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a b s t r a c t

To describe the strongly nonlinear dynamics of waves propagating in the final stages of shoaling and in
the surf and swash zones, fully nonlinear models are required. The ability of the Serre or Green Naghdi
(S–GN) equations to reproduce this nonlinear processes is reviewed. Two high-order methods for solving
S–GN equations, based on Finite Volume approaches, are presented. The first one is based on a quasi-
conservative form of the S–GN equations, and the second on a hybrid Finite Volume/Finite Difference
method.We show the ability of these two approaches to accurately simulate nonlinear shoaling, breaking
and runup processes.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Wave propagation in shallow water, and associated processes
such as wave-breaking and run-up, play an important role in
the nearshore dynamics. The classical and successful method
of describing slowly evolving wave-induced circulation in the
nearshore is based on the phase-averaged approach, in which
the depth-integrated mass and momentum equations are time-
averaged over a wave period (see [1]). However, very important
unsteady processes, such as wave run-up in the swash zone,
coastal floodingduring storms, tsunami and tidal bore propagation,
require phase-resolving models. For coastal applications, these
models are based on nonlinear shallow water equations (NSWE)
and Boussinesq-type equations (see [2]). NSWE give a good
description of the nonlinear non-dispersive transformation of
broken-waves, represented as shocks, in the inner surf and swash
zones. However, due to the absence of frequency dispersion,
the NSWE can not be applied to wave propagation before
breaking. On the other hand, Boussinesq equations incorporate
frequency dispersion and can be applied to wave shoaling, but
contrary to NSWE they do not implicitly take into account wave
breaking. Since the 1990’s, significant efforts have been devoted to

∗ Corresponding author.
E-mail address: p.bonneton@epoc.u-bordeaux1.fr (P. Bonneton).

extend the validity range of Boussinesq equations, by developing
wave breaking parametrizations and by improving dispersive
properties of these equations. Most Boussinesq models used for
nearshore applications are based on classical assumptions of weak
nonlinearity, ϵ = a/h0 ≪ 1 (a of the order of free surface
amplitude, h0 the characteristic water depth) and balance between
dispersion and nonlinearity: ϵ = O(µ) ≪ 1, whereµ = (h0/L)2 (L
the characteristic horizontal scale). However, these assumptions
may severely restrict applicability to real nearshore applications.
Indeed, in the final stages of shoaling or in the surf zone, the wave
dynamics is strongly nonlinear: ϵ = O(1). For instance, ϵ is close to
0.4 just before breaking and can be larger than 1 in the swash zone.

In 1953, a breakthrough treating nonlinearity was made by
Serre (see [3] for a review). He derived 1D fully nonlinear (ϵ =

O(1)) weakly dispersive equations for a horizontal bottom. Green
and Naghdi [4] derived 2D fully nonlinear weakly dispersive equa-
tions for an uneven bottom which represent a two-dimensional
extension of Serre equations (see [5,6]). Except for being formu-
lated in terms of the velocity vector at an arbitrary z level, the
equations of Wei et al. [7] are basically equivalent to the 2D Serre
or Green–Naghdi equations. It is now recognized that the Serre or
Green Naghdi (S–GN) equations represent the relevant system to
model highly nonlinear weakly dispersive waves propagating in
shallowwater (see [8,5]). However, much remains to be done for a
proper representation of wave breaking, and for an accurate mod-
eling of moving shorelines over strongly varying topographies.

0997-7546/$ – see front matter© 2011 Elsevier Masson SAS. All rights reserved.
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Due to facility of implementation, early Boussinesq-type mod-
els were widely relying on finite difference schemes to discretize
the equations (e.g. [9,7]). More recently, spectral approxima-
tions [10], Galerkinmethods [11], or discontinuous Galerkinmeth-
ods [12–14] have been successfully applied to KdV-type and some
Boussinesq-type models but not to S–GN equations.

Finite volume methods, which are derived on the basis of the
integral form of the conservation law, havemany advantages. They
are conservative and easily formulated to allow for unstructured
meshes. Although the finite volume method has been widely
and successfully used to solve the strictly hyperbolic NSWE (e.g.
[15,2,16]), its application to Boussinesq-type equations has only
been reported recently [17–19]. This is related to the fact that
finite volume methods essentially aim at a good representation
of advection, while methods used for Boussinesq-type equations
must also deal with third order derivatives responsible for
dispersive effects. To overcome this problem, hybrid approaches,
coupling finite volume and the finite difference methods have
been recently proposed [20–23]. The hyperbolic terms are treated
using shock-capturing methods while the dispersive terms are
discretized using the finite difference formulation. Until now, in
coastal applications, finite volume and hybrid approaches have
only been applied for weakly nonlinear forms of Boussinesq-type
equations. However, in the final stages of shoaling and in the surf
and swash zones, the effects of nonlinearity are too large to be
treated as a small perturbation. In the context of the IDAO ocean
research programme we have in the last few years investigated
applications of finite volume and hybrid methods to the fully
nonlinear weakly dispersive S–GN equations. In this paper, we
present a synthesis of this work, emphasizing the ability of S–GN
models to deal with wave transformation in the surf and swash
zones.

2. Theoretical background

According to [24,5], the 2D S–GN equations can be written in
the following non-dimensionalized form

ζt + ∇ · (hv) = 0
vt + ε(v · ∇)v + ∇ζ = −µD, (1)

where ζ (x, t) is the surface elevation, h(x, t) = 1 + ϵζ − b
the water depth, b(x) the variation of the bottom topography and
v(x, t) = (u, v) the depth averaged velocity. D characterizes non-
hydrostatic and dispersive effects and writes

D = T [h, b]vt + ε


−

1
3h

∇(h3((v · ∇)(∇ · v)

− (∇ · v)2)) + Q[h, b](v)


(2)

where the linear operator T [h, b] is defined as

T [h, b]W = −
1
3h

∇(h3
∇ · W )

+
1
2h

[∇(h2
∇b · W ) − h2

∇b∇ · W ] + ∇b∇b · W (3)

and the purely topographical term Q[h, b](v) is given by

Q[h, b](v) =
1
2h

[∇(h2(v · ∇)2b) − h2((v · ∇)(∇ · v)

− (∇ · v)2)∇b] + ((v · ∇)2b)∇b. (4)

The range of validity of this set of equations can be easily
extended to wave propagation problems in deeper waters using
the dispersion correction technique discussed in Refs. [25–28].
The frequency dispersion properties are improved by applying the

operator I + µ(α − 1)T [h, b] to the momentum equation (1) and
neglecting O(µ2) terms, which makes the term,

(α − 1)µS = −(α − 1)µT [h, b](vt + ε(v · ∇)v + ∇ζ ), (5)

appears on the right-hand side of the momentum equation (1).
The coefficient α is an adjustable parameter that must be tuned
in order to minimize the phase and group velocity errors in
comparison with the linear Stokes theory. This yields the optimal
value α = 1.159.1Inspired by Nwogu [31], it is also possible
to choose another dependent variable (such as the velocity at a
certain depth) rather than the mean velocity, as in [7,32]. This
allows for more freedom to match the Stokes linear dispersion
and/or the exact linear shoaling coefficient. However in that case
the mass conservation equation is not exact anymore, but of order
O(µ2).

It is known that the S–GN equations are mathematically well-
posed in the sense that they admit solutions over the relevant
time scale for any initial data reasonably smooth (see [33] for
the general case, and simpler proofs for one dimensional surfaces
[34,35]). Moreover, the solution of the S–GN equations provides
a good approximation of the solution of the full water waves
equations (see [24] for the general case, and [34] for one
dimensional surface waves over flat bottoms); this means that
the difference between both solutions remains of order O(µ2) as
long as the wave does not exhibit any kind of singularity such as
wave breaking. Near the breaking point, the relevance of the S–GN
equations is a completely open problem since the approximations
made to derive the non-hydrostatic and dispersive terms (2) may
diverge. Comparison of numerical simulations with experimental
data are therefore necessary to assess the validity of the S–GN
equations near wave breaking.

The nonlinear shallowwater equations (NSWE), or Saint Venant
equations, are obtainedwhen the dispersive termµD is neglected
in the S–GN equations. It is well known that these nonlinear
hyperbolic equations result in discontinuous solutions (shocks),
which can be considered as the mathematical counterparts of the
breakingwave front. Based on this idea, Hibbert and Peregrine [36]
numerically simulated the entire process of bore propagation and
runup on a constant beach slope. Kobayashi et al. [37] applied the
same approach to simulate the propagation of periodic broken-
waves in the surf zone and found good results in comparison with
laboratory data. A detailed analysis of the ability of the 1D NSWE
shock-wave model to predict cross-shore wave transformation
and energy dissipation in the inner surf zone was presented by
Bonneton [38]. For 2D problems, Peregrine [39] showed that non-
uniformities along the breaking wave front (i.e. along the shock)
due to alongshore inhomogeneities in the incident wave field
or in the local bathymetry, drive vertical vorticity. Bühler [40]
presented a general theoretical analysis of wave-driven currents
and vortex dynamics due to dissipatingwaves. From computations
and laboratory measurements, Brocchini et al. [41] and Kennedy
et al. [42] showed that breaking-wave-generated vortices are
qualitatively well described by the NSWE shock-wave theory.
Bonneton et al. [43] emphasized the importance of alongshore
inhomogeneities of breaking wave energy dissipation for wave-
induced rip current circulation. Their analysis was based on the
derivation of an equation for themean-current vorticity, where the
main driving term is related to shock-wave energy dissipation.

The description of shallow water wave dynamics in realistic
situations, i.e. over uneven bathymetries from the shoaling zone up
to the shoreline, requires the development of advanced numerical

1 The parameter used in Ref. [30] is given by α′
= (α − 1)/3, with an optimal

value α′
= 0.053.
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approaches to integrate fully nonlinear Boussinesq-type equations.
In this framework, the S–GN equations offers the quite exceptional
property of admitting closed form solutions of the solitary and
cnoidal type, bringing the opportunity to assess the accuracy and
efficiency of numerical methods.

For horizontal bottoms, the 1D S–GN equations have an exact
solitary-wave solution given by, in dimensional variables,

h(x, t) = h0 + H sech2(κ(x − ct)), (6a)

u(x, t) = c

1 −

h0

h(x, t)


, (6b)

κ =

√
3H

2h0
√
h0 + H

, (6c)

c =


g(h + H), (6d)

where h0 denotes the mean water depth and H the wave height.
This family of solutions is known as the Rayleigh solitary wave so-
lution [44]. Guizien and Barthélémy [45] experimentally checked
that solitary waves generated according to Rayleigh’s law display
very little dispersive trailing waves compared to KdV ones for in-
stance. Li et al. [46] showed numerically that the S–GN solitary
solutions are in remarkably close agreement with the exact Euler
solutions for large amplitude solitary waves.

Serre [47] showed that the S–GN equations admit also the
following family of periodic solutions (see also [48,49]),

h(x, t) = a0 + a1dn2(κ(x − ct), k), (7a)

u(x, t) = c

1 −

h0

h(x, t)


, (7b)

κ =

√
3a1

2

a0(a0 + a1)(a0 + (1 − k2)a1)

, (7c)

c =


ga0(a0 + a1)(a0 + (1 − k2)a1)

h0
, (7d)

where k ∈ [0, 1], a0 > 0, a1 > 0 are real parameters. In
Eq. (7d) dn(·, k) is a Jacobi elliptic function with elliptic modulus
k. This family of solutions constitutes an important extension of
the classic KDV cnoidal theory to strongly nonlinear and weakly
dispersive applications. It is useful to relate the parameters of
this solution to physical variables in order to compute cnoidal
waves in terms of wave height, H , wave period, T , and mean water
depth, h0. The latter is achieved by solving the following system of
equations [49],

a1 =
H
k2

(8a)

a0 = h0 − a1
E(k)
K(k)

(8b)

ω̂2
=

3π2ga1
4[a0K(k) + a1E(k)]2

(8c)

where ω̂ = 2π/T is the angular frequency, K(k) and E(k)
are the complete elliptic integrals of the first and second kinds
respectively.

As k → 1−, the family of periodic solutions limits to the two-
parameter family of solitary-wave solutions given by Eqs. (6a)–
(6d).

3. Reformulations of S–GN equations for numerical implemen-
tations

The formulation of the S–GN equations in function of conven-
tional unknowns (h, v), system (1), is not suitable for finite volume

methods. In this section, we present two other formulations which
are convenient for these numerical methods.

3.1. S–GN equations in a quasi-conservative form

In the 1D case, it is possible to show that continuity andmomen-
tum equations can be recast in a weak quasi-conservative form by
defining an auxiliary variable q which aggregates all time deriva-
tives in the momentum equations of system (1) [27]. This conve-
nient mathematical form can be written as,

ht + Fx = 0,

qt + Gx = α′µS ′, (9)

where the source term in the right hand side is related to the small
dispersive correction term presented in Section 2,

S ′
= −2ε(b − 1)bx∂x{uux + ζx}. (10)

The auxiliary variable reads,

q =


1 + µ

[
hxbx + b2x +

1
2
hbxx − hhx∂x

−


h2

3
+ α′(b − 1)2


∂xx

]
u (11)

and the functions F and G are defined as follows,

F = εhu,

G = ε


qu + ζ −

1
2
u2


− µε


1
2
b2xu

2
− hbxuux

+
1
2
h2u2

x + α′(b − 1)2[u2
x + uuxx + ζxx]


.

It is important to note that if no dispersion correction is considered
(i.e. α′

= 0) S–GN equations can be written in the form of
conservations law even if bottom variations are allowed.

In the framework of numerical modelling, the system (9) can be
conveniently integrated over control volumes.

3.2. S–GN equations in terms of the (h, hv) variables

An alternative approach proposed by Bonneton et al. [28] is to
write the S–GN equations in terms of the conservative variables
(h, hv), namely

ht + ε∇ · (hv) = 0

(hv)t + ε∇ · (hv ⊗ v) + h∇ζ = −


I + µαhT [h, b]

1
h

−1

×

[
1
α
h∇ζ + εµhQ1[h, b](v)

]
+

1
α
h∇ζ (12)

with Q1[h, b](v) = Q[h, b](v) − T [h, b]((v · ∇)v). It is worth
pointing out that this formulation does not include any third-order
derivative, allowing for easier and robust numerical computations,
especially when the wave becomes steeper. Note that the S–GN
equations with improved dispersion à la Nwogu can also be put
under a similar form [32].

This formulation is well-suited for a splitting approach with a
finite volume method for the hyperbolic part of the equations (the
left-hand side of system (12)) and finite difference method for the
dispersive part (the right-hand side of system (12)).

4. High-order compact finite volume method

In the 1D case, the quasi-conservative form (9) can be numer-
ically integrated to describe wave propagation in shallow waters.
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However, in order to extend the application of the model into the
surf zone, additional terms have to be added to the mass and mo-
mentum conservation equations. These terms aim at modelling
wave-breaking energy dissipation and bottom friction. In dimen-
sional variables, this extended system can be written in the fol-
lowing form,
ht + Fx = Dh,

qt + Gx =
1
h
Dhu −

τb

ρh
+ α′S ′, (13)

where ρ is the water density, Dh and Dhu represent breaking terms,
τb is the bed shear stress.

Breaking-induced energy dissipation mechanisms are intro-
duced through diffusive-like terms, Dh and Dhu, applied locally on
thewave front facewhere an explicit breaking criterion is required
to switch them on. Themathematical form forDh andDhu is chosen
in order to ensure that the overall mass and momentum budget is
preserved, acting only as to locally redistribute these quantities un-
der the breaker [50]. Breaking terms are thus written in the form,
Dh = ∂x(νhhx),

Dhu = ∂x(νhu(hu)x),
where νh and νhu are diffusivity functions expressed as,

νh(X) = −Kh exp

X
lr

− 1
 

X
lr

− 1


+


X
lr

− 1
2


,

νhu(X) = −Khu exp

X
lr

− 1
 

X
lr

− 1


+


X
lr

− 1
2


,

with Kh and Khu slowly varying scaling coefficients, X is a moving
horizontal coordinate attached to thewave crest and lr is the extent
over which breaking terms are active. This breaking model has
been calibrated on Ting and Kirby’s [51] regular wave experiment
and optimal parameter values suggested by Cienfuegos et al. [50]
are Kh = 2cd, Khu = 20cd and lr/d = 0.82, with c = (gd)0.5 and d
the local still water depth.

The numerical integration of the system (13) is performed using
a high-order compact finite volumemethod. A detailed description
of this model, SERR-1D, is given in Refs. [27,30]. The equations are
first integrated in space over discrete control volumes Ωi = {x ∈

[xi− 1
2
, xi+ 1

2
]},

∂

∂t

∫ x
i+ 1

2

x
i− 1

2

h dx + F(xi+ 1
2
, t) − F(xi− 1

2
, t) =

∫ x
i+ 1

2

x
i− 1

2

∂x(νhhx) dx,

(14)
∂

∂t

∫ x
i+ 1

2

x
i− 1

2

q dx + G(xi+ 1
2
, t) − G(xi− 1

2
, t)

=

∫ x
i+ 1

2

x
i− 1

2


S ′

+
1
h
∂x(νhu(hu)x) −

τb

ρh


dx, (15)

where the integral of variables h and q over control volumes must
be advanced in time. The average value of function h at time t = tn
over control volume Ωi is noted as,hn
i =

1
1x

∫ x
i+ 1

2

x
i− 1

2

h(x, tn) dx

where 1x = xi+ 1
2

− xi− 1
2
is the length of the discrete control

volumes. Hence, integrated over the whole domain, Eqs. (14) and
(15) can be expressed as,

dhn
i

dt
= −

1
1x

(F n
i+ 1

2
− F n

i− 1
2

− {νhhx}|i+ 1
2

+ {νhhx}|i− 1
2
),

dqni
dt

=Sni −
1

1x
(Gn

i+ 1
2

− Gn
i− 1

2
), for i = 1, 2, . . . ,N,

where N is the total number of control volumes used to discretize
the physical domain andSni is the discretized counterpart of the
source term in the right hand side of Eq. (15). This term is ap-
proximated through centred finite differences. The values h and
q at cell interfaces are reconstructed from cell-averaged values
using the implicit 4th order compact interpolation technique de-
scribed in Refs. [52,53]. At each time step, the velocity component
at control volume interfaces is computed numerically by inverting
Eq. (11). Time stepping is performed through a 4th order Runge–
Kutta method.

Efficient absorbing–generating boundary conditions have been
implemented in SERR-1D. They are based on the following charac-
teristic form of the S–GN equations,

dR+

dt
= −

1
3h

∂

∂x
(h2P) − gbx −

τb

ρh
along

dx
dt

= u +

gh, (16)

dR−

dt
= −

1
3h

∂

∂x
(h2P) − gbx −

τb

ρh
along

dx
dt

= u −

gh, (17)

with positive and negative Riemann variables defined respectively
as R+

= u + 2
√
gh and R−

= u − 2
√
gh. Vertical acceleration

of fluid particles, which is of order O(µ) and thus disregarded in
the nonlinear shallow water equations (NSWE), is represented by
function P in the first term of the right hand side of Eqs. (16)–(17).
This term is responsible for the loss of hyperbolicity in the S–GN
equations by introducing an horizontal dependence in the charac-
teristic plane (x, t).

It is worth noting that from a physical point of view we can
expect that time scales associated with dispersive effects would
be larger than the ones associated with nonlinearities from inter-
mediate to shallow waters. We may therefore assume that over
short distances/times, Riemann variables might be locally con-
served along characteristics. This physical argument has been used
to develop absorbing–generating boundary conditions for the nu-
merical resolution of S–GN equations [30,54].

For the moving shoreline boundary condition, the simple ex-
trapolation technique proposed by Lynett et al. [55] has been
adapted in the finite volume resolution.

SERR-1D has been extensively validated by comparisons with
non-breaking and breaking wave laboratory experiments [56,30,
50,54].

In the present paper, the capabilities of themodel are illustrated
by comparing numerical computations with breaking random
wave propagation experiments. We use measurements conducted
at the 70-m long wave tank of the Instituto Nacional de Hidraulica
(Chile), prepared with a beach of a very mild slope of 1/80 in order
to produce large surf zone extensions [57]. A random JONSWAP
type wave field (h0 = 0.52 m, fp = 0.25 Hz, Hmo = 0.17 m)
was generated by a piston wave-maker and measurements of
the free surface displacements were performed all over its length
at high spatial resolution (0.2–1 m). This experiment allows
us to test numerical models that are assumed to reproduce
nonlinear shallow water wave propagation, breaking and run-up.
The evolution of the wave energy power spectral density as the
wave field propagates over the beach is presented in Fig. 1, for
both experimental measurements and numerical results. SERR-
1D is able to simulate the complex nonlinear energy transfer
occurring in the shoaling and surf zones. In particular, it reproduces
the generation of higher frequency harmonics during shoaling
(between x = −9 m and x = 9 m), energy dissipation by
breaking in the surf zone (between x = 9 m and x = 32 m). The
numerical results also indicate that the model is able to reproduce
the energy transfer from the Jonswap spectrum band (>0.1 Hz)
to the infragravity band (<0.1 Hz). It is important to note that
the numerical model was forced with the high-pass filtered wave
signal measured 2 m away from the wave paddle without energy
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Fig. 1. Random wave transformation and breaking over a mild slope beach. The origin of the x-coordinate is at the toe of the beach slope, positive towards the shore. Solid
line: experimental data; dashed line: computed results.

content in the infragravity band. Observed differences in the
infragravity band frequencies might be attributed to differences
in the wave tank seaward boundary condition (wave paddle and
semi-enclosed basin producing partial reflection of long waves
at the wave paddle) and the effective open seaward boundary
condition used in SERR-1D (see [58]).

5. High-order hybrid finite volume/finite difference method

The formulation of S–GN equations introduced in Section 3
(Eqs. (12)) is well-suited for a splitting approach separating the
hyperbolic and the dispersive part of the equations. In this section,
we first present an efficient high-order positive preserving well-
balanced shock-capturing scheme for the hyperbolic step and then
the splitting method for solving the whole S–GN system.

5.1. NSWE shock capturing solver

We consider in this section the hyperbolic part of the S–GN
equation, stated in the dimensionalized form:

ht + ∇ · (hv) = 0 (18)
(hv)t + ∇ · (hv ⊗ v) + gh∇ζ = 0.

This system can be also regarded as a hyperbolic system of con-
servation laws with a geometrical source term controlled by the
topography variations. To simplify the algorithm presentation we
only consider the one-dimensional problem:

wt + f (w)x = S(w), (19)

where w =
t(h, hu), f (w) =

t(hu, hu2
+ 0.5gh2) and S =

t(0, −ghbx) is the source term. To perform numerical approxi-
mations of the weak solutions of this system, we use a high or-
der finite-volume approach in conservative variables, relying on
Riemann problems for hyperbolic conservative laws [59]. This ap-
proach allows accurate computation of propagating bores, with
reduced spurious effects of numerical dissipation and dispersion.

Using such an accurate scheme, we are able to handle wave break-
ing (see Section 2). Since we aim at computing the complex inter-
actions between propagatingwaves and topography (including the
preservation of motionless steady states), we also embed this ap-
proach into a well-balanced scheme.

More precisely, based on discrete finite-volume cell averaging
w̄n

i at time tn = n1t , we use the limited 4th-order MUSCL
reconstruction suggested in [60]. Considering a cell Ci, this
approach provides, for all tn, high order accuracy interpolated
quantities w̄i,l and w̄i,r , respectively at the left and right boundary
of each cell. To get a positive preserving andwell-balanced scheme,
additional faces reconstructions are introduced [61]:

b∗

i = max(bi,r , bi+1,l),

h∗

i,r = max(0, hi,r + bi,r − b∗

i ),

h∗

i+1,l = max(0, hi+1,l + bi+1,l − b∗

i ).

These new left and right values for water height are used to com-
pute auxiliary conservative faces valuesw∗

i,r and w∗

i+1,l:

w∗

i,r =


h∗

i,r
h∗

i,rui,r


, w∗

i+1,l =


h∗

i+1,l
h∗

i+1,lui+1,l


(20)

which are injected into a Riemann solver. Neglecting temporally
the time discretization, we obtain the following semi-discrete
finite-volume scheme for (19):
d
dt

w̄i(t) +
1

1x
(fi+ 1

2
(w̄i,r , w̄i+1,l, bi,r , bi+1,l)

− fi− 1
2
(w̄i−1,r , w̄i,l, bi−1,r , bi,l)) = Sc,i

where fi+ 1
2
and fi− 1

2
are the numerical flux functions based both

on a conservative flux consistent with the homogeneous NSWE is-
sued from a relaxation approach [60], and the hydrostatic recon-
struction correction to the interface fluxes [61]. Sc,i is a centered
discretization of the source term needed to achieve accuracy, con-
sistency and well-balancing properties.

The resulting finite-volume scheme provides high-order accu-
racy approximations of the weak solutions of system (19) while
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Fig. 2. (a) Free surface at various time between a half evolution period (analytical solution in solid line). (b) Shoreline location between t = 0 s and t = 3000 s.

preserving the positivity of the water-height, thanks to the relax-
ation approach developed in [60]. This last property is paramount
to ensure robust and accurate simulations of time-evolving shore-
lines [16]. In addition, the use of a well-balanced scheme leads
to accurate computations of incident waves and topography com-
plex interactions classically occurring in the surf zone [62]. It
also allows far more accurate results in situations involving tiny
oscillations near steady states. The resulting high-order positive
preserving well-balanced shock-capturing scheme was imple-
mented in the code SURF-WB [16,60].

We can observe in Fig. 2 a comparison between numerical
results and analytical solutions for a one dimensional test case.
This solution describes time oscillations of a forced flow over a
quadratic topography profile, involving a moving shoreline [63].
The free surface is always planar during the oscillations. The
computational domain is 4320m long and the topography is given
by

b(x) = 1 − h0

 x
a

2

where h0 = 10mand a = 3000mare respectively themeanwater
depth and a topography scaling parameter. The flow motion is
driven by the left boundary condition, where we impose a periodic
motion:

h(t, 0) = −
a2B2

8g2h0


8gh0

a2
cos(2


8gh0/a2t)


−

B2

4g
(21)

where B is a free parameter, set to 2 m s−1 for the simulation
shown here. Note that the shoreline location, xs, can be analytically
derived:

xs =
a2

2gh0
(−B


8gh0/a2 cos(


8gh0/a2t)) + a.

The simulation has been performed with 200 cells and the time
step is set to 0.03 s, with a first order scheme. Results are shown
first as a comparison between numerical results and analytical
NSWE solutions for the free surface elevation, at several times.
Note that the results and the solution are almost indistinguish-
able. Then we highlight the accuracy of the shoreline location pre-
diction through a comparison between analytical and numerically
predicted shoreline locations, for a period of 3000 s.

5.2. S–GN splitting solver

Eqs. (12) are solved using the following splitting method: we
decompose the solution operator S(·) associated to (12) at each
time step by the second order splitting scheme
S(1t) = S1(1t/2)S2(1t)S1(1t/2), (22)

where S1(t) is the solution operator associated with the nonlinear
shallow water equations (18), while S2(t) is the solution operator
associated with the dispersive part of the equations, namely

ht = 0,

(hV )t = −


I + αhT

1
h

−1 [
1
α
gh∇ζ + hQ1(V )

]
+

1
α
gh∇ζ .

(23)

As described previously, S1(t) is computed using a finite-
volume approach, while a finite-difference approach is used to
solve S2(t) at each time step: the spatial derivatives are discretized
using centered fourth-order formulae. Boundary conditions are
imposed using the method presented in [28]. As far as time
discretization is concerned, we choose to solve S1(t) and S2(t)
using an explicit fourth-order Runge–Kutta scheme.
To sumup, S1(t) and S2(t) are solved,within our splitting approach,
using a fourth-order scheme in space and time. However, the use
of a second-order splitting method implies that the global scheme
is of order two in time. The use of a fourth-order Runge–Kutta
scheme for S1(t) and S2(t) is however required to have a good
semi-discrete dispersion relation. A detailed description of the new
S–GN splitting solver implemented in the SURF-WB code is given
in [28].

In order to handle wave breaking, we switch from the S–GN
equations to the NSWE, locally in time and space, by skipping the
dispersive step S2(1t) when the wave is ready to break. In this
way, we only solve the hyperbolic part of the equations for the
wave fronts, and the breaking wave dissipation is represented by
the shock energy dissipation (see also [38]). To determinewhere to
suppress the dispersive step at each time step, we use the first half-
time step S1 of the time-splitting as a predictor to assess the local
energy dissipation. This dissipation is close to zero in regular wave
regions, and forms a peakwhen shocks are appearing.We can then
easily locate the eventual breaking wave fronts at each time step,
and skip the dispersive step only at the wave fronts (see [64]).

6. Validation

In this section, the capabilities of the two models, SERR1D and
SURF-WB, are evaluated by comparing numerical computations
with both analytical solutions and laboratory measurements.

In order to test the efficiency of our approaches to simulate
nonlinear waves, the propagation of a strongly non-linear cnoidal
wave solution of the S–GN equations (see relations (7d)) is
investigated. Periodic boundary conditions have beenused in order
to appreciate the propagation of the cnoidal wave over a long
period, and the computational domain length is equal to the
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Fig. 3. Propagation of a strongly nonlinear cnoidal wave (H = 0.6 m, h0 = 1 m,
T = 4 s) over a periodic domain. Solid line: solution at t = 0; dashed line: numerical
solution computed with SURF-WB at t = 15T = 60 s; doted line: still water level.
1x = 0.01 m and the Courant number is equal to 1.

Fig. 4. Discretization errors for the numerical solution of a strongly nonlinear
cnoidal wave (H = 0.6 m, h0 = 1 m, T = 4 s). Convergence error in 1x/(gh0)

1/2 at
t = 15T using a fixed 1t = 0.0032 s. black line : SERR1D, grey line: SURF-WB.

cnoidal wave-length. The initial condition is a cnoidal wave with
H = 0.6 m, h0 = 1 m and T = 4 s (see Fig. 3). Numerical and
theoretical solutions are compared at t = 15T = 60 s for different
cell sizes, while keeping 1t equal to 0.0032 s. Fig. 3 shows SURF-
WB results for the finest grid size considered (1x = 0.01 m). The
cnoidal wave solutions at t = 0 s and t = 60 s are both plotted
in this figure, but cannot be distinguished since the errors on wave
height and celerity are extremely small (relative amplitude error
of 3.1 × 10−5 and relative celerity error smaller than 5.4 × 10−3).
Convergence curves for both models are presented in Fig. 4. The
relative error Eζ on the free surface elevation is computed using
the discrete L∞ norm ‖.‖∞:

Eζ =
‖hnum − hsol‖∞

‖hsol − h0‖∞

;

where hnum are the numerical solutions and ζsol denotes the
analytical ones coming from (7d). SURF-WB gives slightly more
accurate solutions than SERR1D. The observed order of accuracy
is 2.61 for SURF-WB and 1.82 for SERR1D. For less demanding tests
in term of nonlinearity, [27] showed that the order of accuracy of
SERR1D is close to the theoretical one O(1x4).

Fig. 5. Comparisons of SERR1D predictions (−) and experimental data (+) for a
breaking solitary wave with non-dimensional initial incident amplitude a0/h0 =

0.28, on a 1:19.85 constant slope beach investigated by Synolakis [65]. t∗ =

t(g/h0)
1/2 .

Fig. 6. Comparisons of SURF-WB predictions (−) and experimental data (x) for a
breaking solitary wave with non-dimensional initial incident amplitude a0/h0 =

0.28, on a 1:19.85 constant slope beach investigated by Synolakis [65]. t∗ =

t(g/h0)
1/2 .
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Fig. 7. Tidal bore propagation in Garonne River; Mascaret project (see [29]).

In the next case, we assess the ability of our models to describe
wave runup and breaking, by comparing their numerical solutions
to laboratory experiments carried out by Synolakis [65], for an
incident solitary wave of relative amplitude a0/h0 = 0.28,
propagating and breaking over a planar beach with a slope of
1:19.85. The still water level in the horizontal part of the beach
was h0 = 0.3 m, and the simulations are performed using the grid
size 1x = 0.08 m and 1t = 0.02 s.

The comparisons between measured and computed waves are
presented in Fig. 5 for SERR1D and Fig. 6 for SURF-WB. In both
cases, we observe a good agreement between model predictions
and laboratory data for the wave shoaling, breaking, run-up and
run-down. In particular, we note the good ability of SURF-WB to
describe the formation and breaking of a backwash bore, which is
a particularly demanding test for most of Boussinesq-type models,
since it involves broken bore propagating backward.

7. Conclusion

As the waves approach the shore, the nonlinearity effects be-
come intense, especially in the final stages of shoaling and the surf
zone. To simulate such nonlinear processes in shallow water, fully
nonlinear Boussinesq-type approaches are required. The Serre or
Green Naghdi (S–GN) equations, with improved dispersion prop-
erties, represent the relevant system to model these highly non-
linear weakly dispersive waves (see [5]). Two high-order methods
for solving S–GN equations, based on Finite Volume approaches,
are presented in this article.

The first one is based on a quasi-conservative form of the S–GN
equations.Wave-breaking energy dissipation is taken into account
through a diffusive-type parametrization on both the mass con-
servation andmomentum conservation [50]. This model, SERR-1D,
has been extensively validated by multiple comparisons between
numerical simulations and physical experiments including soli-
tary waves shoaling, regular waves propagating over a submerged
bar [30] or regular wave breaking over uniform beach slopes [50].
In the present paper, new results show the ability of the model
to reproduce nonlinear energy transfer for random waves, in the
shoaling and surf zones.

We present also an alternative approach where the S–GN
equations are reformulated in terms of the conservative variables
(h, hv) (Eqs. (12)). This formulation is well-suited for a splitting
approach with a finite volume method for the hyperbolic part
of the S–GN equations (NSWE) and a finite difference method
for the dispersive part [28]. Our hyperbolic method is based
on a high-order well-balanced shock-capturing scheme [16,60].
In the present article we show that our hybrid model, SURF-
WB, accurately describes strongly nonlinear S–GN cnoidal wave
solutions. In order to handlewave breaking, we switch locally from
the S–GN equations to the hyperbolic NSWE, where the wave is

ready to break. In this way, we only solve the hyperbolic part of the
equations for the wave fronts, and the breaking wave dissipation
is represented by shock energy dissipation. We show that this
approach accurately predicts nonlinear shoaling, breaking and
runup of solitarywaves on a beach. The advantage of this approach,
in comparison with classical breaking parametrizations, is that it
is easily extended to 2DH broken-wave problems. This is crucial to
predict wave-induced circulations and macro-vortices, which are
strongly controlled by dissipation non-uniformities along broken-
wave fronts [2,43].

Further work is required to evaluate the capability of our
S–GN models to predict such 2DH flows. An another important
open problem concerns the ability of our approaches to predict
bore dynamics in a large range of Froude numbers, from ‘‘non-
breaking undular bore’’ to ‘‘breaking bore’’. The transition between
those two types of bores, which is controlled by the competition
between nonlinearity, dispersion and dissipation effects, is still
poorly understood. Recent field experiments on the dynamics of
tidal bores (see Fig. 7) will give us the opportunity to validate our
models.
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