15] for fairly long
waves. We will use a similar approach but without assuming that incident and outgoing waves
are of small amplitude (weakly nonlinear) as is the case in the aforementioned works. Instead,
we locally neglect dispersive effects to estimate depth-averaged velocity and water depth at the
seaward boundary using characteristic equations. We hypothesize that, over short times/lengths,
dispersive effects do not influence boundary values. This heuristic treatment will be validated later
by numerical tests. Therefore, assuming that

√
gh>u, the left and right-going characteristic curves

are expressed by Equations (18)–(19), where vertical acceleration is neglected (see Figure 4 for a
sketch of the positive and negative characteristic curves).

It should be recalled that a four stage Runge–Kutta time stepping is applied to integrate equations
at interior nodes. This implies that the numerical solution is evaluated twice at t +�t/2 and twice
at t + �t [1]. On the other hand, seaward depth-averaged velocity and water depth values are
obtained by solving systems (18)–(19). At each half time step, the right-going Riemann variable
is estimated assuming that the incident wave field propagates from −∞ (a fictitious domain) to
the seaward boundary with a constant wave form. Hence, if the free surface elevation time series
of incident waves at the seaward boundary is prescribed as the function �A(t), the corresponding
Riemann variable should read,

R+
L = uL + 2

√
ghL =√

g[�A(t + �t/2) − �A]
[

�A(t + �t/2)

�A(t + �t/2) − �A
+ 2

]
(20)

where a long wave approximation is used to relate the flow velocity to the local water depth, i.e.
hu = (h+�)

√
gh. Estimation of the negative Riemann variable requires more effort since the initial

location at time t of the outgoing characteristic, xR , is not known beforehand. A first estimate for
this location is obtained by integrating the left characteristic trajectory (19) and thus solving the
following nonlinear equation for xR :

xR − xA + �t

2
[u(xR, t) − √

gh(xR, t)] = O(�t2) (21)
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Physical domainFictitious domain

Figure 4. Definition sketch of characteristic decomposition of incident and outgoing waves. C+ and C−
represent respectively positive and negative characteristic curves in the (x, t) plane.

A linear interpolation can be used to compute variables at location xR from known nodal depth-
averaged velocities and water depths at time t . This implicit equation is easily solved by imple-
menting, for example, a standard Newton–Raphson algorithm. Once xR is computed, the outgoing
Riemann variable is estimated as

R−
R = u(xR, t) − 2

√
gh(xR, t) (22)

Then, solving systems (18)–(19) yields the first estimate for boundary values of h and u at t+�t/2,

uA′ = 1
2 (R

+
L + R−

R ) + O(�2�t, �t) (23)

hA′ = 1

16g
(R+

L − R−
R )2 + O(�2�t, �t) (24)

Cell-face values of water depth are readily computed for interior nodal points at t + �t/2 from
the finite volume integration of continuity equation (1). However, determining depth-averaged
velocity from the momentum equation also means prescribing the dependent variable q at the
seaward boundary. This variable reflects the parabolic nature of the system and its boundary
value must be fixed taking into account the horizontal dependence in the (x, t) plane given by
Equation (3). Indeed, the mathematical form of this equation imposes an implicit treatment for
this BC because the qA and internal j-values of the depth-averaged velocity are coupled. To cope
with this additional constraint, Equation (3) is used to estimate qA from interior nodal values and
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previously computed seaward variables hA and uA. For this purpose, Equation (3) is discretized
over the cell �A = {x ∈ [xi=−1, xi=0]} (using the definitions given in the companion paper [1])
where nodal points located outside the physical domain are extrapolated with cubic piecewise
functions, which provide fourth-order accuracy [16]. This additional equation must be solved
simultaneously with those obtained at the interior nodes by implementing an iterative procedure.
This is a straightforward matter because a deferred-correction approach is used to estimate u j
values from the discretized counterpart of Equation (3).

The strategy used to advance u and q in time taking into account the BC for u and h is
summarized as follows:

1. Reconstruct cell-face values q j from cell-averaged ones using the additional relation obtained
from discretizing Equation (3) at the seaward boundary and the last computed u j values for
interior nodes.

2. Using q j values estimated at the previous step, compute depth-averaged velocities at the
interior nodes solving Equation (3).

3. If a convergence criterion for the relative error between the new and old values for qA and
u j is not satisfied, then come back to 1. Otherwise, the iterative process stops.

Errors are estimated using the same expression based on a L1 norm given in Reference [1]. The
relative tolerance is fixed at � = 10−4 for all computations.

At the end of this process all cell-face values for variables h, u and q are known at t + �t/2.
Nevertheless, the Runge–Kutta scheme will produce a second estimate of the variables at the same
time level. In this second stage, characteristic equation (19) can be integrated with greater accuracy
by taking advantage of the previous guess. The xR location is now computed using the following
implicit equation:

xR − xA + �t

4
[u(xR, t) + uA′ − √

gh(xR, t) − √
ghA′ ] = O(�t3) (25)

and the second estimation for the boundary values reads,

uA′ = 1
2 (R

+
L + R−

R ) + O(�2�t, �t2) (26)

hA′ = 1

16g
(R+

L − R−
R )2 + O(�2�t, �t2) (27)

where Riemann variables are defined as before. Thus, at each intermediate time step of the Runge–
Kutta scheme, boundary values for water depth and depth-averaged velocity are estimated with an
error of O(�2�t,�t2). In the general case, the time step �t will be small enough and the error
associated with dispersion would be small. Similarly, the boundary value for q and velocities at the
interior nodes are obtained following the same iterative strategy expounded before. The solution is
then advanced to the next half step t+�t using an analogous procedure starting from the computed
values at t + �t/2.

It is worth emphasizing that even though a restrictive assumption regarding dispersion has been
adopted in deriving seaward BCs, our two-step approach takes into account the parabolic nature
of Boussinesq-type equations. Indeed, by using Equation (3) to compute the boundary value of the
dependent variable q , dispersive effects are considered. Otherwise, q would have been taken to
be exactly the depth-averaged horizontal velocity u. However, this treatment will certainly not be
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sufficient for highly dispersive waves (i.e. �h0�1) where an internal source function in combination
with a sponge layer will probably be the method of choice (see for instance Reference [17]).
3.3. Vertical wall

At a vertical and impermeable wall, horizontal velocity must vanish. Again, the characteristic
decomposition of Serre equations provides a way to fix the value for the variable h. Therefore,
the numerical strategy for estimating boundary values of u, h and q is equivalent to the one used
for the open sea condition. The only difference is that the fictitious right-going Riemann variable,
R+
L , must be chosen in order to ensure that the horizontal velocity is zero at the corresponding

boundary.
This particular BC is written for a situation where the vertical wall is located on a sloping

bottom. Integration of the characteristic equations now provides the following relations:

R+
A′ − R+

L =−g(�x )A
�t

2
+ O(�2�t) (28)

R−
A′ − R−

R =−g(�x )A
�t

2
+ O(�2�t) (29)

where the associated bottom slope term is included as a source in the right-hand side. In order to
impose a vanishing horizontal velocity at the wall we write,

R+
L = 2g(�x )A

�t

2
− R−

R (30)

uA′ = − g(�x )A
�t

2
+ 1

2
(R+

L + R−
R ) + O(�2�t, �t) (31)

and the water depth at the boundary A′ is estimated with the same expression as before
(Equation (24)). Once boundary values of u and h are computed in this way, the remaining
variable q is estimated seaward using the procedure outlined before. Therefore, it is possible to
obtain greater accuracy in the second stage of the Runge–Kutta time stepping.

3.4. Moving shoreline

An accurate representation of swash motions at the shoreline is very important since infragravity
waves are generated in nature by nonlinear interactions, by breaking and by partial reflection
produced in particular by the run-up and run-down process that takes place in the swash zone (e.g.
References [18, 19]). Several authors have developed numerical strategies intended to reproduce
the dynamic movement of the shoreline in the framework of Boussinesq-type models. These
schemes have been mainly applied using fixed grids, where the moving boundary problem is only
solved in an approximate way. Although it is generally acknowledged that this kind of strategy
can sometimes produce loss of mass and numerical instability (see for instance Reference [20]),
it has been widely used in nearshore problems because the treatment of the moving shoreline
is fundamentally simplified. Some recent examples of such approaches range from ad-hoc or
essentially numerical approaches (e.g. References [21–23]) to more sophisticated ones where a
Riemann wet–dry problem is explicitly solved [24].

In the present work, the simple extrapolation technique given by Lynett et al. [21] has been
adapted in our finite volume resolution. Lynett et al.’s [21] moving shoreline technique is based
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on a linear extrapolation of free surface and velocity through the wet–dry boundary. In the present
finite volume scheme, wet cells are included in the computation of Equations (1)–(2) if,

1

�x

∫
� j

h dx�htol (32)

where � j denotes a finite volume, �x is the grid size and htol is a threshold value. Cell-averaged
values for water depth 1/�x

∫
h dx and cell-averaged variable 1/�x

∫
q dx are linearly extrapolated

through dry cells. Following Lynett et al. [21], a four-point filter may be passed through the
extrapolated region in order to avoid slope discontinuities. Equations (1)–(2) are integrated in
time and the location of the wet–dry interface is determined once every half time step (�t/2) in
the Runge–Kutta time stepping. Spatial derivatives are computed in the physical and extrapolated
domain, where five extra dry nodal points are considered. Depth-averaged velocity is finally
computed from Equation (3) in the extended domain (wet + dry).

The numerical implementation of this moving shoreline will be validated in the next section,
where particular care must be paid to the issue of mass conservation. The linear extrapolation
at the shoreline locally reduces the accuracy of the scheme to second order as pointed out in
Reference [21] but allows larger time steps to be used in the present context. This is an important
feature because our finite volume method may be integrated in time without necessarily respecting
the CFL condition (i.e. Courant numbers larger than 1.0).

3.5. Compact differencing at boundary nodes

Boundary estimates for first and second-order spatial derivatives appearing in flux functions
(4)–(5) are performed using compact approximations, which preserve fourth-order accuracy for
first derivatives and third-order for second derivatives. The resulting matrix for the whole domain
will be tri-diagonal even when non-periodic boundaries are considered. Matching conditions at the
left boundary read [6],

(�x )A + 3(�x ) j=1 = 1

�x

(
−17

6
�A + 3

2
� j=1 + 3

2
� j=2 − 1

6
� j=3

)
(33)

(�xx )A + 11(�xx ) j=1 = 1

�x2
(13�A − 27� j=1 + 15� j=2 − � j=3) (34)

where � j is a generic function evaluated at node j and A represents the left boundary (see
Reference [1] for nodal definitions). Similarly, matching conditions at the right boundary can be
easily derived.

4. SPATIAL FILTERING

In the case of complex wave propagation problems over uneven bathymetries, dispersion and
nonlinearity may interact to produce higher harmonics. These shorter waves may eventually lie
out of the range of physical validity of the model equations and a high-order filtering technique
is often considered to damp them out. This is also justified because numerical schemes used to
discretize PDEs are not able to describe properly all wavelengths as was shown for our finite
volume method in Reference [1].
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Regarding the latter, the spectral analysis of the numerical scheme performed in Reference [1]
provides an important theoretical background for improving the performance of the method. Indeed,
since the Runge–Kutta finite volume scheme used here is based on centred-in-space approxima-
tions, it was shown that there is almost no damping of different wave modes when appropriate
discretization parameters are used. However, not all wavelengths are properly described by the
numerical method and examples of dispersion relation preserving (DRP) regions were given in the
companion paper [1]. From a practical point of view this means that high frequency waves may
introduce destabilizing effects as numerical integration advances in time. These short waves can
arise as a consequence of nonlinear interaction or even be introduced by approximated boundary
conditions, which do not match PDEs exactly. One effective way to eliminate non-physical high
frequencies is to use high-order filtering techniques [25]. This approach is of widespread usage
in the numerical treatment of wave-type equations (e.g. References [6, 26, 27]) and has also been
used in the context of Boussinesq-type modelling (e.g. References [14, 22, 28]).

Consequently, our main concern here is to damp out frequencies that cannot be resolved by the
numerical scheme in order to eliminate non-physical wavelengths. Since spectral analysis provides
reliable information on the numerical properties of the finite volume scheme, an appropriate high-
order filter can be chosen. The eighth-order implicit filter given by Gaitonde et al. [26] is used in
the model. It can be applied to cell-averaged variables,

� f
˜̂�i−1 + ˜̂�i + � f

˜̂�i+1 =
4∑

n=0

an
2

(�̂i+n + �̂i−n) (35)

where ·̃ denotes filtered values, � f is a free parameter (−0.5<� f <0.5) and the right-hand side
coefficients read,

a0 = 93 + 70� f

128
, a1 = 7 + 18� f

16
, a2 = −7 + 14� f

32

a3 = 1 − 2� f

16
, a4 = −1 + 2� f

128

When � f = 0.5 there are no damped frequencies and as � f is reduced a wider range of frequencies
is partially filtered as shown in Reference [26]. The filter can be applied once every N f Runge–
Kutta time steps in order to eliminate high frequencies when computations are carried out for long
periods. When high-order filtering is required, a fixed value of � f = 0.4 can be used, thus ensuring
that only unresolved frequencies are suppressed.

Even if from a theoretical point of view the chosen high-order filter should not act on well
resolved wavelengths, it is important to assess whether the numerical representation of wave kine-
matics and energy are affected. Indeed, the use of a filter to damp out high frequencies is delicate
since it removes energy from the system. It is paramount then to evaluate the associated energy dis-
sipation rate. This issue will be investigated first with the help of the following numerical example.

Consider a periodic domain with horizontal bottom where a motionless Gaussian hump located
at its centre is prescribed as initial free surface condition (see Figure 5). The computational domain
has a length of 20 m, and the still water depth is fixed at h0 = 1 m. The initial condition reads,

h(x, t = 0) = H0 exp

[
− 1

2s2
(x − x0)

2
]

− �(x) (36)

u(x, t = 0) = 0 (37)
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Figure 5. Initial free surface configuration (−) for the numerical test, free surface profile after 3 s
(−−) and free surface at t = 500 s (− · −).

where H0 is the height of the perturbed free surface, x0 is its location and s is a shape coefficient
which sets its initial spatial length. The model is run over a long period (say ∼10 000× �t) under
circumstances where nonlinear interactions may generate higher harmonics. For instance, using
H0/h0 = 1.2 and s = 0.3 m ensures that nonlinearities are relatively important and that dispersion
will also have an influence. From this initial situation we compute the wave evolution in the periodic
domain choosing �x = 0.05m and �t = 0.024s, which corresponds to a Courant number Cr = 1.5,
and for 500s (�20 000× �t). A spatial snapshot of the initial perturbation, the free surface position
few seconds after and at the end of the computation are depicted in Figure 5. It can be seen that
at early stages there are several different wavelengths interacting with each other and that wave
amplitudes are not small (a/h0 ∼ 0.3). During the computation, nonlinearities, dispersion and
wave–wave interaction should favour the redistribution of energy at different wavenumbers and at
t = 500 s different wavelengths are visible. Thus, this numerical example may be used to illustrate
how filtering may affect computations.

Power density spectra estimated from free surface time series evaluated at x = 10 m, i.e. at the
centre of the periodic domain are compared, and the results presented in Figure 6. It can be seen
that there are no noticeable differences in the spectral distribution of energy when no filter is
applied and when it is used once every 100 time steps or even once every time step. It is important
to point out that, for this particular example, fairly short waves were generated since the spectral
signature shows that some energy has been transferred to frequencies ranging between 0.6 and
1.0Hz. Using the associated linear phase speed to compute wavelengths, these frequencies roughly
correspond to h0/L ∼ 0.2–0.3. Such ratios are close to the theoretical deep water limit given by
h0/L ∼ 0.5, thus proving that the present numerical example may be useful for testing the filtering
technique when used in practical applications. An additional test concerning the filtering technique
will be presented in Section 5.4 for wave propagation over a submerged bar.

Another important feature that should be investigated is how the total mass and energy contained
in the periodic domain is affected by the application of the high-order filter. In theory, these
quantities must be conserved for the entire computation and differences that may arise should be
attributed to the numerical method used to integrate PDEs or to the filtering technique. In order
to compute the total energy evolution contained in the computational domain, we use theoretical
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Figure 6. Power density spectra of free surface time series evaluated at x0 = 10 m: (a) applying the
filter once per time step (� f = 0.4); (b) applying the filter once every 100 time steps (� f = 0.4); and

(c) without using the eighth-order filter.

information on horizontal and vertical velocity profiles for Serre equations (i.e. � = 0) already
presented in the companion paper [1]. It should be recalled that an ad hoc high-order dispersion
correction term has been added to improve linear dispersive properties of the model. Therefore,
when � 	= 0 there is no analytical expression for the velocity profile. On the contrary, when fixing
� = 0 an exact expression (up to O(�2)) for the total kinetic and potential energy exists for the
Serre equations. It follows that,

ET
k (t) =

∫ xr

xl

1

2
�h(u2 + h2u2x ) dx + O(�4) � 1

2
��x

∑
j∈J

h j (u
2 + h2u2x ) j (38)

ET
p (t) =

∫ xr

xl

1

2
�g�2 dx � 1

2
�g�x

∑
j∈J

�2j (39)

where xl and xr correspond, respectively, to the spatial coordinates of the left and right domain
boundaries, and summation is carried out over the whole discrete domain, where j is a nodal
index and J represents the set of discrete nodes. The total mass contained in the domain can be
computed in a similar way. Time evolution of mass and total energy (ET

k + ET
p ) in the case where

the eighth-order filter is applied once per time step is plotted in Figure 7. It is confirmed that the
filter does not alter mass nor energy since the relative errors on both quantities at the end of the
computation are negligible, being less than 0.2% at t = 500 s.

This numerical example demonstrates that the use of the implicit eighth-order filter with � f = 0.4,
as given in Reference [26], does not significantly affect energy distribution even when it is applied
once per time step. Hence the filter is only acting on unresolved wavelengths and may be useful
for improving numerical stability if computations are carried out for longer periods.
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Figure 7. Time evolution of mass and energy in the computational domain when the eighth-order filter
is applied once per time step (� f = 0.4): (a) relative error on mass; and (b) relative error on total

energy (initial mass and energy are taken as references).

5. MODEL VALIDATION

In the following subsections the model’s capabilities will be evaluated by comparing its predictions
with several experimental and numerical benchmark tests. Different numerical examples have been
chosen in order to test in particular the physical validity of the extended system of Serre equations
and the adequacy of the numerical implementation of BCs.

5.1. Swash motion and shoreline movement

Numerical implementation of the moving shoreline BC is validated using Carrier and Greenspan’s
[29] analytical solution for long wave propagation over a planar beach. Dispersive terms are
switched off in order to use the analytical solution obtained for the dispersionless set of non-
linear shallow water equations. The model is tested using the same parameters as in References
[21–23], i.e. an incident sinusoidal wave with height H = 0.006 m and period T = 10 s propagat-
ing over a beach of constant slope 1:25, where the depth in the horizontal part of the channel is
h0 = 0.5 m.

The RK4 finite volume scheme theoretically allows larger time steps compared to previously
published numerical Boussinesq-type models. The computation is therefore performed using a
Courant number of 1.5 (i.e. �t/�x

√
gh0 = 1.5) and a grid size of �x = 0.05m. No spatial filtering

is used in this particular case and comparisons between computed and analytical solutions are
presented in Figure 8, where the threshold value for wet cells is fixed at htol = 10−4 m. It can be
seen that the agreement between the numerical and theoretical solutions is very good even when
using a time step which is more than three times larger than the one used in the results reported for
validating the original moving shoreline approach in Reference [21]. Only slight discrepancies arise
in vertical excursion at the shoreline but the maximum and minimum wave run-up and run-down
are very well predicted. Additionally, mass loss was almost negligible in this numerical example,
being less than 0.005% over 100 s of computation.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1423–1455
DOI: 10.1002/fld



1438 R. CIENFUEGOS, E. BARTHÉLEMY AND P. BONNETON
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Figure 8. Run-up and run-down at the shoreline. Comparison between Carrier and Greenspan’s [29]
analytical solution (−) and numerical (−−) prediction using �x = 0.05 m and �t = 0.034 s: (a) vertical

excursion at the shoreline; and (b) spatial free surface profiles at different times.

It may be concluded that the moving shoreline BC proposed by Lynett et al. [21] can be
successfully adapted to our finite volume scheme. Indeed, the numerical results compare favourably
with the ones reported by these authors, even if larger time steps are used. However it is important
to go further in the validation and test this approach in situations where dispersive terms are also
included.

The run-up and run-down of a solitary wave propagating over a planar beach of 1:19.85 slope
are used for this purpose. The model results are compared with laboratory measurements carried
out by Synolakis [30] for an incident solitary wave of relative amplitude a0/h0 = 0.28, which
broke strongly on run-up. Numerical computation is performed using a grid size �x = 0.025 m,
Cr = 1.0 and htol = 10−4 m; the still water depth at the horizontal part of the channel is fixed
at h0 = 0.25 m and a four-point filter is passed through the extrapolated region following Lynett
et al. [21]. The eddy viscosity-type breaking parameterization proposed by Cienfuegos et al. [31]
is implemented in the Boussinesq model (further details can be found in Reference [32]).

Video measurements are available for this experiment and spatial snapshots for measured and
computed free surface profiles are presented in Figure 9. As pointed out in Reference [33],
incipient breaking takes place slightly before the dimensionless time t∗ = t

√
g/h0 = 20 is reached.

Even if some slight discrepancies may be noticed, the overall agreement is quite good. Some
differences may be attributed to the lack of a friction term in the model. This phenomenon can
be important when water becomes very shallow as in the run-down stage, where the computed
water tongue is clearly thinner than the measured one. However, this example confirms that the
moving shoreline condition can provide accurate predictions even in the presence of dispersion and
breaking.
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Figure 9. Spatial snapshots of free surface elevation for Synolakis [30] breaking solitary wave run-up and
run-down experiment. a0/h0 = 0.28, h0 = 0.25m and t∗ = t

√
g/h0. (x): experimental data; (−) numerical

computation using �x = 0.025 m and �t = 0.0160 s.

5.2. Total reflection of a solitary wave at a wall

Validation of the wall BC can be performed on the basis of experimental measurement reported
by Walkley and Berzins [34]. In this experimental set-up, two different tests where solitary waves
propagate over a gentle slope of 1:50 collapsing into a vertical wall, were studied. The bathymetry
for this problem is presented in Figure 10, where, following the numerical investigation performed
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in Reference [34], at time t = 0 s computations are initialized with the solitary wave centred at
x = 50 m. The vertical wall is located in our case at x = 0.0 m and measured time series of free
surface elevation are available at x = 2.25 m. The still water depth in the horizontal part of the
channel is h0 = 0.7 m and incident solitary waves have a relative amplitude of a0/h0 = 0.10 and
0.174, respectively.

Numerical integration of the equations is conducted using the wall BC at x = 0.0m, a grid size
�x = 0.07m and Cr = 1.0 in both runs and no filter is applied. Measured and computed free surface
elevation time series are compared at the section x = 2.25m in Figure 11. The numerical results are
similar to those reported in Reference [34], where the first peak represents the incident wave and
the second one corresponds to the reflected wave. While the first peak is very well reproduced, the
second one is slightly overpredicted by the numerical model for both solitary waves. Nevertheless,
this overprediction is significantly less than the results obtained with the weakly nonlinear and
weakly dispersive finite element Boussinesq code developed in Reference [34]. Indeed, for the
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Figure 10. Bathymetric configuration for the solitary wave test (total reflection on a vertical wall)
and initial location of the soliton.

10 15 20 25 30

0

0.05

0.1

0.15

0.2

Time (s)

10 15 20 25 30

0

0.05

0.1

0.15

0.2

Time (s)

Fr
ee

 s
ur

fa
ce

 e
le

va
tio

n 
(m

)

(a) (b)

Figure 11. Comparison between measured (−) and computed (−−) free surface elevation time series
at x = 2.25 m; �x = 0.07 m and �t = 0.0267 s: (a) incident wave amplitude: a0/h0 = 0.10; and

(b) incident wave amplitude: a0/h0 = 0.174.
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incident wave of relative amplitude a0/h0 = 0.10 the maximum value of free surface elevation is
roughly overpredicted by 3% in the present computation while Walkley and Berzins [34] reported
an overprediction of 8% for this case. More importantly, for the second solitary wave of amplitude
a0/h0 = 0.174, our model overpredicts the second peak by roughly 5% while the weakly nonlinear
code produced an error of nearly 38%. Hence, error discrepancies must be attributed to the weakly
nonlinear hypothesis embedded in Boussinesq-type equations solved with the finite element model.
In our case, the slight discrepancies between measured and computed secondary peaks may be
reasonably attributed to the inviscid hypothesis used to derive Boussinesq-type equations since
there are no losses at the reflecting wall as pointed out by Walkley and Berzins [34].

The present numerical test thus validates the wall BC developed here and confirms the importance
of including the so-called full nonlinearity in Boussinesq-type equations.

5.3. Model robustness and open sea boundary condition

In this subsection the ability of the open sea BC to evacuate different wavelengths is tested.
Additionally, important properties of the model are also evaluated using a challenging numerical
test. Our aim is to investigate the stability of the model when used to compute wave propagation
phenomena over sharp bathymetries producing highly discontinuous bottom gradients.

The first example aims at exploring the influence of the source term by running the model at
rest over a non-trivial bathymetry. It may be recalled from the governing equations that the source-
like term appearing in the right-hand side of (2) contains bottom derivatives up to second order.
This non-conservative term must be well-balanced in order to ensure the stability and accuracy
of the numerical scheme (see for instance References [35–38]). The bathymetry chosen for this
first example was proposed in the working group on dam break modelling [39] to test shallow
water equation solvers. The bed configuration is presented in Figure 12(a) and represents a very
challenging geometry that is useful for testing conservative properties of discretized source terms
in numerical models. The channel length is 1500m and the still water depth in the horizontal part
is taken to be h0 = 15 m. In Figure 12(b) and (c) first and second bottom spatial derivatives are
plotted as estimated from fourth-order compact finite difference formulae [6]. It is clearly seen that
this non-trivial bathymetry produces sharp gradients and consequently the numerical capability of
the discretized source term may be studied from this example.

We perform a computation using periodic BCs and without applying the filter. Numerical
integration is carried out with �x = 3.0m and �t =0.371 s for 7500 s running the model at rest. It
is worth noting that this time step corresponds to a Courant number Cr = 1.5 in the present example
and that computation is thus carried out over more than 20 000 time steps. These numerical values
for space and time grid resolution were chosen because the RK4 finite volume model is expected to
be non-damping in this case (see Reference [1]). The free surface profile obtained at t = 7500 s is
presented in Figure 13(a), while depth-averaged velocity and flow rate at the same time coordinate
are depicted in Figure 13(b) and (c). From these figures it can be seen that, even if some small
disturbances (∼10−5 m) are visible at the free surface, the flow velocity is negligibly small over
the whole domain at the end of the computation. This result proves that the model is able to deal
with steady-state conditions and that small free surface disturbances will not be amplified when
running the model at rest. Therefore, it appears that the centred in space strategy used to discretize
the source term does not introduce any numerical unbalance in fluxes and no spurious behaviour
has been noticed even when computations are carried out for long periods over this challenging
benchmark test.
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Figure 12. Geometrical configuration with j-nodes denoted by dots: (a) bottom bathymetry and free
surface at the end of the computation; (b) numerically estimated first spatial derivative of the bottom; and

(c) numerically estimated second spatial derivative of the bottom.

In order to investigate the adequacy of the absorbing BC, an additional numerical test with
a motionless Gaussian hump with H0 = 0.10 m and s = 0.5 m as initial condition is considered.
The geometrical configuration for this example is sketched in Figure 14 where a step with height
�h = 0.4, width �L = 5 m and side slopes of 1:10 is centred in the computational domain whose
still water depth is fixed at h0 = 0.5 m in the horizontal part of the channel. At left and right
boundaries the open sea condition is applied in order to evacuate the extra volume of water
associated with the Gaussian hump.

Numerical integration of the equations is carried using �x = 0.025 m and a Courant number
of 1.5. The eighth-order implicit filter is passed over cell-averaged variables once per time step
using � f = 0.4. The numerical computation is shown in Figure 14, where it can be seen that
short waves arise as the resulting perturbations travel in both directions and enter into the deep
part of the channel. It can be seen that different wavelengths are adequately evacuated at left
and right boundaries by the open sea condition, but some small residual waves are radiated back
into the computational domain. It is worth noting that these short waves are beyond the physical
validity of the model equations. Indeed, partially reflected waves have wavelengths L ∼ 0.5–1 m,
thus h0/L ∼ 0.5–1 in this example (h0/L = 0.5 corresponds to the deep water limit). This test
shows that the absorbing BC partially reflects short wavelengths. This situation is consistent
with the approximation made when invoking the characteristic equations and can be improved by
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Figure 13. Computed results at t = 7500 s using �x = 0.3 m and �t = 0.371 s: (a) free surface, z = �;
(b) depth-averaged velocity, u; and (c) flow rate (= hu).

reducing the time step. Nevertheless, for practical purposes involving wave propagation over gently
sloping beaches, reflected waves generated by the bottom bathymetry and the moving shoreline
are expected to be of smaller amplitude and longer period than incoming waves [18, 19] because
the breaking process must dissipate most of the wave energy. If highly dispersive waves are to be
evacuated, sponge layers and internal source functions for prescribing incident wave fields should
be considered (see for instance Reference [17]). Hence, the present example is also useful for
illustrating the limitations of the open sea BC implemented.

5.4. Regular waves propagating over a submerged bar

A very important test for wave propagation models was presented by Dingemans [40] in the
framework of the MAST II G8-M project. In this work the performance of several Boussinesq-
type models was analysed by comparing numerical predictions with experimental measurements of
regular waves propagating over a submerged bar [41, 42]. The experimental set-up was conceived
to investigate the frequency dispersion characteristics and nonlinear interaction of complex wave
propagation phenomena and has become an unavoidable and challenging benchmark test for
any phase resolving numerical code. Major difficulties arise in this experimental set-up because
higher bounded harmonics, which are generated by nonlinear interaction as waves shoal in the
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Figure 14. Spatial snapshots of free surface at different times using a motionless Gaussian hump of
water as initial condition. H0 = 0.10m, s = 0.5m, �x = 0.025m, �t = 0.0169 s and passing a eighth-order

implicit filter at interior domain with � f = 0.4.

upstream slope of the bar, are freely released as they encounter a sudden increase in water depth
downslope. Thus, numerical models, which are usually derived using long wave approximations,
are not able to describe the wave kinematics of shorter waves correctly [40]. Both nonlinear and
dispersive properties embedded in the model equations contribute to the successful respresentation
of measured time series of free surface elevations as demonstrated by Gobbi and Kirby [28], thus
making this test a very demanding one.

Even though research efforts in recent years have successfully led to major improvements in
the linear dispersive characteristics and nonlinear properties of Boussinesq-type equations (see for
instance Reference [43] for a review), this has been achieved mainly by incorporating higher-order
terms, which introduce numerical complexity. An alternative way of improving model capabilities
has been recently investigated by several authors who have developed multi-layer approaches for
deriving extended Boussinesq equations, which provide a better description of short wavelengths
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without necessarily introducing very high-order derivatives but at higher computational cost
[44, 45]. Therefore, any extension of Boussinesq models to deal with highly nonlinear and ex-
tremely dispersive waves increases the CPU time. Nevertheless the aim here is to develop an
efficient numerical scheme that is able to describe wave propagation phenomena over natural
beaches, and consequently nonlinearity has been considered a more important property to en-
hance than dispersion. However, wave propagation over a submerged bar constitutes a demanding
test, which can be used in practice to evaluate the theoretical limitations of the chosen set of
Boussinesq-type equations.

Having the latter in mind, we compare the numerical predictions with the non-breaking exper-
imental data available in References [41, 42] and summarized by Dingemans [40]. Two sets of
regular waves propagating over a bar and generated in a small wave-flume are considered (cases A
and C from Reference [40]). Free surface elevation was measured at several wave gauges located
before, above and after the bar. A sketch of the bottom configuration and the location of the wave
gauges is depicted in Figure 15. The reader is referred to Dingemans [40] and Gobbi and Kirby
[28] for further information on the experimental set-up.

The first test (case A) was run for periodic waves with incident amplitude a0 = 0.01 m and
period T = 2.02 s. The absorbing-generating condition is considered at the left boundary in order
to prescribe measured time series of free surface elevation at the location x = 5.7m, just before the
toe of the bar. The remaining wave gauges located in the shoaling region, above and behind the
bar, are used to compare the model predictions with laboratory measurements. The equations are
integrated using a grid size �x = 0.04 m and a Courant number Cr = 1.5, which corresponds to a
�t = 0.303 s. The computational domain is made long enough in order to avoid any interference
with reflected waves that might be generated at the right boundary during the computation. In
Figure 16, the numerical results are compared with measured time series at the same time windows
taking care to synchronize the input data because there was a mismatch error for the wave gauge
located at x = 5.7 m, as pointed out by Gobbi and Kirby [28].

The model performs very well up to the gauge located at x = 15.7 m downslope of the bar
while, as expected from the theoretical limitations of the present Boussinesq set, some discrepancies
show up as higher harmonics are released behind the bar. Nevertheless, the agreement is still quite
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Figure 15. Bottom bathymetry for tests reported in Reference [40] and spatial location of wave gauges
(all distances in meters).
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0.0 

2.0 

4.0 

η 
(c

m
)

x = 12.50 m

0 1 2 3 4

0.0 

2.0 

4.0 

Time (s)

η 
(c

m
)

x = 14.50 m

0.0 

2.0 

4.0 
x = 17.30 m

0 1 2 3 4

0.0 

2.0 

4.0 

Time (s)

x = 21.00 m

0.0 

2.0 

4.0 

η 
(c

m
)

x = 10.50 m

0.0 

2.0 

4.0 

η 
(c

m
)

x = 13.50 m

0.0 

2.0 

4.0 
x = 15.70 m

0.0 

2.0 

4.0 
x = 19.00 m

Figure 16. Comparison of free surface elevation time series for test case A from Dingemans [40] at several
locations. a0 = 0.01 m, T = 2.02, �x = 0.04 m and �t = 0.303 s. (−): measured, (−−) computed.

reasonable and is found to be comparable to the results reported by Gobbi and Kirby [28] using
the fully nonlinear and weakly dispersive model developed by Wei et al. [46]. However, it is
worth emphasizing that in our case, time integration was performed using a Courant number of
1.5 while the numerical results reported in Reference [28] were conducted with a Courant number
that remained below 0.3 in order to ensure stability. Therefore, it is confirmed that the present
compact finite volume scheme is more efficient than the finite difference scheme used to discretize
the PDE system in Reference [28].
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Experiment C reported by Dingemans [40] is considered next. Here, incident waves have an
amplitude a0 = 0.0205 m and period T = 1.01 s. This is a far more difficult test for Boussinesq
models since the wave amplitude is twice the value prescribed before, and the incident wavelength
is nearly 2/5 shorter. As in the previous example, the incident wave field is prescribed at the left
boundary using free surface time series measured by the wave gauge located at x = 5.7 m. The
numerical model is run with �x = 0.04 m and �t = 0.303 s, i.e. a Courant number of 1.5 and the
computational domain is again made long enough to avoid residual reflection. In this example,
the dispersion parameter for incident waves is kh0 = 1.69, thus more than half the theoretical
dispersive limit for the present Boussinesq-type equations (see Section 2). This means that the
higher harmonic decomposition that takes place after the bar will rapidly generate wavelengths
that are beyond the range of validity of the model. Consequently, phase speed estimates for freely
released short waves may not be accurately reproduced.

The numerical results are reported and compared with experimental data at several locations
in Figure 17. On the shoal and above the bar crest up to gauge location x = 13.5 m, the com-
puted free surface elevation shows good agreement with the measurements. This result proves
that the Boussinesq model is able to adequately reproduce the nonlinear energy transfer, from
the leading wave component to higher harmonics, that takes place in this region. After waves
pass over the bar, higher harmonics are released as free waves, thus propagating at different
phase speeds. Discrepancies then arise between the computed and measured free surface because
dispersive properties of the Boussinesq model are not accurate enough for waves with kh0>�.
In this experiment, the second harmonic is well above this theoretical limit and the numerical
results are similar to those reported by other authors using equivalent sets of fully nonlinear and
weakly dispersive Boussinesq-type equations (e.g. the one layer model in Reference [44] and
Wei et al.’s [46] model in Reference [28]). However, the temporal and spatial grid sizes used
to integrate the equations in the aforementioned works were smaller than the ones used in the
present example.

In order to analyse further the effects of the high-order spatial filtering technique on the spectral
properties of the computed results, a wave propagation test over Dingemans [40] bathymetry is
performed. This example offers the opportunity of investigating the filter’s performance under
forced conditions, where energy is continuously added in the system. The model is run using the
second-order Stokes theory to prescribe the incident wave field, fixing a0 = 0.01m and T = 1.01 s.
As previously noted, after waves pass the bar, higher harmonics are freely released and, as in
Dingemans [40] test case C, for T = 1.01 s, the second harmonic is still beyond the range of
validity of the equations in terms of linear dispersion. To investigate the filter’s performance,
power density spectra evaluated from the numerical model at location x = 21 m are compared, by
applying the filter once per time step, once every 100 time steps and without using it. The numerical
computations are carried out with �x/h0 = 0.1 and Cr = 1.5, which should produce non-damping
solutions [1]. The results are presented in Figure 18 taking � f = 0.4 for the eighth-order filter
described in Section 4. In this plot the fundamental frequency is located at f = 1 Hz, and higher
harmonics are visible at f = 2, 3, 4, . . .Hz. It can be seen that up to the fourth harmonic there
are no noticeable differences in the power density spectra for computations performed with or
without applying the filter. It is only at the fifth harmonic that its effect can be seen. Indeed, the
small amount of energy present at f = 5 Hz is suppressed. In addition, it appears that applying
the filter once per time step or once every 100 time steps has no great influence on the overall
result. It is thus confirmed that the eighth-order filter does not act on resolved wavelengths. In
this particular example, it extracts energy from the system only at the fifth harmonic while the
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Figure 17. Comparison of free surface elevation time series for test case C from Dingemans [40] at several
locations. a0 = 0.0205 m, T = 1.01, �x = 0.04 m and �t = 0.303 s. (−): measured, (−−) computed.

physical wavelength that the model can accurately represent roughly corresponds to the second
harmonic.

5.5. Nonlinear shoaling of solitary waves propagating over a beach

In this subsection, the nonlinear shoaling characteristics of the model are investigated by comparing
the numerical results with laboratory measurements of solitary waves propagating over planar
beaches. This is an important check for the nonlinear properties of the chosen set of Boussinesq-
type equations in the framework of nearshore wave propagation because on natural beaches, waves
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Figure 18. Power density spectra for free surface time series computed at x0 = 21 m, test case C from
Dingemans [40]: (a) applying the filter once per time step (� f = 0.4); (b) applying the filter once every

100 time steps (� f = 0.4); and (c) without using the eighth-order filter.

running up gentle slopes behave in a quasi independent manner, thus showing close resemblances
to solitary waves [47]. Moreover, accurate prediction of the limiting amplitude of nearly breaking
waves is paramount in the context of morphodynamics since the location at which wave-breaking
occurs is often related to sandbar formation.

Experiments were conducted in the LEGI’s wave-flume (36 m) at Grenoble with two different
beach slope configurations of 1:30 and 1:60. In the first case, the still water depth was fixed at
h0 = 0.25m in the horizontal part of the channel, while in the second configuration, the still water
depth was h0 = 0.18 m [48]. Four solitary waves were generated for each bathymetry using a
piston wavemaker and following the experimental procedure given by Guizien and Barthélemy
[49]. Free surface displacements were measured at several wave gauges located just before breaking
using resistive probes. Measurement locations and relative wave amplitudes in the experiments
are summarized in Table I for the beach slope of 1:30 and in Table II for the planar beach with a
slope of 1:60.

Four solitary wave amplitudes were studied in order to investigate the performance of the
Boussinesq model when used to describe the shoaling of waves with different lengths. Indeed, the
smaller the solitary wave amplitude, the longer the equivalent wavelength. This is an important
test, which can illustrate the physical relevance of the extended system of Serre equations in real
world applications.

The model is initialized using Serre’s solitary wave solution [50] with the same measured
incident amplitude. For both beach configurations, the computations are carried out with a grid
size �x/h0 = 0.1 and a Courant number Cr = 1.0. The adequacy of the numerically generated
solitary wave is checked using measurements from an additional resistive probe located in the
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Table I. Location of wave gauges for solitary waves shoaling on a planar beach with slope 1:30 and
measured and computed wave amplitudes.

Incident wave amplitude: a0/h0 = 0.096
Probe location relative to the shoreline (m) 2.430 2.215 1.960 1.740 1.502
Measured wave amplitude (a/|�|) 0.368 0.415 0.495 0.582 0.725
Computed wave amplitude (a/|�|) 0.365 0.408 0.472 0.547 0.659
Relative error (%) −0.7 −1.5 −4.6 −6.0 −9.2

Incident wave amplitude: a0/h0 = 0.298
Probe location relative to the shoreline (m) 3.980 3.765 3.510 3.290 3.052
Measured wave amplitude (a/|�|) 0.631 0.699 0.766 0.843 0.940
Computed wave amplitude (a/|�|) 0.649 0.702 0.773 0.854 0.943
Relative error (%) 2.7 0.3 0.9 1.3 0.4

Incident wave amplitude: a0/h0 = 0.456
Probe location relative to the shoreline (m) 4.910 4.695 4.440 4.220 3.982
Measured wave amplitude (a/|�|) 0.724 0.800 0.852 0.921 0.983
Computed wave amplitude (a/|�|) 0.746 0.789 0.852 0.907 0.962
Relative error (%) 3.0 −1.4 0.0 −1.5 −2.1

Incident wave amplitude: a0/h0 = 0.534
Probe location relative to the shoreline (m) 5.180 4.965 4.710 4.490 4.252
Measured wave amplitude (a/|�|) 0.818 0.867 0.944 1.012 1.067
Computed wave amplitude (a/|�|) 0.807 0.861 0.920 0.986 1.063
Relative error (%) −1.3 −0.7 −2.5 −2.6 −0.4

Table II. Location of wave gauges for solitary waves shoaling on a planar beach with slope 1:60 and
measured and computed wave amplitudes.

Incident wave amplitude: a0/h0 = 0.091
Probe location relative to the shoreline (m) 4.500 4.285 4.030 3.810 3.572
Measured wave amplitude (a/|�|) 0.272 0.297 0.321 0.356 0.400
Computed wave amplitude (a/|�|) 0.275 0.295 0.324 0.352 0.392
Relative error (%) 0.8 −0.6 1.0 −1.0 −2.2

Incident wave amplitude: a0/h0 = 0.286
Probe location relative to the shoreline (m) 5.450 5.235 4.980 4.760 4.522
Measured wave amplitude (a/|�|) 0.715 0.783 0.832 0.917 1.007
Computed wave amplitude (a/|�|) 0.724 0.773 0.847 0.909 0.993
Relative error (%) 1.3 −1.4 1.9 −0.9 −1.4

Incident wave amplitude: a0/h0 = 0.479
Probe location relative to the shoreline (m) 7.950 7.735 7.480 7.260 7.022
Measured wave amplitude (a/|�|) 0.722 0.770 0.809 0.858 0.914
Computed wave amplitude (a/|�|) 0.722 0.748 0.789 0.828 0.871
Relative error (%) 0.0 −2.8 −2.5 −3.5 −4.7

Incident wave amplitude: a0/h0 = 0.558
Probe location relative to the shoreline (m) 9.150 8.935 8.680 8.460 8.222
Measured wave amplitude (a/|�|) 0.681 0.721 0.758 0.798 0.851
Computed wave amplitude (a/|�|) 0.678 0.701 0.728 0.758 0.793
Relative error (%) −0.4 −2.8 −3.9 −5.0 −6.8
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Figure 19. Time series of free surface elevation for solitary waves shoaling on a planar beach of slope 1:30
(where t∗ = t

√
g/h0). (−) Measured values, and (−−) computed using �x = 0.025m and �t = 0.0160 s.

horizontal part of the flume. Similarly, this time serie is used to synchronize the remaining probes
located in the shoaling region.

Comparisons of free surface elevations between measured and computed waves are presented
in Figures 19 and 20 for the 1:30 and 1:60 slopes, respectively. Overall agreement between
the computed and measured wave amplitudes and shapes is found to be adequate for the different
cases investigated. Larger amplitude errors occur for the incident solitary wave a0/h0 = 0.096 with
the beach slope of 1:30, and for a0/h0 = 0.558 with the 1:60 slope, thus showing the important
influence of the bottom bathymetry in terms of model performance. Nevertheless, the error is never
larger than 10% as shown in Tables I and II, and the Serre model is performing outstandingly in
predicting nonlinear shoaling even for relative amplitudes as high as a/|�| ∼ 1.0 and for both beach
slopes. This is an extremely nonlinear situation where waves are nearly breaking. It should be
recalled that the breaking criterion for horizontal bottoms based on solitary wave theory by Munk
[51], predicts a limiting amplitude of a/|�| � 0.78. This confirms then that the present experimental
test is useful for investigating the performance of the model in strongly nonlinear situations.

6. CONCLUSIONS

This paper deals with the validation of the 1D finite volume Boussinesq-type model described
in Reference [1]. BCs intended to reproduce an absorbing/generating seaward boundary and an
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impermeable vertical wall located on a sloping bottom is developed with the help of a quasi-
hyperbolic decomposition of Serre equations in characteristic directions. Similarly, the numerical
strategy for shoreline movement which consists of a linear extrapolation for fictitious dry nodes
through the wet–dry interface proposed by Lynett et al. [21] is successfully implemented in the
model. Even though the numerical approximations used to close the system of equations at the
boundary nodes reduce the formal accuracy of the scheme, several benchmark tests demonstrate
that accurate predictions of modelled water wave processes can be obtained without affecting the
stability of the high-order finite volume method. Indeed, numerical examples chosen to validate
the different BCs are conducted with large time steps using Courant numbers ranging between
1.0 and 1.5. The numerical computations performed with these high Courant numbers com-
pare favourably with the results reported in former investigations using much smaller time steps
(e.g. References [21, 28, 34]).

The experimental tests for regular waves propagating over a bar reported by Dingemans [40]
are used to check the dispersive properties of the Boussinesq-type model. The numerical results
confirm several theoretical limitations of the set of PDEs, in particular the physical range of
wavelengths that the model is able to describe. Freely released shorter wavelengths propagat-
ing after the bar are not accurately captured but the computed results appear to be in agree-
ment with those reported in References [28, 34, 44] using equivalent sets of Boussinesq-type
equations.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1423–1455
DOI: 10.1002/fld



A FOURTH-ORDER COMPACT FINITE VOLUME SCHEME 1453

Comparisons with numerical results previously reported by Walkley and Berzins [34] for total
reflection and collapsing of a highly nonlinear soliton on a vertical wall clearly confirm the
importance of including the so-called full nonlinearity in Boussinesq-type equations. Moreover,
several experimental measurements of solitary waves propagating over two different beach slopes up
to nearly breaking conditions indicate that Serre equations can accurately predict nonlinear shoaling
evolution and the associated limiting wave amplitudes. The relative error between predicted and
computed amplitudes are never larger than 10% in all test cases. This important result suggests that
this particular set of Boussinesq-type equations may be used to describe the propagation of nearly
breaking or breaking waves. A numerical computation including both, dispersion and breaking, is
performed for the run-up, breaking and run-down of an experimental solitary wave [30]. This test
confirms that the moving shoreline BC performs well even for a realistic situation; moreover, it is
a good opportunity to show that the inclusion of the wave-breaking parameterization described in
References [31, 32] allows for the extension of the model into the surf zone.

Finally, a practical and efficient way of suppressing spurious short-wave noise that can arise
as a consequence of nonlinear interaction or mismatches between discretized BCs and PDEs is
presented. The high-order implicit filtering technique developed in Reference [26] is implemented
and numerical examples demonstrate that the latter may be used to improve model stability in
practical applications without affecting the spectral resolution of physical wavelengths.
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23. Madsen PA, Sørensen OR, Schäffer HA. Surf zone dynamics simulated by a Boussinesq-type model. Part I.

Model description and cross-shore motion of regular waves. Coastal Engineering 1997; 32:255–288.
24. Bellotti G, Brocchini M. On the shoreline boundary conditions for Boussinesq-type models. International Journal

for Numerical Methods in Fluids 2001; 37:479–500.
25. Vichnevetsky R, Bowles JB. Fourier Analysis of Numerical Approximations of Hyperbolic Equations (2nd edn).

SIAM: Philadelphia, PA, 1982.
26. Gaitonde DV, Shang JS, Young JL. Practical aspects of higher-order numerical schemes for wave propagation

phenomena. International Journal for Numerical Methods in Engineering 1999; 45:1849–1869.
27. Durran DR. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (1st edn). Springer: Berlin,

1999.
28. Gobbi MF, Kirby JT. Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal

Engineering 1999; 37:57–96.
29. Carrier GF, Greenspan HP. Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics

1958; 4:97–109.
30. Synolakis CE. The runup of solitary waves. Journal of Fluid Mechanics 1987; 185:523–545.
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40. Dingemans MW. Comparison of computations with Boussinesq-like models and laboratory measurements. Report

H-1684.12, Delft Hydraulics, 1994; 32.
41. Beji S, Battjes JA. Experimental investigation of wave propagation over a bar. Coastal Engineering 1993;

19:151–162.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1423–1455
DOI: 10.1002/fld



A FOURTH-ORDER COMPACT FINITE VOLUME SCHEME 1455

42. Luth HR, Klopman G, Kitou N. Kinematics of waves breaking partially on an offshore bar; LDV measurements
of waves with and without a net onshore current. Report H-1573, Delft Hydraulics, 1994; 40.
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