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Abstract

In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation

of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive

a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model

can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave

models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit

relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the

simplified one-way model, with spilling wave breaking experiments and we find a good agreement.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The dominant types of breakers in natural sandy beaches
are spilling and plunging breakers (Galvin, 1968). In both
cases, immediately after the initiation of breaking a rapid
change in the wave shape occurs, in a region that has been
named the ‘‘transition region’’ (Svendsen et al., 1978).
Shoreward of this region the wave field changes more
slowly and reorganizes itself into quasi-periodic bore-like
waves. This region, which extends to the shoreline where
the run-up starts, has been termed the ‘‘inner surf zone’’
(ISZ). In this paper we consider conditions for which the
surf zone has a significant ISZ, and then beaches of
sufficiently gentle uniformly varying slopes. For these
conditions, nonlinear shallow-water (NSW) equations are a
good approximation to wave motion (e.g. Kobayashi et al.,
1989; Liu et al., 1991). Following the concept of ‘‘weak
solutions’’ (Whitham, 1974), the ISZ broken-wave solution
can be approximated by representing wavefronts as
discontinuities. The NSW weak-solution approach, exten-
sively used in hydraulics problems (Stoker, 1957; Whitham,
1974) has been successfully applied for studying single bore
e front matter r 2006 Elsevier Ltd. All rights reserved.
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propagation on a beach. For instance, one-way analytical
solutions of this phenomenon were first given by Whitham
(1958) and Ho and Meyer (1962), and numerical simula-
tions were performed by Keller et al. (1960) and Hibbert
and Peregrine (1979). On the other hand, only few
theoretical NSW-based studies have been devoted to the
dynamics of periodic broken waves in the ISZ. However,
numerical studies (e.g. Kobayashi et al., 1989, 1990; Cox,
1995; Bonneton, 2003) have shown that shock-capturing
numerical NSW models give good results in comparison
with laboratory measurements of periodic broken waves.
In the present paper, we derive a new one-way model,

based on the NSW equations, which applies to the
transformation of non-reflective periodic broken waves
on gently sloping beaches. Even if numerical solutions of
the complete NSW equations can be computed, our
simplified one-way approach is useful because it gives us
a better understanding of wave distortion and energy
dissipation in the ISZ. Moreover, this one-way approach
can be useful to provide breaking-wave parameterizations
(in particular broken-wave celerity expression) in both
time-averaged wave models and time-dependent Boussi-
nesq-type models. In this paper, we also derive a new set-up
equation based on the NSW weak-solution theory.
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This equation is interesting from a physical point of view
because, contrary to the classical approach based on
radiation stresses, it provides a simple and explicit relation
between wave set-up and energy dissipation in the surf
zone.

The paper is outlined as follows. In Section 2, we briefly
introduce the NSW weak-solution theory. From this
approach we derive both a new one-way model (Section
3) and a new wave set-up expression (Section 4). Finally in
Section 5, validity of both NSW and one-way models is
assessed from comparisons with laboratory ISZ experi-
ments.

2. Governing equations

The NSW equations with friction (also named Saint
Venant equations) are a good approximation to wave
motion in the surf zone of gently sloping beaches. The one-
dimensional NSW equations are given by

qh

qt
þ

qhu

qx
¼ 0, (1)

qhu

qt
þ

q
qx

hu2
þ

1

2
gh2

� �
¼ gh

qd

qx
�

tb
r
, (2)

where x is the horizontal coordinate, u is the depth-
averaged cross-shore velocity, h is the total water depth, d

is the bed elevation, g is the gravitational acceleration and
tb the bottom-shear stress. The wave elevation z is given by
z ¼ h� d. We use a standard bottom friction parameter-
ization: tb ¼ 1

2
rf rjuju, where f r is the friction coefficient.

Following the concept of ‘‘weak solutions’’ (Whitham,
1974), we can approximate the ISZ broken-wave solution
(Fig. 1a) by introducing a discontinuity (see Fig. 1b)
satisfying jump conditions based on mass and momentum
conservation across the shock:

�cb½h� þ ½hu� ¼ 0,

�cb½hu� þ ½hu2
þ 1

2
gh2
� ¼ 0,

where the brackets [ ] indicate a jump in the quantity and cb
is the shock velocity. A conventional notation is to use
subscript 1 and 2 for values ahead and behind the shock,
mean water level

a

Cb

H

h1h2

b

Fig. 1. Definition sketch. (a) Cross-section of a broken wave in the ISZ.

(b) Shock representation. cb is the broken-wave celerity, H the wave

height, h the water depth and subscripts 1 and 2 indicate values,

respectively, ahead and behind the shock.
respectively (see Fig. 1b). So the jump conditions may also
be written in the form

u1 � cb ¼ �
gh2

2h1
ðh2 þ h1Þ

� �1=2

, (3)

u2 � cb ¼ �
gh1

2h2
ðh2 þ h1Þ

� �1=2

. (4)

Mathematically, the composite solution, composed of
continuously differentiable parts satisfying Eqs. (1) and
(2), together with jump conditions (3), (4), can be
considered a weak solution of the NSW equations.
The energy of the NSW weak solution is not conserved

in presence of shocks. Following Stoker (1957), the energy
dissipation Db across a shock is given by
Db ¼ �½F� þ cb½E�, where E ¼ 1

2
rðhu2

þ gðz2 � d2
ÞÞ is the

energy density and F ¼ rhu ð1
2

u2 þ gzÞ is the energy flux
density. Using jump conditions (3) and (4), the broken-
wave energy dissipation can be expressed as

Db ¼
rg

4

gðh2 þ h1Þ

2h1h2

� �1=2

ðh2 � h1Þ
3 (5)

or, equivalently,

Db ¼
rg

4

jQbj

h1h2
ðh2 � h1Þ

3, (6)

where Qb ¼ h1ðu1 � cbÞ ¼ h2ðu2 � cbÞ is the volume flux
across the shock in the coordinate system moving with the
broken-wave celerity cb.
Expression (6) is often used in the coastal-engineering

literature, but generally it is introduced from an analogy
between an ISZ broken wave and a hydraulic jump (e.g. Le
Méhauté, 1962; Battjes and Janssen, 1978; Svendsen et al.,
1978, 2003). However, the hydraulic jump is a special case
of ‘‘shock wave’’ where the energy dissipation remains
constant over time. It is worthwhile to note that the
broken-wave dissipation given by Eq. (6) can be applied to
any shallow-water broken wave, even to non-saturated
breakers (H4h2 � h1, e.g. Fig. 1), and not only to
hydraulic jumps or fully developed bores.
3. A one-way broken-wave model

The motion of a single bore propagating into water at
rest on a beach has been studied for a long time. One-way
analytical solutions of this phenomenon were first given by
Whitham (1958) and Ho and Meyer (1962), and numerical
simulations were performed by Keller et al. (1960) and
Hibbert and Peregrine (1979). On the other hand, only few
studies have been devoted to the propagation of periodic
broken waves on a gently sloping beach. This is mainly due
to the fact that jump conditions at a wavefront are more
complex for periodic broken waves (velocity ahead the
wavefront, u1, is a negative unknown quantity) than for a
single bore which propagates into quiescent water (u1 ¼ 0).
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Fig. 2. Relative errors of the one-way shock velocity cbs and dissipation

Dbs compared to the exact shock velocity cb and dissipation Db, as a

function of the shock strength �. (a) ðcb � cbs Þ=cbs ; (b) ðDb �Dbs Þ=Dbs .
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In this section, we present a simplified one-way version
of the NSW model, which applies to the transformation of
non-reflective periodic broken waves on gently sloping
beaches. Even if wave reflexion in the field can be
significant, a simplified one-way approach is useful for
nearshore applications. Indeed, breaking-wave parameter-
izations in both time-averaged wave models (e.g. Svendsen
et al., 2003) and time-dependent Boussinesq-type models
(e.g. Madsen et al., 1997) are based on one-way
approaches. In particular, a key point of these parameter-
izations is the estimation of the broken-wave celerity from
a one-way model (see Bonneton, 2004).

We first consider the case of wave propagation on a
horizontal bottom. Such a situation represents an interest-
ing limiting case of wave propagation on a gently sloping
beach, even if in this case dispersive mechanisms actually
play a significant role. If the still water depth is constant,
d ¼ d0, and the friction term is discarded, the hyperbolic
system of equations (1) and (2) may be expressed by two
characteristic equations,

q
qt
þ ðu� cÞ

q
qx

� �
ðu� 2cÞ ¼ 0, (7)

where cðhÞ ¼ ðghÞ1=2. The Riemann invariants a� ¼ u� 2c

are constant along characteristic curves C� defined by
dx=dt ¼ u� c.

The weak-solution theory becomes particularly simple in
the case of problems in which the wave field has one of the
Riemann invariants constant throughout. A wave solution
corresponding to such a situation is called a ‘‘simple wave’’
(see Stoker, 1957). For instance, if a wave is propagating in
the positive x-direction into water of constant depth d0 and
constant velocity u0, a� is constant and is given by

a� ¼ u� 2c ¼ u0 � 2c0 (8)

with c0 ¼ ðgd0Þ
1=2. Consequently, the two NSW equations

reduce to a one-way equation which is either the mass
conservation equation

qh

qt
þ

qqðhÞ

qx
¼ 0 (9)

or the momentum conservation equation

qqðhÞ

qt
þ

q
qx
ðqðhÞ2=hþ 0:5gh2

Þ ¼ 0, (10)

where qðhÞ ¼ hu ¼ hðu0 � 2c0 þ 2cðhÞÞ. These two equa-
tions are equivalent provided that the wave solution is
continuous. However, when a shock is involved, this
equivalency no longer holds, because there is a jump in
a�quantity at the shock. This jump, ½a��, can be obtained
by subtracting Eq. (4) from Eq. (3). We find

½a�� ¼ � 2ðgðh1 þ h2Þ=2Þ
1=2

�
�

ð1� �2Þ1=2
� ð1þ �Þ1=2 þ ð1� �Þ1=2

 !
, ð11Þ

where � ¼ ðh2 � h1Þ=ðh2 þ h1Þ is the shock strength. La-
boratory observations of monochromatic waves on planar
beaches (e.g. Bowen et al., 1968; Svendsen et al., 1978) and
field measurements (e.g. Thornton and Guza, 1982;
Raubenheimer et al., 1996; Sénéchal et al., 2001) show
that the order of magnitude of � is about 0:3. Bonneton
(2001) has shown that for such moderate shock strength
neglecting changes in the Riemann invariant a� constitutes
a reasonable approximation, and so Eq. (8) can be applied
even at a shock.
This approximation allows the one-way Eq. (9) to be

retained and combined with the jump condition,
�cbs ½h� þ ½qðhÞ� ¼ 0, which yields the relation

cbs ¼ u0 � 2c0 þ 2g1=2 h
3=2
2 � h

3=2
1

h2 � h1
, (12)

where cbs is the one-way shock celerity. The energy
dissipation Dbs is given by Dbs ¼ �½F� þ cbs ½E�, which
leads to

Dbs ¼
r
g
ðc2 � c1Þ

3

� c22 þ 3c1c2 þ c21 þ ðu0 � 2c0Þ
ðc22 þ 4c1c2 þ c21Þ

2ðc2 þ c1Þ

� �
ð13Þ

with c1 ¼ cðh1Þ and c2 ¼ cðh2Þ. Celerity cbs and dissipation
Dbs are approximations of the exact shock celerity cb
and dissipation Db. Fig. 2 presents the relative errors
ðcb � cbs Þ=cbs and ðDb �DbsÞ=Dbs in function of the
shock strength �, assuming that ðh2 þ h1Þ=2=d0�1 and
u0 ¼ 0. This figure shows that, even if cbs and Dbs are
smaller than cb and Db, they represent good approxima-
tions when the shock is of moderate strength, as in the case
of ISZ broken waves.
Let us consider now in more detail the energy dissipation

mechanisms involved in the weak-solution theory. One
useful technique for determining weak solutions of the one-
way Eq. (9) is to apply the method of characteristics and
then eliminate the multi-valued parts by inserting shocks.
To find the appropriate location of the shock, Whitham
(1974) proposed an ingenious method called ‘‘the equal
area rule’’. The shock is located so that the regions cut off
on either side have equal areas, as in Fig. 3. This is a
consequence of mass conservation: the integral of the
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Fig. 4. Dimensionless energy dissipation Da ¼ Dbs=ðrgc0d2
0Þ of a sine

wave, as a function of time.
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discontinuous weak solution must be the same as the area
under the multi-valued solution, since both are subject to
the same conservation law. It is important to emphasize
again that the energy of the weak solution is not conserved
in the presence of shocks. Fig. 3 clearly shows that the mass
redistribution at the shock induces a decrease of the
potential energy, in accordance with the actual physical
wave-breaking process. Fig. 4 presents the time evolution
of the energy dissipation Dbs of an initial sine wave
propagating on a flat bottom. Energy dissipation starts
when the shock forms at t ¼ ts, increases up to t ’ 1:6ts
and progressively decreases. This evolution, which is due to
continuous broken-wave distortion, is different from those
of a hydraulic jump. Indeed, the hydraulic jump reaches
immediately its full strength and the energy dissipation
remains constant over time. If the present discussion of
dissipation processes remains qualitative, we will show in
Section 5 that there is also a good quantitative agreement
between theoretical and measured broken-wave energy
evolution.

Let us consider now a more realistic case where periodic
broken waves, of period T, propagate over a sloping beach.
In that case, the onshore mass transport associated with
waves propagating towards the shore is balanced by an
offshore mean flow ū (the time average operator is defined
as ð:Þ ¼ ð1=TÞ

R tþT

t
ð:Þdt). Moreover, as described in the

next section, broken-wave dissipation induced a wave set-
up z̄. So, broken waves propagate into a water depth h̄ with
a mean current ū. We can consider that for a gently sloping
beach wave reflexion is negligible. Indeed, in the ISZ the
wave energy of periodic waves progressively decreases
shoreward due to wave breaking and then wave reflexion at
the shoreline is small. So, for a gently sloping beach we can
estimate that locally a� is constant and can be evaluated
using Eq. (8), a� ¼ u� 2c ’ ū� 2cm, with cm ¼ ðgh̄Þ1=2.
Considering that u� 2c is a slow-varying function of x,
which is not dependent on time, we obtain the following
relation:

u� 2c ¼ ū� 2c̄. (14)

With this relation, the NSW equations can be reduced to a
one-way equation:

qh

qt
þ

q
qx
fhðū� 2c̄þ 2ðghÞ1=2Þg ¼ 0 (15)

with the shock condition �cbs ½h� þ ½qðhÞ� ¼ 0, which yields
the relation

cbs ¼ ū� 2c̄þ 2g1=2 h
3=2
2 � h

3=2
1

h2 � h1
. (16)

We will show in Section 5 that this one-way model,
associated with a wave set-up equation (see the next
section), gives good results for describing the nonlinear
transformation of periodic broken waves in the ISZ.
4. A wave set-up equation

Prediction of wave set-up represents an important issue
of wave modelling in the surf zone. Theoretical investiga-
tions of changes in nearshore mean sea level have been
initiated by Longuet-Higgins and Stewart (1964) on the
basis of conservation of momentum flux. The time-
averaged momentum equation provides a solution for the
mean elevation z̄:

qz̄
qx
¼ �

1

rgh̄

q ~S
qx

, (17)

where ~S is the radiation stress. Following Phillips (1977), ~S
can be expressed, under shallow-water wave approxima-
tions, as

~S ¼ rðh̄ ~u2 þ 1
2

g~z
2
þ ~z ~u2 � ~z ~u

2

=h̄Þ,

where ~z ¼ h� h̄ is the wave elevation fluctuation and ~u ¼
u� ū the wave velocity fluctuation. In the surf zone, the
wave energy decreases shoreward. The resulting changes in
radiation stress lead to the wave set-up phenomenon.
Consequently, Eq. (17) implicitly links wave energy
dissipation and wave set-up. In this section, we will show,
in the framework of NSW weak solutions, that we can
derive an equation explicitly relating wave set-up and
energy dissipation.
We consider periodic broken waves of period T. To

derive the set-up equation we develop the expression of the
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gradient qM̄=qx, where M ¼ 1
2

u2 þ gz,

T
qM̄
qx
¼

q
qx

Z tþT

t

Mdt
� �

¼
q
qx

Z t�s

t

Mdt
� �

þ
q
qx

Z tþT

tþs

Mdt

 !

¼

Z t�s

t

qM
qx

dtþ
dts

dx
Mðt�s Þ þ

Z tþT

tþs

qM
qx

dt

�
dts

dx
Mðtþs Þ, ð18Þ

where tsðxÞ is the time at which the wavefront (or the
shock) is located in x. In continuous parts of the flow, the
momentum (2) is equivalent to the following equation:

qu

qt
þ

qM
qx
¼ 0, (19)

where the friction term has been discarded. Inside intervals
½t; t�s � and ½t

þ
s ; tþ T � the wave solution is continuous and so

qM=qx in Eq. (18) can be evaluated from (19), which yields

T
qM̄
qx
¼ �

Z t�s

t

qu

qt
dt�

Z tþT

tþs

qu

qt
dt

þ
1

cb
½M� ¼

1

cb
ð½M� � cb½u�Þ.

The expression ½M� � cb½u� is computed using shock
conditions (3) and (4):

½M� � cb½u� ¼
g

4

ðh2 � h1Þ
3

h2h1
¼

Db

rjQbj
.

From this expression we find

qM̄
qx
¼

Dbm

rjQbj
,

where Dbm ¼ Db=ðcbTÞ is the mean broken-wave dissipa-
tion, and finally we obtain the new set-up equation

qz̄
qx
¼

Dbm

rgjQbj
�

1

g

q
qx

1

2
ðū2 þ ~u2Þ

� �
. (20)
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Fig. 5. Schematic view of the experimental set-up (Cox, 1995), and the compu

cross-sections are located in the ISZ: L1 (x ¼ 0m, d ¼ 0:1771m); L2 (x

d ¼ 0:0743m). The computational domain starts at x ¼ 0m, where the seawa
The main contribution for wave set-up is due to the first
term on the right-hand side of Eq. (20),

Dbm
rgjQbj

, which is
related to the broken-wave energy dissipation. This term
can also be written as

Dbm

rgjQbj
¼

1

4cbT

ðh2 � h1Þ
3

h1h2
.

Eq. (20) is interesting from a physical point of view
because, contrary to the classical theory based on radiation
stresses (Longuet-Higgins and Stewart, 1964), this equation
provides a simple and explicit relation between wave set-up
and energy dissipation. Previous studies based on the linear
wave theory (Longuet-Higgins, 1973; Dingemans et al.,
1987) already showed that the wave driving force in the
mean momentum equation can be expressed in function of
the broken-wave energy dissipation Dbm. However, to our
knowledge, the present paper is the first study which
explicitly states, from a nonlinear theory, the relation
between wave set-up and Dbm. We will show in Section 5
that Eq. (20) can represent an alternative to the classical
radiation stress method for computing wave set-up in the
surf zone.

5. Comparisons between model results and laboratory data

In this section, we will assess the ability of both the
complete NSW model and the simplified one-way model to
predict the transformation of periodic ISZ broken waves.
We present comparisons between numerical solutions and
spilling breaking experiments.
The main set of comparisons is based on an experiment

performed by Cox (1995). This experiment was carried out
in a wave flume 33m long, 0.6m wide and 1.5m deep.
Waves were generated on a horizontal bottom at a depth of
0.40m, shoaled and broke on a 1:35 planar slope. The wave
height at the wavemaker was Hw ¼ 0:115m and the wave
period T ¼ 2:2 s. Measurements of surface elevation and
velocity were taken at four locations inside the ISZ (see
Fig. 5). The velocities were measured with a two-
component laser Doppler velocimeter (LDV).
Computational domain

L4

time-average

surface elevation

3 4 5 6 7 8

x (m)

tational domain. b ¼ 1
35
, T ¼ 2:2 s and Hw ¼ 0:115m. Four measurement

¼ 1:2m, d ¼ 0:1429m); L3 (x ¼ 2:4m, d ¼ 0:1086m); L4 (x ¼ 3:6m,

rd boundary condition is given by time series of water depth at L1.
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NSW and one-way are solved with the same shock-
capturing numerical method: a TVD Mac Cormack
scheme, which has been initially developed by Yee (1987)
for solving the Navier Stokes compressible equations. The
same method has been also implemented with success by
Garcia-Navarro et al. (1992) to solve NSW equations for
flood processes and hydraulic problems. The implementa-
tion of this method for solving ISZ-wave propagation is
presented in Bonneton and Dupuis (2000) and Vincent
et al. (2001). Efficient two-dimensional numerical schemes
for the surf and swash zones can be found in Brocchini et
al. (2001), Marche and Bonneton (2006) and Marche et al.
(2006). The ability of our shock-capturing numerical
method to converge to the weak solution of the NSW
equations and then to compute the broken-wave energy
dissipation is discussed in Appendix A.

The seaward boundary condition of the two models is
given by time series of water depth measured at the first
location L1. The computational domain was discretized by
200 nodes using a grid spacing of Dx ¼ 0:04m, and the
models were run with a time step Dt ¼ 0:01 s. The spatial
and time steps corresponded, respectively, to Dx ¼ l0=72
and Dt ¼ T=220, where l0 is the wavelength at the seaward
boundary L1.

5.1. NSW model

The initial condition of no wave motion (still water)
leads to a transient period of 200 s, which is eliminated
from time series presented hereafter. Previous numerical
studies by Kobayashi et al. (1989) and Cox (1995) have
shown that ISZ predictions were not very sensitive to the
value of the friction coefficient f r, when 0:01pf rp0:05.
0.0 0.4 0.8 1.2 1.6 2.0

0.12

0.08

0.04

0.00

-0.04

E
le

v
a
ti
o
n

 (
m

)

t/T

0.0 0.4 0.8 1.2 1.6 2.0

t/T

0.12

0.08

0.04

0.00

-0.04

E
le

v
a
ti
o
n
 (

m
)

b

c d

a

Fig. 6. Time series of surface elevation in the inner surf zone. Comparison bet

(solid line). (a) L1 (x ¼ 0m, d ¼ 0:1771m); (b) L2 (x ¼ 1:2m, d ¼ 0:1429m);
In the subsequent computations we used a fixed coefficient
f r ¼ 0:015.
Fig. 6 shows computed and measured time series of

surface elevation at different locations inside the ISZ. The
NSW model reproduces the nonlinear wave distortion and
gives a good prediction of the wave height decay. The
evolution towards the sawtooth shape is accurately
computed by the model. Previous studies, using NSW
models (Kobayashi et al., 1989; Tega and Kobayashi,
2002) or Boussinesq models (Madsen et al., 1997; Ozanne
et al., 2000), showed numerical oscillations at the rear of
wavefronts. We can see in Fig. 6 that our shock-capturing
method prevents such numerical oscillations. The good
phase agreement between computed and measured time
series shows that the shock velocity cb, given by the jump
conditions (Eqs. (3) and (4)), is a good estimate of the
wavefront velocity.
To emphasize this point we present in Fig. 7 a

comparison between experimental wavefront positions
and a wavefront trajectory computed by the NSW model.
In addition, we plot in this figure trajectories computed
from two other wavefront celerity expressions. The first
one, cb1 ¼ ððgh1h2ðh1 þ h2ÞÞ=ð2h̄

2
ÞÞ
1=2, corresponds to the

classical bore model (see Svendsen et al., 1978). The second
one, cb2 ¼ 1:3ðgdÞ1=2, is an empirical expression which is
usually applied to estimate wavefront celerity (or roller
celerity) in Boussinesq models (Schäffer et al., 1993). Fig. 7
shows a very good agreement between measured wavefront
positions and NSW model results. We observe that
trajectories computed from cb1 and cb2 are close to the
measured trajectories. However, as already noticed by
Bonneton (2004), the expression cb2 slightly overestimates
the wavefront celerity and cannot be applied in the swash
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zone, and cb1 slightly underestimates the wavefront
celerity. The ability of the NSW weak solution to predict
the wavefront celerity is not limited to regular waves.
Bonneton et al. (2004) have shown that the NSW model
also gives an accurate prediction for the celerity of irregular
waves propagating over gently sloping beaches.

Fig. 8 shows the cross-shore variations of the minimum
and maximum values of wave elevation, zmin and zmax. We
observe that computed zmin and zmax are in close agreement
with measurements. Model–data comparisons from an-
other spilling breaking experiment, performed by Ting and
Kirby (1996), are presented in Fig. 9. This experiment is
similar to Cox’s experiment, with b ¼ 1

35
, T ¼ 2 s and

Hw ¼ 0:125m, but the z-measurement spatial density is
higher. Fig. 9 confirms the ability of the NSW model to
predict zmin and zmax cross-shore variations, and then the
wave height decay in the ISZ.

To go further in analysing the predictive capability of the
NSW model, the results are compared with the phase-
averaged measured horizontal velocities hv1i. The measure-
ments are limited to the regions away from the crest
because with the LDV technique it is not possible to
measure velocities in the highly aerated region near the
front of the breaker. Fig. 10 shows the vertical variations of
hv1i, measured at L3 for times t ¼ t�, t ¼ t� þ T=6,
t ¼ t� þ 2T=6, t ¼ t� þ 3T=6, t ¼ t� þ 4T=6 and
t ¼ t� þ 5T=6, where t� is the time at which the zero
upcrossing of the surface elevation occurs. The solid line
represents the vertical average of these velocity data,
um ¼ ð1=ðzm þ dÞÞ

R zm
�d
hv1idz, where zm is the highest

measurement elevation. Outside the wavefront, the wave
field is characterized by a nearly vertically uniform
horizontal velocity (see Figs. 10a, b, e, f) and we observe
that the computed depth-averaged velocity u is a good
estimate of hv1i. Conversely, the wavefront is characterized
by a strong vertical variation of hv1i (see Fig. 10c). In this
zone, u is not representative of the velocity hv1i below z ¼

zm and is much greater than um.
Fig. 11 presents the temporal variations of computed

and measured depth-averaged velocities at locations
L1–L4. This figure shows that, outside the wavefront and
particularly in the wave trough, u is a good estimate of um.
Conversely, we observe that in the wavefront, u is much
greater than um. This observation does not necessarily
challenge NSW weak solutions. Indeed, we do not compare
exactly the same quantities, since um is integrated between
z ¼ �d and z ¼ zm and u is integrated over the whole
depth. Moreover, we know from particle image velocimetry
(PIV) observations (e.g. Govender et al., 2002) that hv1i is
much greater in the front part of the wave crest ðz4zmÞ
than in the lower part. An accurate PIV determination of
the depth-averaged velocity (over the whole depth) would
be very useful to make clear the validity limits of NSW
weak solutions in the ISZ.
For regular broken waves propagating over a low-slope

beach, such as those experimentally studied by Cox (1995)
and Ting and Kirby (1996), wave reflexion is small.
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Fig. 12 presents the computed Riemann invariant
a� ¼ u� 2c, at a given time, as a function of x. This figure
shows that a� is approximately equal to ū� 2c̄, except close
to the shoreline. In accordance with the simple-wave solution
presented in Section 3, we observe small jumps in a� at
shocks (see Eq. (11)). Nevertheless, ū� 2c̄ is a good estimate
of a� in the ISZ. This result confirms the validity of the main
hypothesis on which our one-way model is based.

5.2. One-way model

One-way solutions are determined from an iterative
method, starting with h̄ ¼ dðxÞ and ū ¼ 0 at the first
iteration. Wave elevation fluctuations, ~z ¼ h� h̄, and wave
velocity fluctuations, ~u ¼ u� ū, are computed from Eqs.
(15) and (16). Then, a new estimate of ū is calculated from
the time-averaged mass conservation equation

ū ¼ �
1

h̄
~z ~u

and h̄ ¼ z̄þ d is given by the new set-up expression
(Eq. (20)) or alternatively by the classical set-up model
(Eq. (17)). The iterative method requires about five
iterations to converge to the solution.
Comparisons between one-way results and measure-

ments by Cox (1995), Fig. 13, and Ting and Kirby (1996),
Fig. 14, are presented. In these two figures, we can see that
the one-way model gives a good prediction of the wave
elevation field, and in particular the wave height decay and
the mean set-up. Contrary to the NSW model, the one-way
model slightly underestimates zmin. However, we observe in
Figs. 13 and 14 that computed zmin and zmax are globally in
agreement with measurements.
Figs. 13 and 14 also show that one-way solutions

propagate slightly slower than NSW solutions. This observa-
tion is coherent with the simple-wave hypotheses which lead
to a shock celerity cbs slightly smaller than the exact NSW
celerity cb (see Fig. 2). However, Fig. 15 shows that
trajectories computed from the one-way model are close to
the measured trajectories. In particular, the one-way model
gives a better estimation of cb than the one of the classical
bore model. Bonneton (2004) has presented a more detailed
analysis of ISZ broken-wave kinematics and proposed a cb
expression slightly more accurate than Eq. (16).
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5.3. Energy dissipation and wave set-up

We discuss now the ability of NSW and one-way
solutions to predict time-averaged wave quantities such

as potential energy, Ep ¼
1
2
rgðz� z̄Þ2, and wave set-up z̄.

Fig. 16 presents the cross-shore variation of the potential
energy Ep. This figure shows that NSW and one-way
models give good predictions of the shoreward spatial
decrease of Ep. Results presented in this paper about
broken-wave energy decay (Figs. 8, 9, 13, 14 and 16), as
well as previous numerical results by Kobayashi et al.
(1989), Cox (1995), Bonneton (2003) and Bonneton et al.
(2004), seem to indicate that the theoretical energy
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dissipation Db (Eq. (5)), or its one-way formulation Dbs

(Eq. (13)), represents good estimates of the actual energy
dissipation.

Fig. 17 presents the measured and computed variations
of the time-averaged free surface elevation z̄, for a third
spilling breaking experiment, performed by Buhr-Hansen
and Svendsen (1979). We observe in the three Figs. 8, 9 and
17 that the set-up z̄ is accurately predicted by the NSW
model. This shows that the NSW weak solution represents
an appropriate model for describing the ISZ set-up.

As shown in Figs. 13, 14 and 18, the wave set-up is also
well predicted by the one-way shock-wave model. Figure
18 shows that the new set-up equation (Eq. (20)) gives
similar results than the classical set-up equation (Eq. (17))
based on radiation stress. The new set-up equation, which
directly relies on qz̄=qx and jump characteristics (h1; h2 and
cb), can represent an useful alternative to the classical set-
up formulation.

6. Conclusion

In this paper, we have analysed the ability of the time-
dependent NSW equations to predict periodic broken-wave
transformation in the ISZ. This analysis was based on the
weak-solution theory for conservative equations, which
allows to predict global wave evolution without a detailed
description of small-scale processes located at wavefronts.
We have derived a new one-way model (Eqs. (15) and (16)),
which applies to the transformation of non-reflective
periodic broken waves on gently sloping beaches. Even if
numerical solutions of the complete NSW equations can be
computed, our simplified one-way approach is useful
because it gives us a better understanding of wave



ARTICLE IN PRESS

0.030

0.025

0.020

0.015

0.010

0.005

z
 (

m
)

0 1 2 3 4 5 6 7

x (m)

Fig. 18. Cross-shore variations of the wave set-up computed with the one-

way model. (Dashed line) new set-up expression, Eq. (20); (solid line)

classical set-up model, Eq. (17); (�) Ting and Kirby (1996) experiment.

1.5

1.0

0.5

h
/d

0

0 1

a

h
/d

0

1.5

1.0

0.5
0 1

b

1.5

1.0

0.5

h
/d

0

0 1

c

1.5

1.0

0.5

h
/d

0

x1/λ0

0 1

d

Fig. 19. Comparison between analytical one-way solution (solid line) and

numerical solution (short-dashed line) of the initial sine-wave ð�0 ¼ 0:3Þ
transformation in the moving coordinate system x1 ¼ x� c0t. Numerical

parameters: Dx=l0 ¼ 2� 10�3, Dt=ðc0l0Þ ¼ 6:4� 10�5. (a) t=ts ¼ 0; (b)

t=ts ¼ 1; (c) t=ts ¼ 1:2; (d) t=ts ¼ 2.

D
0

0.06

0.04

0.02

0.00

t/ts

0 1 2 3 4

Fig. 20. Time evolution of the dimensionless energy dissipation

Da ¼ Dbs=ðrgc0d2
0Þ. Comparison between analytical one-way solution

(solid line) and numerical solution (short-dashed line) of the initial sine-

wave (�0 ¼ 0:3) transformation. Numerical parameters: Dx=l0 ¼ 2� 10�3,

Dt=ðc0l0Þ ¼ 6:4� 10�5.

P. Bonneton / Ocean Engineering 34 (2007) 1459–1471 1469
distortion and energy dissipation in the ISZ. Moreover,
this one-way model can be useful to provide breaking-wave
parameterizations (in particular broken-wave celerity ex-
pression) in both time-averaged wave models and time-
dependent Boussinesq-type models.

In the theoretical framework of NSW weak solutions we
have also derived a new wave set-up equation (Eq. (20)).
This equation is interesting from a physical point of view
because, contrary to the classical theory based on radiation
stresses, it provides a simple and explicit relation between
wave set-up and energy dissipation. We have shown in
Section 5 that this equation can represent an alternative to
the classical radiation stress method for computing wave
set-up in the surf zone.

A detailed comparison with spilling wave-breaking
experiments has shown that both NSW and one-way
solutions compare very well with experimental data. Both
models reproduce the nonlinear wave distortion leading to
the sawtooth shape, and give a good prediction of broken-
wave celerity cb, wave height decay and time-averaged
quantities such as wave set-up.
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Appendix A. Numerical estimation of the broken-wave

energy dissipation

The objective of this Appendix is to show the ability of
our shock-capturing numerical method to converge to the
weak solution of the NSW equations and then to compute
the broken-wave energy dissipation. To do that, we present
a comparison between numerical and analytical NSW
solutions. Fig. 19 shows a comparison between the NSW
numerical solution of the initial sine-wave transformation
on a flat bottom and the one-way solution described in
Section 3. The process of wave distortion, leading to the
formation of a sawtooth shape profile, is correctly
computed by the model. Until the shock forms at t ¼ ts,
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there is no distinguishable difference between analytical
and computed solutions (see Fig. 19b). After the shock
formation (see Figs. 19c, d), we notice that the NSW
computed wavefront propagates slightly faster than the
one-way solution. This is coherent with the simple-wave
hypotheses which lead to a shock velocity cbs slightly
smaller than the exact NSW shock velocity cb (see Fig. 2a).
Fig. 20 shows that energy dissipation computed by the
shock-capturing method is in close agreement with the
analytical one-way solution.

To assess the effect of spatial resolution on wave
solution, numerical simulations performed with two
different mesh sizes are presented in Fig. 21. The two
solutions are similar, except at the wavefront where the
lower resolution provides, of course, a wider front. This
figure shows that the computed shock-wave kinematics is,
to a great extent, independent on the spatial resolution.
Time evolution of energy dissipation computed with two
different mesh sizes is presented in Fig. 22. We can see that
the energy dissipation is weakly dependent on the resolu-
tion.

In conclusion, if the spatial mesh size is sufficiently small
to describe the wavefront, the numerical solution given by
our TVD shock-capturing method is practically indepen-
dent of the spatial resolution and converges to the NSW
weak solution.
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