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The reconstruction of water wave elevation from bottom pressure measurements is an
important issue for coastal applications, but corresponds to a difficult mathematical
problem. In this paper we present the derivation of a method which allows the
elevation reconstruction of water waves in intermediate and shallow waters. From
comparisons with numerical Euler solutions and wave-tank experiments we show
that our nonlinear method provides much better results for the surface elevation
reconstruction compared to the linear transfer function approach commonly used in
coastal applications. More specifically, our method accurately reproduces the peaked
and skewed shape of nonlinear wave fields. Therefore, it is particularly relevant for
applications on extreme waves and wave-induced sediment transport.
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1. Introduction

Accurate measurements of surface waves in the coastal zone are crucial for many
applications, such as coastal flooding, navigation and offshore platform safety or
wave-induced circulation and sediment transport. Underwater pressure transducers
have long been used for measuring surface waves. The reason is that these wave
gauges are cheap, easy to deploy at the sea bottom and are much less affected by
storms, ships and vandalism than surface wave buoys (Kennedy et al. 2010). However,
the reconstruction of the wave field from bottom pressure measurements is a difficult
mathematical problem.

The hydrostatic assumption is, most of the time, relevant for describing long waves,
such as tsunamis and tides. However, as long waves propagate shoreward, nonlinear
interactions are enhanced by the water depth decrease and can lead to the formation
of dispersive shocks (e.g. Madsen, Fuhrman & Schaffer 2008; Tissier et al. 2011 and
Bonneton et al. 2015). In that case the hydrostatic assumption is no longer valid (see
Martins et al. 2017).

For wind-generated waves the commonly used practice is to recover the wave
field by means of a transfer function based on linear wave theory (e.g. Guza

† Email address for correspondence: p.bonneton@epoc.u-bordeaux1.fr
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& Thornton 1980; Bishop & Donelan 1987 and Tsai et al. 2005). This method
allows, in intermediate water depth, a satisfactory estimate of bulk wave parameters,
such as the significant wave height (Tsai et al. 2005). In shallow water the
nonlinearity effects increase and contribute to the peaked and skewed shape of
waves. A correct description of these wave properties is of paramount importance
for many coastal applications. For instance, studies on wave submersion require an
accurate characterization of the highest incoming wave crests. Furthermore, the wave
asymmetry and skewness play an important role in wave-induced sediment transport
(e.g. Dubarbier et al. 2015). For all these applications, the transfer function is no
longer suitable and a nonlinear reconstruction method is required.

In recent years, several studies have been devoted to the nonlinear reconstruction
of water wave profile from pressure measurements. For steady one-dimensional
water waves travelling at constant celerity, Deconinck, Oliveras & Vasan (2012)
and Oliveras et al. (2012) derived, from the Euler equations, a nonlinear non-local
implicit relationship between the pressure and the surface elevation. Constantin (2012)
obtained, for solitary waves, an explicit formula relating the pressure and the wave
elevation. For periodic waves, reconstruction methods were derived which required
either solving an ordinary differential equation (Clamond & Constantin 2013) or
solving an implicit functional equation (Clamond 2013). All these recent nonlinear
recovery methods hold only for steady waves propagating at a constant celerity.
Therefore, they cannot be directly applied to real ocean surface waves which are
inherently non-stationary and random. However, from their nonlinear constant-celerity
approach, Oliveras et al. (2012) obtained a heuristic approximation which can be
applied to waves that are not necessarily travelling with constant celerity.

In this paper we present the derivation of nonlinear formulas which allow the
elevation reconstruction of real surface waves in intermediate and shallow waters.
After presenting the modelling framework in § 2, we derive a weakly nonlinear fully
dispersive reconstruction formula in § 3, which is written:

ζNL = ζL −
1
g
∂t(ζL∂tζL), (1.1)

where ζL and ζNL are the linear and nonlinear elevation approximations respectively
and g the acceleration of gravity. We discuss in § 4 how to apply this nonlinear
method for practical applications where the only input data are bottom pressure time
series recorded at a given measurement point. In § 5 we show that this simple and
easy-to-use nonlinear formula provides much better reconstructions of the surface
elevation compared to the classical transfer function approach, in particular in terms
of maximum wave elevation and wave skewness.

2. Modelling framework
2.1. Notations

We denote by z the vertical variable and by X ∈ Rd the horizontal variables, with d
the surface dimension (d= 1 or 2). ∇ and 1 are the gradient and Laplace operators
with respect to the horizontal variables, and ∇X,z and 1X,z are their three-dimensional
counterparts.

We denote by ·̂ the Fourier transform in space, and by ·̃ or Ft the Fourier transform
in time, so that for a function of space and time, one has

û(t, ξ)=
1

(2π)d/2

∫
Rd

e−ix·ξu(t, X) dX and ũ(ω, X)=
1

(2π)1/2

∫
R

e−iωtu(t, X) dt.

(2.1a,b)
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We also denote by f (D) Fourier multipliers in space, and g(Dt) Fourier multipliers
in time, defined as

̂f (D)u(t, ·)(ξ)= f (ξ)û(t, ξ) and ˜g(Dt)u(·, X)(ω)= g(ω)ũ(ω, X). (2.2a,b)

2.2. Physical background
We consider three-dimensional waves propagating in intermediate and shallow water
depths. We denote z= ζ (t, X) the elevation of the free surface above the still water
level z= 0, and by z=−hb(X) the bottom elevation. We are looking for a relationship
between pressure time series measured at the bottom, Pb(t, X0), and the elevation
ζ (t, X0) at the same horizontal location X0.

In most coastal environments, the bottom elevation is a slowly varying function of X.
However, for wave modelling over large coastal areas the bottom variation can not be
neglected. By contrast, for our local reconstruction approach it is justified to neglect
the bottom variation (see § 3.4). The classical transfer function method, widely used
in coastal engineering, also relies on this assumption. In the following, the bottom
elevation is given by z=−h0, where h0 is constant. Our approach cannot be applied to
strongly varying bottoms like those related to coastal structures, except if the pressure
sensor is located several wavelength offshore the structure.

The presence of a background current, defined as the mean current in the frame of
the seabed, can affect the propagation of waves in the coastal zone. For instance, the
waves can encounter significant currents close to river mouths or tidal inlets. However,
in wave-dominated environments the background current is usually much smaller than
the phase velocity, and its effects can be neglected (see § D.1). This is the assumption
we make in the core of the paper, but we also present in appendix D an attempt to
generalize our reconstruction method in the presence of a vertically uniform horizontal
background current.

2.3. The equations of motion
We consider here an incompressible homogeneous inviscid fluid delimited above by a
free surface and below by a flat bottom. Assuming that the flow is irrotational, the
velocity field U of the fluid is given by U =∇X,zΦ, where the velocity potential Φ
satisfies the mass conservation equation

1Φ + ∂2
zΦ = 0 in Ω(t), (2.3)

where Ω(t) is the fluid domain at time t and is given by

Ω(t)= {(X, z) ∈Rd+1,−h0 < z< ζ(t, X)}. (2.4)

The fluid motion is governed by Euler’s equation, or equivalently Bernoulli’s equation
when written in terms of Φ,

∂tΦ + gz+
1
2
|∇Φ|2 +

1
2
|∂zΦ|

2
=−

1
ρ
(P− Patm), (2.5)

where ρ is the density of the fluid and Patm the (constant) atmospheric pressure. These
equations are complemented by boundary conditions. At the bottom we have

∂zΦ = 0 on z=−h0; (2.6)
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at the surface, we have the classical kinematic equation on ζ ,

∂tζ = ∂zΦ −∇ζ · ∇Φ on z= ζ , (2.7)

and the pressure continuity,

P= Patm on z= ζ . (2.8)

2.4. Dimensionless equations
Three main length scales are involved in this problem: the typical horizontal scale
L, the amplitude a of the wave and the water depth h0. We shall use several
dimensionless numbers formed with these quantities, namely,

ε=
a
h0
, µ=

h2
0

L2
, σ =

a
L
. (2.9a−c)

These parameters are respectively called nonlinearity, shallowness and steepness
parameters and are related through the identity

σ = ε
√
µ. (2.10)

The different variables and functions involved in this problem can be put in
dimensionless form using the relations

X′ =
X
L
, z′ =

z
h0
, t′ =

√
gh0

L
t, ζ ′ =

ζ

a
, Φ ′ =

h0

aL
√

gh0
Φ, P′ =

P
ρgh0

,

(2.11a−f )
where the primes are used to denote dimensionless quantities.

Omitting the primes for the sake of clarity, the fluid domain becomes, in
dimensionless form,

Ωε = {(X, z) ∈Rd+1,−1< z< εζ(t, X)}, (2.12)

and the equations (2.3)–(2.6) become

µ1Φ + ∂2
zΦ = 0 in Ωε(t), (2.13)

∂zΦ = 0 on z=−1. (2.14)

Similarly, the dimensionless Bernoulli equation is

∂tΦ +
1
ε

z+
ε

2
|∇Φ|2 +

ε

2µ
|∂zΦ|

2
=−

1
ε
(P− Patm), (2.15)

while for the kinematic equation we have

µ∂tζ = ∂zΦ − εµ∇ζ · ∇Φ on z= εζ . (2.16)

2.5. A general formula for ζ
Evaluating (2.15) at the surface z = εζ and at the bottom z = −1 respectively, and
using the notations

ψ =Φ|z=εζ Φb =Φ|z=−1, and Pb = P|z=−1, (2.17a−c)

we obtain respectively
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Recovering water wave elevation from pressure measurements 403

∂tψ + ζ +
ε

2
|∇ψ |2 −

ε

2µ
(1+ ε2µ|∇ζ |2)(∂zΦ|z=εζ )

2
= 0, (2.18)

∂tΦb −
1
ε
+
ε

2
|∇Φb|

2
=−

1
ε
(Pb − Patm). (2.19)

From these equations, we obtain the following exact expression for the surface
elevation

ζ = ζH + ∂tΦb − ∂tψ +
ε

2
(|∇Φb|

2
− |∇ψ |2)+

ε

2µ
(1+ ε2µ|∇ζ |2)(∂zΦ|z=εζ )

2, (2.20)

where ζH is the dimensionless hydrostatic reconstruction

ζH =
1
ε
(Pb − Patm − 1). (2.21)

The formula (2.20) is exact but involves quantities that cannot be expressed in terms
of the pressure measured at the bottom Pb. Our goal is to derive approximate formulas
that can be expressed as a function of the measured quantity Pb, or equivalently ζH .
In order to do so, we shall perform an asymptotic expansion of (2.20) in terms of the
steepness parameter σ , which is a small parameter for most oceanic waves.

In this paper, we consider small steepness configurations in shallow or intermediate
depth, that is

σ = ε
√
µ� 1 and ε, µ. 1. (2.22a,b)

In particular, this covers the following cases:

(i) large amplitude (ε∼ 1) waves in shallow water (µ� 1);
(ii) small amplitude (ε� 1) waves in intermediate depth (µ∼ 1).

It would be possible to generalize the non-dimensionalization as presented in Lannes
& Bonneton (2009) in order to also cover the deep water case µ� 1, but this is not
relevant for the applications we are interested in here.

3. Asymptotic reconstruction formulas
Our goal in this section is to derive approximate expressions of the exact formula

(2.20), in the small steepness regime (2.22), as a function of the measured quantity
ζH . We also derive simplified expressions in the shallow water case (µ� 1).

3.1. Linear reconstruction for the surface elevation
As shown in appendix A, the velocity potential Φ is given at first order by the linear
formula

Φ =
cosh(

√
µ(z+ 1)|D|)

cosh(
√
µ|D|)

ψ +O(σ ), (3.1)

where, we recall that ψ = Φ|z=εζ , and where we used the notations for Fourier
multipliers in space introduced in § 2.1.

Using the formula (3.1), it is possible to approximate the various terms on the right-
hand side of (2.20). In particular we get that

ε

2
(|∇Φb|

2
− |∇ψ |2)+

ε

2µ
(1+ σ 2

|∇ζ |2)(∂zΦ|z=εζ )
2
=O(σ ) (3.2)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 d
e 

Bo
rd

ea
ux

, o
n 

20
 N

ov
 2

01
7 

at
 1

5:
49

:0
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
66

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.666


404 P. Bonneton and D. Lannes

so that (2.20) gives

ζ =

(
1

cosh(
√
µ|D|)

− 1
)
∂tψ + ζH +O(σ )

=

(
1−

1
cosh(

√
µ|D|)

)
ζ + ζH +O(σ ), (3.3)

where we used (2.18) to derive the second identity. We then have

1
cosh(

√
µ|D|)

ζ = ζH +O(σ ). (3.4)

Neglecting the O(σ ) terms, we obtain the following linear reconstruction formula

ζL(t, X)= [cosh(
√
µ|D|)ζH(t, ·)](X). (3.5)

A generalization of this equation, when the pressure is measured at some point located
above the bottom, is also given in (B 5) in appendix B. We show in the next section
how to make this formula more precise by including quadratic nonlinear terms.

3.2. Quadratic reconstruction for the surface elevation
In order to include nonlinear corrections to the linear reconstruction formula (3.5), we
need a quadratic approximation of the velocity potential Φ. As shown in appendix A,
a second-order approximation of the velocity potential Φ is given by the following
formula, which is quadratic in (ζ , ψ),

Φ =
cosh(

√
µ(z+ 1)|D|)

cosh(
√
µ|D|)

(ψ − εζG0ψ)+O(σ 2), (3.6)

with
G0 =

√
µ|D| tanh(

√
µ|D|). (3.7)

We use this approximation to derive a second-order approximation of the formula
(2.20) for ζ . We show below how to approximate the different components of (2.20):

ζ = ζH + A+ B+C, (3.8)

where, A := ∂tΦb − ∂tψ , B := ε/2(|∇Φb|
2
− |∇ψ |2) and C := ε/2µ(1 + ε2µ|∇ζ |2)

(∂zΦ|z=εζ )
2.

(i) Approximation of A. From the second-order approximation of Φ given in (3.6),
one has

A=
(

1
cosh(

√
µ|D|)

− 1
)
∂tψ − ε

1
cosh(

√
µ|D|)

∂t(ζG0ψ)+O(σ 2). (3.9)

Plugging (3.6) into the kinematic equation (2.16), one also gets

G0ψ =µ∂tζ +O(
√
µσ) (3.10)

so that

A=
(

1
cosh(

√
µ|D|)

− 1
)
∂tψ − εµ

1
cosh(

√
µ|D|)

∂t(ζ ∂tζ )+O(σ 2). (3.11)
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(ii) Approximation of B. Using the first-order approximation (3.1) of Φ, one gets

B=
ε

2

∣∣∣∣ 1
cosh(

√
µ|D|)

∇ψ

∣∣∣∣2 − ε2 |∇ψ |2 +O(σ 2). (3.12)

(iii) Approximation of C. Let us first write

C :=
(

1−
1

cosh(
√
µ|D|)

)
C+

1
cosh(

√
µ|D|)

C

=

(
1−

1
cosh(

√
µ|D|)

)
C+

ε

2µ
1

cosh(
√
µ|D|)

(G0ψ)
2
+O(σ 2), (3.13)

where we used the first-order approximation (3.1) of Φ to derive the second
identity. Approximating as above G0ψ by µ∂tζ , this yields

C=
(

1−
1

cosh(
√
µ|D|)

)
C+

1
2
εµ

1
cosh(

√
µ|D|)

(∂tζ )
2
+O(σ 2). (3.14)

We deduce from the lines above that

ζ = ζH +

(
1

cosh(
√
µ|D|)

− 1
)
[∂tψ −C] + εµ

1
cosh(

√
µ|D|)

(
1
2
(∂tζ )

2
− ∂t(ζ ∂tζ )

)
+
ε

2

∣∣∣∣ 1
cosh(

√
µ|D|)

∇ψ

∣∣∣∣2 − ε2 |∇ψ |2 +O(σ 2). (3.15)

We now remark further that (2.18) can be written

∂tψ −C=−ζ −
ε

2
|∇ψ |2, (3.16)

so that we finally get

1
cosh(

√
µ|D|)

ζ = ζH − ε
1

cosh(
√
µ|D|)

[
1
2
|∇ψ |2 +µ∂t(ζ ∂tζ )−

1
2
µ(∂tζ )

2

−
1
2

cosh(
√
µ|D|)

∣∣∣∣ 1
cosh(

√
µ|D|)

∇ψ

∣∣∣∣2
]
+O(σ 2). (3.17)

Neglecting the O(σ 2) terms and multiplying by cosh(
√
µ|D|), we obtain

ζ = cosh(
√
µ|D|)ζH − ε

[
1
2
|∇ψ |2 +µ∂t(ζ ∂tζ )−

1
2
µ(∂tζ )

2

−
1
2

cosh(
√
µ|D|)

∣∣∣∣ 1
cosh(

√
µ|D|)

∇ψ

∣∣∣∣2
]
. (3.18)

In order to simplify the nonlinear terms, we need now to assume that the horizontal
dimension is equal to one (d = 1); one then has cosh(

√
µ|D|) = cosh(

√
µD). Using
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the trigonometric formula cosh(a+ b)= cosh(a) cosh(b)+ sinh(a) sinh(b), one readily
gets the following identity

cosh(
√
µD)( fg)= (cosh(

√
µD)f )(cosh(

√
µD)g)+ (sinh(

√
µD)f )(sinh(

√
µD)g),

(3.19)
from which one deduces that

cosh(
√
µ|D|)

∣∣∣∣ 1
cosh(

√
µ|D|)

∂xψ

∣∣∣∣2 = (∂xψ)
2
+ (tanh(

√
µD)∂xψ)

2

= (∂xψ)
2
−

1
µ
(G0ψ)

2. (3.20)

Approximating as above G0ψ by µ∂tζ , we deduce from (3.18) that

ζ = cosh(
√
µ|D|)ζH − εµ∂t(ζ ∂tζ ), (3.21)

and finally, up to O(ε2µ2) terms,

ζNL = ζL −
√
µσ∂t(ζL∂tζL) (horizontal dimension d= 1), (3.22)

with ζL given by linear formula (3.5). A generalization of this formula when the
pressure is measured at some distance above the bottom is provided by (B 6) in
appendix B. The new nonlinear reconstruction formula (3.22) represents the main
result of this paper. This equation can be rewritten:

ζNL = ζL −
√
µσζL∂

2
t ζL −

√
µσ(∂tζL)

2. (3.23)

The first nonlinear term on the right-hand side mainly contributes at the wave
extrema, by reducing the wave troughs and amplifying the wave crests. The second
nonlinear term strengthens the wave skewness and asymmetry. In comparison with
the linear reconstruction (3.5), the nonlinear one leads to more peaked wave crests
and flatter troughs in agreement with wave observations (see § 5).

Oliveras et al. (2012) also derived nonlinear reconstruction formulas but under the
more restrictive assumption that waves are steady and propagate at a constant celerity.
However, they also obtained a heuristic formula which can be applied to a wider range
of applications. The authors noted: ‘This formula is obtained somewhat heuristically,
and its justification rests on the fact that it agrees extremely well with both numerical
and experimental data.’ This nonlinear formula is written

ζHE =
ζL

1− σD sinh(
√
µD)ζH

(horizontal dimension d= 1), (3.24)

and its performance is compared, in § 5, to those of the nonlinear reconstruction
formulas derived in the present paper. A generalization of the nonlinear reconstruction
(3.22), in the presence of a background current, is presented in § D.1.
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Recovering water wave elevation from pressure measurements 407

3.3. Reconstruction formulas in shallow water
The shallow water regime (µ� 1, ε=O(1)) is a particular case of the small steepness
regime (σ = ε

√
µ�1) considered above. In this particular case, it is possible to derive

simpler reconstruction formulas by making a Taylor expansion with respect to µ of
the linear and nonlinear formulas (3.5) and (3.22).

Recognizing that

cosh(
√
µ|ξ |)= 1+

µ

2
|ξ |2 +O(µ2), (3.25)

we obtain the following simplification of the linear reconstruction formula (4.15),

ζSL = ζH −
µ

2
1ζH (horizontal dimension d= 1, 2); (3.26)

we refer to (B 7) in appendix B for a generalization of this formula when the pressure
is measured at some point located above the bottom. The nonlinear reconstruction
formula (3.22) gives similarly in shallow water

ζSNL = ζSL − εµ∂t(ζSL∂tζSL) (horizontal dimension d= 1) (3.27)

We refer to (B 8) for a generalization of this formula when the pressure is measured
above the bottom.

3.4. A word on the flat bottom assumption
Assume that the bottom is given in dimensionless variables by z=−1+ βb for some
function b that vanishes at the measurement point (i.e. the reference depth h0 is the
depth at rest at the measurement point), and where β as well as the bottom steepness
σb are given by

β =
ab

h0
, σb =

ab

L
, (3.28a,b)

the length ab being the scale of the amplitude of the bottom variations. With Φb, Pb,
and ζH now given by

Φb =Φ|z=−1+βb, Pb = P|z=−1+βb and ζH =
1
ε
(Pb − Patm − 1+ βb), (3.29a−c)

one readily checks that the formula (2.20) remains valid up to O(εσ 2
b ) terms.

Taking into account the bottom contribution, the quadratic formula (3.6) for the
velocity potential becomes, denoting by Φflat the formula (3.6),

Φ =Φflat + σb
sinh(
√
µz|D|)

cosh(
√
µ|D|)

∇

|D|
·

(
b

1
cosh(

√
µ|D|)

∇ψ

)
+O(σ 2, σ 2

b ) (3.30)

(see Lannes & Bonneton 2009). Proceeding as in § 3.2, the reconstruction formula
(3.22) becomes, if we include the bottom contribution,

ζNL = ζL −
√
µσ∂t(ζL∂tζL)+

√
µσb∂xb

(
1

cosh(
√
µ|D|)

∂xζ

)
+O(µσ 2, µσ 2

b ), (3.31)

(where we used the fact that b vanishes at the measurement point); note that in
shallow water, the bottom contribution simplifies into

√
µσb∂xb∂xζ .

The parameter
√
µσb being very small for many coastal applications we neglect

throughout this paper the bottom contribution; this contribution could be taken into
account for right-going waves using Proposition D1.
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408 P. Bonneton and D. Lannes

4. Reconstruction formulas for practical applications
We have derived in the preceding section new nonlinear formulas to reconstruct

the water elevation from pressure measurements. These formulas involve a Fourier
multiplier in space which requires the knowledge of ζH (or equivalently Pb) over the
whole horizontal space R2. While, for most ocean applications, ζH is only known
at one measurement point X. To overcome this limitation, we show in this section
how to replace the Fourier multiplier in space by a Fourier multiplier in time. Two
distinct approaches are considered depending on the wave type: nonlinear permanent
form waves and irregular weakly nonlinear waves.

4.1. Nonlinear permanent form wave
Permanent or quasi-permanent form waves (i.e. travelling waves) are rarely observed
in the field but they represent an essential toy model for understanding surface wave
dynamics. The assumption that the wave field is stationary in a uniformly translating
reference frame at velocity cp, significantly reduces the complexity of the nonlinear
water wave problem (e.g. Constantin 2012; Oliveras et al. 2012 or Clamond &
Constantin 2013). Under this assumption it is straightforward to replace the Fourier
multiplier in space by a Fourier multiplier in time in the linear equation (3.5):

ζL(t, X)=
[

cosh
(√

µDt

cp

)
ζH(·, X)

]
(t) (horizontal dimension d= 1). (4.1)

The linear shallow water approximation is written

ζSL = ζH −
µ

2c2
p

∂2
t ζH. (4.2)

Contrary to equations (4.15) and (3.26), which apply to two-dimensional wave fields,
it is worth noting that these two formulas are restricted to unidirectional travelling
waves.

Since the linear approximation is being estimated, we can apply the nonlinear
reconstruction formulas derived in the preceding section. This reconstruction method
requires knowing both the pressure time series at the measurement point and the
wave celerity cp.

4.2. Irregular wave
The permanent wave form assumption used in the preceding section only applies to
a limited number of academic wave cases. In the ocean, wind-generated waves (swell
and wind sea) are irregular and random and do not propagate at a constant celerity cp.
We show in this section how to replace, in the reconstruction formulas, the Fourier
multiplier in space by a Fourier multiplier in time for linear or weakly nonlinear
irregular wave fields.

4.2.1. Linear wave
To replace the Fourier multiplier in space in the linear reconstruction (3.5) by a

Fourier multiplier in time, we use the fact that ζ is a solution of the water wave
equations. Using the linear approximation (3.1) in (2.16) and (2.18), while dropping
the O(σ ) terms, we see that (ζ , ψ) solves

∂tζ −
1
√
µ

tanh(
√
µ|D|)|D|ψ = 0,

∂tψ + ζ = 0;

 (4.3)
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Recovering water wave elevation from pressure measurements 409

it follows that ζ , and therefore ζH , satisfies the equation

∂2
t ζH +

1
√
µ

tanh(
√
µ|D|)|D|ζH = 0. (4.4)

We then use the following proposition to take advantage of this equation to replace
the Fourier transform in space that appears in (3.5) by a Fourier transform in time.

PROPOSITION 1. Let λ :R→R be a C1 diffeomorphism with inverse k := λ−1. If u is
a solution to the equation

∂2
t u+ λ(|D|)2u= 0, (4.5)

and if λ(·) is odd, then, for all Fourier multiplier f (|D|) with f :R+→R, one has the
relation,

∀t, X, [ f (|D|)u(t, ·)](X)= [ f (|k(Dt)|)u(·, X)](t). (4.6)

Proof. Let us define (see Remark 1 below for the reason of this choice) the function
λ+ :R2

→R as

λ+(ξ)= λ(|ξ |) if ξ · e1 > 0 and λ+(ξ)=−λ(|ξ |) if ξ · e1 6 0, (4.7a,b)

where (e1, e2) is a unitary basis of the ξ -plane. We can rewrite (4.5) in the form

∂2
t u+ λ+(D)2u= 0. (4.8)

By taking the Fourier transform in space, one can therefore write u in the general
form

û(t, ξ)= A−(ξ) exp(iλ+(ξ)t)+ A+(ξ) exp(−iλ+(ξ)t), (4.9)

with A± determined by the initial conditions. Considering the double Fourier transform
in space and time, we have therefore

(Ft,xu)(ω, ξ)= A−(ξ)δω=λ+(ξ) + A+(ξ)δω=−λ+(ξ). (4.10)

The double Fourier transform of f (|D|)u is thus given by

(Ft,xf (|D|)u)(ω, ξ)= f (|ξ |)A−(ξ)δω=λ+(ξ) + f (|ξ |)A+(ξ)δω=−λ+(ξ). (4.11)

Now, if ω=±λ+(ξ), one has |ξ | = |k(ω)|, and therefore

(Ft,xf (|D|)u)(ω, ξ)= f (|k(ω)|)A−(ξ)δω=λ+(ξ) + f (|k(ω)|)A+(ξ)δω=−λ+(ξ). (4.12)

Inverting the double Fourier transform then yields the result.

Remark 1. Instead of (4.9), a more direct representation formula for the solution u
of (4.5) could have been

û(t, ξ)= B−(ξ) exp(iλ(|ξ |)t)+ B+(|ξ |) exp(−iλ(|ξ |)t); (4.13)

this decomposition however does not bear any simple physical signification. Take for
instance in dimension d= 1 the case where λ(|D|)= |D| so that (4.5) is simply given
by the wave equation ∂2

t u − ∂2
x u = 0. The formula (4.13) proposes a decomposition

of the solution as a sum of the solutions of the scalar equations (∂t − i|D|)u= 0 and
(∂t + i|D|)u= 0; the formula (4.9) provides a much more natural decomposition as a
sum of the solutions of the scalar equations (∂t − ∂x)u= 0 and (∂t + ∂x)u= 0, i.e. as
a sum of a left-going wave and of a right-going wave.

This leads us to the following definition: a solution u of (4.5) is called a right-going
wave if A− ≡ 0 in the representation formula (4.9).
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410 P. Bonneton and D. Lannes

Since ζH satisfies (4.4), we can use the Proposition 1 with λ given by:

λ(r)= sgn(r)
(

r tanh(
√
µr)

√
µ

)1/2

. (4.14)

This allows us to transform (3.5) into the following linear reconstruction formula,

ζL(t, X)= [cosh(
√
µk(Dt))ζH(·, X)](t) (horizontal dimension d= 1, 2). (4.15)

In the shallow water regime the linear reconstruction is written

ζSL = ζH −
µ

2
∂2

t ζH (horizontal dimension d= 1, 2). (4.16)

It is worth noting that these linear reconstructions are valid in horizontal dimension
d = 1 or 2. The formula (4.15) corresponds to the well-known transfer function
method, usually written for ocean applications in the form:

Ft(ζL)(ω, X)= cosh(
√
µk(ω))Ft(ζH)(ω, X), (4.17)

where k(ω) is given by the dispersion relation:

ω2
=

k(ω) tanh(
√
µk(ω))

√
µ

. (4.18)

4.2.2. Weakly nonlinear narrow-band wave
We consider in this section weakly nonlinear narrow-band waves such as swell

propagating in the coastal zone. To reconstruct the surface elevation of such waves
we can apply the nonlinear reconstruction (3.22) by estimating ζL with equation (4.15),
where the Fourier multiplier in space has been replaced by a Fourier multiplier in
time. However, due to nonlinear interactions, narrow-band spectra develop secondary
harmonics of the fundamental frequencies. These secondary harmonics are phase
locked, or bound, to their parent waves and travel at a celerity which is much
larger than their intrinsic (linear) phase speed. Thus, the linear dispersive relation
(4.18) strongly overestimates the wavenumber of the harmonics. Consequently, the
linear reconstruction, ζ̃L(ω, X) = cosh(

√
µk(ω))ζ̃H(ω, X), strongly overestimates the

amplitude of ζ̃L(ω, X) for the secondary harmonics. It is therefore necessary to
introduce a cutoff frequency fc between the fundamental frequencies, for which we
can apply the linear formula, and the high frequency tail:

ζ̃L(ω, X)= cosh(
√
µk(ω))ζ̃H(ω, X),

ω

2π
6 fc, (4.19a,b)

ζ̃L(ω, X)= ζ̃H(ω, X),
ω

2π
> fc. (4.20a,b)

Such a frequency decomposition is relevant for nonlinear wind-generated waves,
and especially for swells, but cannot be applied to nonlinear waves for which the
temporal spectrum is a continuous function of the frequency (e.g. solitary waves). It
is worth noting that contrary to what is generally accepted in the literature for swell
reconstruction, the need for such a cutoff is mainly due to the wave nonlinearities
rather than to pressure measurement noise.
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The linear reconstruction, ζL, being estimated we can apply the formula (3.22) to
obtain a nonlinear reconstruction of wave elevation, namely,

ζNL = ζL −
√
µσζL∂

2
t ζL −

√
µσ(∂tζL)

2. (4.21)

The nonlinearities in this formula involve quadratic interactions among the fundamental
modes which fill the elevation spectrum beyond the cutoff frequency.

The same frequency decomposition can also be applied to the heuristic reconstruction
(3.24). This equation is thus equivalent, at order O(σ ), to

ζHE ' ζL + σζLD sinh(
√
µD)ζH = ζL −

√
µσζL∂

2
t ζL, (4.22)

which is similar to our equation (4.21) if we neglect the nonlinear term
√
µσ(∂tζL)

2.
As commented in § 5.2, this term plays an important role in reproducing the wave
skewness. A generalization of the nonlinear reconstruction (4.21), in the presence of
a background current, is presented in § D.2.

4.2.3. Method implementation
The nonlinear reconstruction (4.21) is very easy to implement. Indeed, it is a

straightforward extension of the commonly used linear transfer function method.

Transfer function method

(i) One considers a measured pressure time series, Pb(t,X0), long enough to contain
several peak periods of the wave field.

(ii) The characteristic water depth, h0, corresponds to the mean water depth, which
is equal to the time average of the hydrostatic water depth

hH(t, X0)=
Pb − Patm

ρ0g
(4.23)

(this is consistent because the time average of all the approximations derived in
§ 4 have the same time average as ζH).

(iii) The dimensionless hydrostatic elevation is given by

ζH(t, X0)=
Pb − Patm − 1

ε
. (4.24)

(iv) The Fourier transform of the hydrostatic elevation, Ft(ζH)(ω, X0), is computed.
(v) Ft(ζL)(ω,X0) is calculated from (4.19a,b), where k(ω) is given by the dispersive

relation (4.18).
(vi) Finally, the linear elevation reconstruction, ζL, is obtained from an inverse Fourier

transform: ζL(t, X0)=F−1
t (Ft(ζL)).

Nonlinear reconstruction method
The only difference with the linear method is in the last step (vi). One computes

not only ζL =F−1
t (Ft(ζL)), but also two other inverse Fourier transforms:

∂tζL =F−1
t (iωFt(ζL)), (4.25)

∂2
t ζL =F−1

t (−ω2Ft(ζL)). (4.26)

Finally, we use these ζL time derivatives to compute the nonlinear elevation
reconstruction ζNL following equation (4.21).

The nonlinear reconstruction is essentially based on one direct and three inverse
Fourier transforms, which makes the method computationally cheap and thus efficient
for operational and real time coastal applications.
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FIGURE 1. (Colour online) Surface elevation reconstruction of a solitary wave, ε0 =

a0/h0 = 0.1, δm = 0. Black line: numerical solution of the Euler equations; dashed black
line: hydrostatic reconstruction ζH , equation (C 1); green line: ζSL, equation (C 8); blue line:
ζSNL, equation (C 5). τ0 = h0/cp, where cp is the solitary wave celerity.

5. Validations
In this section we assess the ability of the formulas derived in the preceding

section to reconstruct wave elevation. We compare reconstructed surface elevation
fields to numerical Euler solutions or wave-tank experiments. For the latter, the
pressure measurements were located at some distance δm above the bed. Thus, we
apply the generalized reconstructions for pressure measurements at a given δm (see
appendix B). Here we use the reconstruction formulas in their dimensional form, as
listed in appendix C.

5.1. Solitary wave
We compare the reconstruction formulas derived for nonlinear permanent form wave
(§ 4.1) to solitary wave solutions computed from the full Euler equations Dutykh &
Clamond (2014). This solitary wave test case is academic but it provides an useful
evaluation of the nonlinear performance of reconstruction formulas (C 5) and (C 9) (see
also Oliveras et al. 2012). Two solitary wave solutions are considered: ε0= 0.1 (weak
nonlinearity) and ε0 = 0.4 (significant nonlinearity), where ε0 = a0/h0 and a0 is the
amplitude of the solitary wave. Both solutions are characterized by small shallowness
parameters: µ= 0.068 and µ= 0.25 respectively. For such weakly dispersive waves it
is natural to apply the shallow water reconstructions.

Figure 1 presents a comparison between the Euler solitary wave elevation for ε0 =

0.1, and the shallow water reconstructions (C 1), (C 8) and (C 5). We can note that
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FIGURE 2. (Colour online) Surface elevation reconstruction of a solitary wave, ε0 =

a0/h0 = 0.4, δm = 0. Black line: numerical solution of the Euler equations; dashed black
line: hydrostatic reconstruction ζH , equation (C 1); green line: ζSL, equation (C 8); blue line:
ζSNL, equation (C 5). τ0 = h0/cp, where cp is the solitary wave celerity.

the hydrostatic reconstruction (C 1) significantly underestimates the maximum wave
elevation. For this weakly nonlinear long wave the linear shallow water reconstruction
(C 8) gives good results although the maximum elevation is slightly underestimated.
By taking into account the nonlinear effects the reconstruction (C 5) gives an excellent
agreement with the Euler solution. For a high amplitude solitary wave (ε0 = 0.4) the
linear reconstruction fails to reproduce the elevation profile (see figure 2). By contrast
the nonlinear shallow water reconstruction (C 5) agrees well with the Euler solution.
The fully non-dispersive reconstruction (C 4) is not plotted because it gives similar
results to the nonlinear shallow water reconstruction (C 5). Figure 3 shows that the
nonlinear heuristic reconstruction (C 9) proposed by Oliveras et al. (2012) gives a
good estimate of the maximum wave elevation. However, contrary to the nonlinear
shallow water reconstruction (C 5) the heuristic formula leads to wave solutions which
are significantly less peaked than the Euler solutions.

To quantify this observation we have computed the normalized root mean square
error (RMSE) of the reconstruction formulas (see table 1), applied to solitary waves
of different intensities (ε0 ranging from 0.1 to 0.6). This error is defined by

RMSE=
(
〈(ζR − ζ )

2
〉

〈ζ − 〈ζ 〉〉2

)1/2

, (5.1)

where ζR is a reconstructed wave elevation and 〈.〉 = (1/(t2 − t1))
∫ t2

t1
(.) dt, with t1 =

−5τ1, t2= 5τ1, τ1= τ0/
√
ε0 is the characteristic solitary wave duration and τ0= h0/cp.
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FIGURE 3. (Colour online) Surface elevation reconstruction of a solitary wave, ε0 =

a0/h0 = 0.4, δm = 0. Black line: numerical solution of the Euler equations; dashed black
line: hydrostatic reconstruction ζH , equation (C 1); cyan line: ζL, equation (C 7); magenta
line: heuristic formula, ζHE, equation (C 9). τ0 = h0/cp, where cp is the solitary wave
celerity.

ζH ζSL ζL ζSNL ζNL ζHE

(C 1) (C 8) (C 7) (C 5) (C 4) (C 9)

ε0 = 0.1 6.6 1.2 1.0 2.5× 10−4 1.9× 10−3 1.0
ε0 = 0.2 12.4 4.0 3.6 0.5 1.0 2.8
ε0 = 0.3 17.7 7.5 6.9 1.6 2.6 5.1
ε0 = 0.4 22.5 11.4 10.5 3.5 4.9 7.8
ε0 = 0.5 27.2 15.4 14.5 6.2 8.2 10.8
ε0 = 0.6 31.6 19.5 18.5 9.5 12.3 14.1

TABLE 1. Normalized root mean square errors, RMSE, of the reconstruction formulas
applied to solitary waves of different intensities.

Table 1 shows, as a matter of course, that the RMSE is an increasing function of
ε0. We can see that the nonlinear formulas (C 5), (C 4), (C 9) significantly improve
the reconstructed solution in comparison with linear reconstructions. However, our
nonlinear formulas (C 5) and (C 4) give better results than the heuristic formula (C 9),
especially for low ε0.

A comparison of the surface elevation energy density spectra, E( f ), computed from
the reconstruction formulas for ε0 = 0.4, is presented in figure 4. The shallow water
linear formula (C 8) properly reconstructs E( f ) at low frequencies but underestimates
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FIGURE 4. (Colour online) Surface elevation energy density spectra, E( f ), as a function of
the dimensionless frequency τ0f , for a solitary wave, ε0 = a0/h0 = 0.4, δm = 0. Black line:
numerical solution of the Euler equations; dashed black line: hydrostatic reconstruction ζH ,
equation (C 1); green line: ζSL, equation (C 8); blue line: ζSNL, equation (C 5); magenta line:
heuristic formula, ζHE, equation (C 9). τ0 = h0/cp, where cp is the solitary wave celerity.

it at high frequencies. The heuristic reconstruction (C 9) overestimates E( f ) at low
frequencies (and thus also overestimates the mean elevation) and underestimates it at
high frequencies. By contrast, our new nonlinear formula (C 5) gives good results over
the whole range of frequencies.

5.2. Bichromatic wave
The ability of our formulas to reconstruct non-permanent form waves is assessed with
respect to a bichromatic wave field propagating over a gently sloping movable bed.
This laboratory dataset is presented in Michallet et al. (2017). The two frequencies
composing the wave-board motion were f1 = 0.5515 Hz and f2 = 0.6250 Hz, and the
amplitude of the two wave components were identical with a value of 0.03 m. The
still water depth at the wave maker was 0.566 m. Wave elevation and bottom pressure
were synchronously measured in the shoaling zone at 18.5 m from the wave maker,
corresponding to a still water depth of h0 = 0.326 m (µ= 0.53). The pressure sensor
was located at δm = 0.5 cm above the bed.

Figure 5 presents a comparison between shallow water reconstructions and direct
elevation measurements. The linear shallow water reconstruction (C 12) strongly
underestimates the measured elevation especially for the highest waves of the wave
group. The nonlinear reconstruction (C 5) improves the results but still significantly
underestimates the maximum wave elevation. These discrepancies do not question our
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FIGURE 5. (Colour online) Surface elevation reconstruction of bichromatic waves, f1 =

0.5515 Hz, f2 = 0.6250 Hz (Tm = (( f1 + f2)/2)−1), h0 = 0.326 m and δm = 0.5 cm. Black
line: direct measurement of ζ ; dashed black line: hydrostatic reconstruction ζH , equation
(C 1); green line: ζSL, equation (C 12); blue line: ζSNL, equation (C 5).

nonlinear reconstruction approach but show the limitation of shallow water methods
for describing a wave field with such a high value of the shallowness parameter
(µ = 0.53). To properly reconstruct the surface elevation of such dispersive waves a
fully dispersive approach is required. The frequency cutoff fc, introduced in § 4.2.2,
is set to a value of 1.5 Hz. The bichromatic wave field is much better described by
the fully dispersive linear reconstruction (C 10) (see figure 6, cyan line) than by the
shallow water linear reconstruction (C 12) (figure 5, green line). In figure 6 we can
see that the fully dispersive linear formula (C 10) gives excellent results for the lowest
waves of the wave group but significantly underestimates the elevation at the crest
of the highest waves. By contrast our nonlinear formula (C 4) gives excellent results
even for the highest waves. Figure 7 presents a zoom of the preceding figure on the
highest wave of the wave group. In this figure we show that the linear reconstruction
fails to reproduce the maximum elevation and above all the skewed shape of this
nonlinear wave. By contrast the nonlinear formula (C 4) gives excellent results for
both the maximum elevation and the horizontal asymmetry (or wave skewness).
Figure 8 shows that the heuristic formula (C 13) gives good results for the maximum
wave elevation but fails to describe the wave skewness. Indeed this wave property is
largely controlled in our nonlinear reconstruction (C 4) by the term

√
µσ(∂tζL)

2 which
is missing in the heuristic formula (see (4.22)). In order to quantify the horizontal
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FIGURE 6. (Colour online) Surface elevation reconstruction of bichromatic waves, f1 =

0.5515 Hz, f2 = 0.6250 Hz (Tm = (( f1 + f2)/2)−1), h0 = 0.326 m and δm = 0.5 cm.
Cutoff frequency fc = 1.5 Hz. Black line: direct measurement of ζ ; dashed black line:
hydrostatic reconstruction ζH , equation (C 1); cyan line: ζL, equation (C 10); red line: ζNL,
equation (C 4).

asymmetry of the highest wave we have computed the skewness parameter:

Sk =
〈(ζ − 〈ζ 〉)3〉

〈(ζ − 〈ζ 〉)2〉3/2
, (5.2)

where 〈.〉 = 1/(t2 − t1)
∫ t1

t2
(.) dt, t1 and t2 being the times of passage of the wave

troughs surrounding the highest crest. This parameter is equal to zero for a sinusoidal
wave. Table 2 shows that the linear reconstruction strongly underestimates, by 25 %,
the wave skewness. The nonlinear reconstructions significantly improve the results
with an error of 11 % for the heuristic formula and only 3 % for the formula (C 4).

Figures 9 and 10 show a comparison between the measured surface elevation energy
density spectrum and the spectra obtained from reconstruction formulas. We can see
in figure 9 that the linear (C 10) and nonlinear (C 4) reconstructions properly describe
the elevation energy around the first (i.e. fundamental) and second harmonics. For f >
fc, the nonlinear reconstruction (C 4) is able to accurately fill the energy around the
third and fourth harmonics. By contrast, the nonlinear heuristic formula (C 13) gives
a good prediction for the first and second harmonics but significantly underestimates
the energy for the higher harmonics.

6. Conclusion
We have derived a weakly nonlinear fully dispersive reconstruction formula,

equation (3.22), which allows the elevation reconstruction of ocean waves in

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 d
e 

Bo
rd

ea
ux

, o
n 

20
 N

ov
 2

01
7 

at
 1

5:
49

:0
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
66

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.666


418 P. Bonneton and D. Lannes

–0.10

–0.05

0

0.05

0.10

0.15

0.20

 0.25

3.53.4 3.6 3.7 3.8 3.9 4.0 4.1 4.34.2

FIGURE 7. (Colour online) Surface elevation reconstruction of bichromatic waves, f1 =

0.5515 Hz, f2 = 0.6250 Hz (Tm = (( f1 + f2)/2)−1), h0 = 0.326 m and δm = 0.5 cm; zoom
on the highest wave of the wave group. Cutoff frequency fc = 1.5 Hz. Black line: direct
measurement of ζ ; dashed black line: hydrostatic reconstruction ζH , equation (C 1); cyan
line: ζL, equation (C 10); red line: ζNL, equation (C 4).

Measurements ζL, (C 10) ζHE, (C 13) ζNL, (C 4)

Sk 0.93 0.70 0.83 0.96
Sk error — 25 % 11 % 3 %

TABLE 2. Sea surface skewness. Comparison between between reconstructed elevation
and direct elevation measurements.

intermediate and shallow waters. These formulas involve a Fourier multiplier in
space which requires the knowledge of the pressure field, P(t, X), over the whole
horizontal space. For most ocean applications, the pressure is only known at one
measurement point. To overcome this limitation, we have shown in § 4 how to
replace the Fourier multiplier in space by a Fourier multiplier in time. Two distinct
cases have been considered: nonlinear permanent form waves (i.e. travelling waves)
and irregular weakly nonlinear waves. The former corresponds to an academic case,
which is useful to validate the nonlinear reconstruction formula, and the latter case is
essential in the context of wind–wave applications. To test the ability of our approach
we have compared reconstructed surface elevation fields to numerical Euler solutions
and wave-tank experiments. We have shown that our nonlinear method provides much
better results of the surface elevation reconstruction compared to the transfer function
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FIGURE 8. (Colour online) Surface elevation reconstruction of bichromatic waves, f1 =

0.5515 Hz, f2 = 0.6250 Hz (Tm = (( f1 + f2)/2)−1), h0 = 0.326 m and δm = 0.5 cm; zoom
on the highest wave of the wave group. Cutoff frequency fc = 1.5 Hz. Black line: direct
measurement of ζ ; dashed black line: hydrostatic reconstruction ζH , equation (C 1); cyan
line: ζL, equation (C 10); magenta line: heuristic formula, ζHE, equation (C 13).

approach commonly used in coastal applications. In particular, our method accurately
reproduces the maximum elevation and the skewed shape of nonlinear wave fields.
These properties are essential for applications such as those on extreme waves and
wave-induced sediment transport. Moreover our reconstruction formulas are simple
and easy to use for operational and real time coastal applications.

Our nonlinear method mainly applies to wind-generated waves propagating in
coastal environments where the effects of background currents can be neglected. A
first attempt to generalize this approach in presence of a vertically and horizontally
uniform current is presented in appendix D. However, further studies are required if
we are to reconstruct nonlinear waves in presence of horizontally variable currents
(e.g. tsunami and tidal bores) or vertically variable currents where the long wave
model with vorticity derived by Castro & Lannes (2014) could be used.
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FIGURE 9. (Colour online) Surface elevation energy density spectra, E( f ), as a function
of the dimensionless frequency Tmf , for bichromatic waves, f1=0.5515 Hz, f2=0.6250 Hz
(Tm= (( f1 + f2)/2)−1), h0= 0.326 m and δm= 0.5 cm. Cutoff frequency fc= 1.5 Hz. Black
line: direct measurement of ζ ; grey line: hydrostatic reconstruction ζH , equation (C 1);
cyan line: ζL, equation (C 10); red line: ζNL, equation (C 4).

Appendix A. Asymptotic expansion of the velocity potential Φ
We know from (2.13) that the dimensionless velocity potential Φ solves the

boundary value problem

µ1Φ + ∂2
zΦ = 0 in Ω,

Φ|z=εζ =ψ, ∂zΦ|z=−1 = 0.

}
(A 1)

Our goal here is to prove the following two approximations

Φ =Φ0
+O(σ ), and Φ =Φ0

+ εΦ1
+O(σ 2), (A 2a,b)

with

Φ0
=

cosh(
√
µ(z+ 1)|D|)

cosh(
√
µ|D|)

ψ and Φ1
=−

cosh(
√
µ(z+ 1)|D|)

cosh(
√
µ|D|)

(ζG0ψ). (A 3a,b)

In order to compare the exact solution to these two approximations, it is convenient to
work in the flat strip S =Rd

× (−1, 0) instead of the fluid domain Ω; this is possible
through the change of variable

∀(X, z) ∈ S, φ(X, z)=Φ(X, (z+ 1)εζ (X)+ z). (A 4)
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FIGURE 10. (Colour online) Surface elevation energy density spectra, E( f ), as a function
of the dimensionless frequency Tmf , for bichromatic waves, f1=0.5515 Hz, f2=0.6250 Hz
(Tm= (( f1 + f2)/2)−1), h0= 0.326 m and δm= 0.5 cm. Cutoff frequency fc= 1.5 Hz. Black
line: direct measurement of ζ ; grey line: hydrostatic reconstruction ζH , equation (C 1);
cyan line: ζL, equation (C 10); magenta line: heuristic formula, ζHE, equation (C 13).

From the equation solved by Φ, one deduces that φ must solve the boundary value
problem

∇
µ
· P(ζ )∇µφ = 0, in S,

φ|z=0 =ψ, ∂zφ|z=−h0
= 0,

}
(A 5)

with

∇
µ
=

(√
µ∇

∂z

)
and P(ζ )=

 (1+ εζ )I2 −σ(z+ 1)∇ζ

−σ(z+ 1)(∇ζ )T
1+ σ 2(z+ 1)2|∇ζ |2

1+ εζ

 . (A 6a,b)

It is known that φ depends analytically on ζ ; therefore, one can write

φ = φ0
+ εφ1

+ φ>2 with φ>2
:=

∞∑
j=2

εjφj, (A 7)

and where φj is j-linear in ζ and therefore j+ 1 linear in (ζ ,ψ). Expanding the matrix
P(ζ ) in terms of ζ , one also gets

P(ζ )= P0
+ εP1

+ P>2, (A 8)
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with P0
= Id and

P1
=

(
ζ −(z+ 1)

√
µ∇ζ

−(z+ 1)
√
µ(∇ζ )T −ζ

)
, P>2

=

0 0

0
ε2ζ 2
+ σ 2(z+ 1)2|∇ζ |2

1+ εζ

.
(A 9a,b)

A.1. Linear approximation

The linear (with respect to (ζ , ψ)) approximation φ0 of the velocity potential is then
found by solving

∇
µ
· P0
∇
µφ0
= 0, in S,

φ0
|z=0
=ψ, ∂zφ

0
|z=−1
= 0,

}
(A 10)

so that one finds

φ0(X, z)=
cosh(

√
µ(z+ 1)|D|)

cosh(
√
µ|D|)

ψ. (A 11)

Moreover, since the approximation error e0
:= φ − φ0 solves

∇
µ
· P0
∇
µe0
=−∇

µ
· (εP1

+ P>2)∇µφ, in S,
e0
|z=0
= 0, ∂ze0

|z=−1
= 0,

}
(A 12)

and since εP1
+ P>2

= O(ε) and ∇µφ = O(
√
µ) (see for instance Lannes 2013,

Proposition 2.36), one deduces easily that ∇µe0
=O(σ ) and therefore

φ − φ0
=O(σ ). (A 13)

A.2. Quadratic approximation

The system governing the quadratic term φ1 is then found by isolating the terms of
order 1 in ζ ,

∇
µ
· P0
∇
µφ1
=−∇

µ
· P1
∇
µφ0, in S,

φ1
|z=0
= 0, ∂zφ

1
|z=−h0
= 0.

}
(A 14)

Solving directly this system leads to very complicated expressions; however, many
simplifications arise from the observation that

−∇
µ
· P1
∇
µφ0
=∇

µ
· P0
∇
µφ̃1, with φ̃1

= (z+ 1)ζ ∂zφ
0. (A 15)

Indeed, the difference r := φ1
− φ̃1 solves

∇
µ
· P0
∇
µr= 0, in S,

φ|z=0 =−εζ∂zφ
0
|z=0
, ∂zφ|z=−h0

= 0.

}
(A 16)

Proceeding as for the linear approximation, with ψ replaced by −εζ∂zφ
0
|z=0

, this leads
to

r = −
cosh(

√
µ(z+ 1)|D|)

cosh(
√
µ|D|)

(ζ ∂zφ
0
|z=0
)

= −
cosh(

√
µ(z+ 1)|D|)

cosh(
√
µ|D|)

(ζG0ψ), (A 17)
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where we used (A 11) to derive the second identity. To summarize, we have thus
proved that

φ1
= (z+ 1)ζ ∂zφ

0
−

cosh(
√
µ(z+ 1)|D|)

cosh(
√
µ|D|)

(ζG0ψ). (A 18)

Moreover, since the approximation error e1
:= φ − φ0

− εφ1 solves

∇
µ
· P0
∇
µe1
=−∇

µ
· P>2
∇
µφ − ε2

∇
µ
· P1
∇
µφ1, in S,

e1
|z=0
= 0, ∂ze1

|z=−1
= 0,

}
(A 19)

and since ∇µ · P>2
∇
µφ = O(σ 2) and ∇µφ1 = O(µ), one deduces easily that ∇µe1

=

O(σ 2) and therefore
φ − φ0

− εφ1
=O(σ 2). (A 20)

A.3. Proof of the approximations in the physical domain
Let us now go back to the velocity potential in the physical domain Ω by undoing
our change of variables,

∀(X, z) ∈Ω, Φ(X, z)= φ
(

X,
z− εζ
1+ εζ

)
. (A 21a,b)

By simple Taylor expansions, we get that

Φ(X, z)=Φ0(X, z)+ εΦ1(X, z)+O(σ 2), (A 22)

with Φ0 given by (A 3) and Φ1 given by

Φ1
=−(z+ 1)ζ ∂zΦ

0
+ φ1. (A 23)

Using (A 18), we finally obtain that the bilinear term in our approximation of the
velocity potential Φ is as given by (A 3).

Appendix B. Pressure measured at an arbitrary depth
The hydrostatic, linear and shallow water reconstruction formulas express the

surface elevation in terms of the pressure Pb measured at the bottom z = −1 (in
dimensionless variables). However, sensors are very often located above the bottom
at some distance δm > 0. We show here how these reconstruction formulas must be
adapted in order to be expressed in terms of the pressure Pm measured at this point
z= zm =−1+ δm.

Evaluating the Bernoulli equation (2.15) at z= zm rather than at the bottom, we are
led to replace (2.19) by

∂tΦm +
1
ε

zm +
ε

2
|∇Φm|

2
+

ε

2µ
|∂zΦ|z=zm

|
2
=−

1
ε
(Pm − Patm), (B 1)

where Φm =Φ|z=zm ; consequently, equation (2.20) is generalized into

ζ = ζH + ∂tΦm − ∂tψ +
ε

2
(|∇Φm|

2
− |∇ψ |2)

+
ε

2µ
|∂zΦ|z=zm

|
2
+

ε

2µ
(1+ ε2µ|∇ζ |2)(∂zΦ|z=εζ )

2, (B 2)
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424 P. Bonneton and D. Lannes

where the hydrostatic reconstruction ζH is now given in terms of Pm,

ζH =
1
ε
(Pm − Patm − 1+ δm). (B 3)

Using (3.1) and (2.18), this yields

ζ = ζH +

(
cosh(

√
µ(zm + 1)|D|)

cosh(
√
µ|D|)

− 1
)
∂tψ +O(σ )

= ζH +

(
1−

cosh(
√
µ(zm + 1)|D|)

cosh(
√
µ|D|)

)
ζ +O(σ ), (B 4)

so that

ζL =
cosh(

√
µ|D|)

cosh(
√
µδm|D|)

ζH. (B 5)

Following the same path as in § 3.2, the quadratic formula (3.22) is generalized into

ζNL = ζL − εµ∂t(ζL∂tζL)+ εµ
cosh(

√
µ|D|)

cosh(
√
µδm|D|)

(
sinh(
√
µδm|D|)

sinh(
√
µ|D|)

∂tζL

)2

. (B 6)

In the shallow water regime (µ � 1) these formulas can be simplified into the
following generalization of (3.26),

ζSL = ζH −
µ

2
(1− δ2

m)1ζH (B 7)

for the linear formula, and of (3.27) for the quadratic formula,

ζSNL = ζSL − εµ∂t(ζSL∂tζSL)+ εµδ
2
m(∂tζSL)

2. (B 8)

Appendix C. Dimensional reconstruction formulas
In variables with dimension, the hydrostatic reconstruction (B 3) can be written

ζH =
Pm − Patm

ρg
+ δm − h0, (C 1)

C.1. Formulas involving Fourier multiplier in space
In variables with dimension, the linear reconstructions (B 5) (fully dispersive) and
(B 7) (shallow water) can be written

ζL =
cosh(h0|D|)
cosh(δm|D|)

ζH, (C 2)

ζSL = ζH −
h2

0

2

(
1−

(
δm

h0

)2
)
1ζH. (C 3)

The fully dispersive (B 6) and shallow water (B 8) nonlinear reconstructions write

ζNL = ζL −
1
g
∂t
(
ζL∂tζL

)
+

1
g

cosh(h0|D|)
cosh(δm|D|)

(
sinh(δm|D|)
sinh(h0|D|)

∂tζL

)2

; (C 4)
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and

ζSNL = ζSL −
1
g
∂t(ζSL∂tζSL)+

1
g

(
δm

h0

)2

(∂tζSL)
2. (C 5)

The nonlinear heuristic equation (see Vasan & Oliveras 2017) is given by

ζHE =
ζL

1−
D sinh(h0D)
cosh(δmD)

ζH

. (C 6)

C.2. Formulas involving Fourier multiplier in time
Permanent form wave

The fully dispersive and shallow water linear reconstructions are written respectively

ζL =

cosh
(

h0|Dt|

cp

)
cosh

(
δm|Dt|

cp

)ζH, (C 7)

and

ζSL = ζH −
h2

0

2c2
p

(
1−

(
δm

h0

)2
)
∂2

t ζH. (C 8)

The heuristic equation is written

ζHE =
ζL

1−
Dt sinh

(
h0Dt

cp

)
cp cosh

(
δmDt

cp

)ζH

. (C 9)

Irregular waves
Proceeding as in § 4.2.1 by replacing the Fourier multiplier in space by a Fourier

multiplier in time we obtain:

ζL =
cosh(h0k(|Dt|))

cosh(δmk(|Dt|))
ζH, (C 10)

where k(ω) is given by the dispersion relation

ω2
= gk(ω) tanh(h0k(ω)). (C 11)

The shallow water linear reconstruction is written

ζSL = ζH −
h0

2g

(
1−

(
δm

h0

)2
)
∂2

t ζH, (C 12)

and the heuristic formula can be expressed as

ζHE =
ζL

1+
1
g
∂2

t ζL

. (C 13)
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426 P. Bonneton and D. Lannes

Appendix D. Generalization in the presence of a background current
We show here how to generalize the reconstruction formulas derived above when

waves propagate over a background constant horizontal current U0 = U0ex. This
current cannot be inferred from the pressure measurements and must be obtained
from additional velocity measurements. As shown below, the influence of the current
can be neglected at the precision of the model if U0 =O(ε), that is, if the current is
smaller by a factor of ε than the long wave phase velocity.

D.1. Formulas involving Fourier multiplier in space
The total velocity field is U=∇X,zΦ +U0ex, with Φ satisfying (2.13) and (2.14), and
the Bernoulli and kinematic equations become

∂tΦ +U0∂xΦ +
1
ε

z+
ε

2
|∇Φ|2 +

ε

2µ
|∂zΦ|

2
+

1
2ε

U2
0 =−

1
ε
(P− Patm), (D 1)

and
µ∂tζ +µU0∂xζ = ∂zΦ − εµ∇ζ · ∇Φ on z= εζ ; (D 2)

where U0 is dimensionalized by
√

gh0. Consequently, formula (2.20) becomes

ζ = ζH + (∂t +U0∂x)(Φb −ψ)+
ε

2
(|∇Φb|

2
− |∇ψ |2)+

ε

2µ
(1+ ε2µ|∇ζ |2)(∂zΦ|z=εζ )

2,

(D 3)
so that the linear reconstruction formula (3.5) remains valid in the presence of a
background current U0,

ζL,U0(t, X) = ζL(t, X)
= [cosh(

√
µ|D|)ζH(t, ·)](X). (D 4)

For the nonlinear reconstruction formula, one readily gets that in the presence of a
background current, the formula (3.22) becomes

ζNL,U0 = ζL −
√
µσ(∂t +U0∂x)(ζL(∂t +U0∂x)ζL)

= ζL −
√
µσ((∂t +U0∂x)ζL)

2
−
√
µσζL(∂t +U0∂x)

2ζL; (D 5)

this formula has the advantage of being Galilean invariant. It can also be seen that if
U0 is of order O(ε) in the frame of reference of the bottom, than the corrections due
to the background current are of size O(σ 2) and therefore negligible at the precision
of the approximation.

D.2. Formulas involving Fourier multiplier in time
There is a difference in the way one can pass from a Fourier transform in space to
a Fourier transform in time, as in (4.15). Indeed, the equation solved at first (linear)
order by ζ is no longer (4.4) but

(∂t +U0∂x)
2u+ λ(D)2u= 0, (D 6)

with λ(·) still given by (4.14). In the one-dimensional case (d= 1), the notion of right-
going wave, introduced in Remark 1, can be easily extended in the presence of a

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 d
e 

Bo
rd

ea
ux

, o
n 

20
 N

ov
 2

01
7 

at
 1

5:
49

:0
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
66

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.666


Recovering water wave elevation from pressure measurements 427

–0.2

–0.4

0.2

 0.4

1–1–2–3 0 2 3 1–1–2–3 0 2 3

–2

–1

1

2(a) (b)

FIGURE 11. The mapping ξ 7→ λ(ξ)+U0ξ for −1<U0 < 0 (a) and U0 > 0 (b).

background current. A solution u to (D 6) is called right going if its Fourier transform
is of the form

û(t, ξ)= û(t= 0, ξ) exp(−it(U0ξ + λ(ξ))). (D 7)

When U0 > 0 (following current), the function ξ ∈R 7→ λ(ξ)+U0ξ is one-to-one, and
we can define the function kU0 by the dispersion relation

ω= λ(kU0(ω))+U0kU0(ω); (D 8)

if −1<U0< 0 (opposing current, we only consider here the subcritical case |U0|< 1),
the function ξ ∈R 7→λ(ξ)+U0ξ ∈R is no longer one-to-one and we need to introduce
the critical wavenumber and frequency kcrit > 0 and ωcrit defined as

λ′(kcrit)=−U0, ωcrit = λ(kcrit)+U0kcrit, (D 9a,b)

so that the function ξ ∈R 7→ λ(ξ)+U0ξ is one-to-one as a mapping [−kcrit, kcrit] →

[−ωcrit, ωcrit] (see figure 11). It is therefore possible to define kU0(·) through (D 8)
when 0 < U0 6 1, provided that the spatial Fourier transform ζ̂ (t, ·) is supported
in [−kcrit, kcrit], or equivalently if the time Fourier transform ζ̃ (·, x) is supported in
[−ωcrit, ωcrit]. We shall therefore make the following assumption

(H)

{
U0 > 0
or −1<U0 < 0 and ζ̃ (·, x) is supported in [−ωcrit, ωcrit].

(D 10)

Remark D1. The linear dispersion for (D 6) has four solutions for k in general
(only two if U0 = 0), when ω and U0 are given. Among them, two describe
counter-propagating long wavelength waves while the other two correspond to short
wavelength waves. The above assumption means that we assume that the wave profile
we want to reconstruct corresponds to the right-going long wavelength component
(see for instance Euvé et al. 2016 for a situation where the counter-propagating waves
are relevant).
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428 P. Bonneton and D. Lannes

We have seen that the linear reconstruction formula (D 4) is the same as in the
absence of any background current. However, when replacing the Fourier multiplier
in space by a Fourier multiplier in time, the influence of U0 can be seen. In order to
perform such a substitution, we need the following proposition.

PROPOSITION D1. Let d=1, λ be given by (4.14), and let u be a right-going solution
to (D 6) that satisfies (H). Then, for all Fourier multiplier f :R→R, one has

∀t, x, [ f (D)u(t, ·)](x)= [ f (−kU0(Dt))u(·, x)](t), (D 11)

where kU0(·) is defined through (D 8).

Note that contrary to Proposition 1, we assume here that d= 1 and that the solution
is right going; this allows us to handle Fourier multipliers that are not even functions.

Proof. Using the definition (D 7) of a right-going wave, one easily obtains for the
double Fourier transform in space and time that

(Ft,xf (D)u)(ω, ξ) = f (ξ)û(t= 0, ξ)δω=−(U0ξ+λ(ξ))

= f (−kU0(ω))û(t= 0, ξ)δω=−(U0ξ+λ(ξ)), (D 12)

where we used the fact that kU0(−ω) = −kU0(ω). Inverting the double Fourier
transform then yields the result.

Using Proposition D1, the linear reconstruction formula (D 4) implies the following
generalization of (4.15) in the presence of a background current,

ζL,U0(t, X)= [cosh(
√
µkU0(Dt))ζH(·, X)](t) (d= 1, right-going, (H) holds), (D 13)

with kU0(·) given by (D 8).
After the estimation of the linear reconstruction ζL,U0 , we can use it in the nonlinear

reconstruction formula (D 5). In the presence of a background opposing current (i.e.
U0 6 0), this formula involves space derivatives of ζL,U0 . For right-going waves, and
under the assumption (H), we can replace the differential operator ∂x by −ikU0(Dt)
using Proposition D1 and obtain

ζNL,U0 = ζL,U0 −
√
µσ((∂t − iU0kU0(Dt))ζL,U0)

2

−
√
µσζL,U0(∂t − iU0kU0(Dt))

2ζL,U0 . (D 14)
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