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Abstract
The aim of the present work has been to develop a model able to represent the propa-
gation and transformation of waves in nearshore areas. The focus is on the phenomena
of wave breaking, shoaling, and run-up. These different phenomena are represented
through a hybrid approach obtained by the coupling of non-linear Shallow Water
equations with the extended Boussinesq equations of Madsen and Sørensen. The nov-
elty is the switch tool between the two modelling equations: a critical free surface
Froude criterion. This is based on a physically meaningful new approach to detect
wave breaking, which corresponds to the steepening of the wave’s crest which turns
into a roller. To allow for an appropriate discretization of both types of equations,
we consider a finite element Upwind Petrov Galerkin method with a novel limiting
strategy that guarantees the preservation of smooth waves as well as the monotonic-
ity of the results in presence of discontinuities. We provide a detailed discussion of
the implementation of the newly proposed detection method, as well as of two other
well-known criteria which are used for comparison. An extensive benchmarking on
several problems involving different wave phenomena and breaking conditions allows
to show the robustness of the numerical method proposed, as well as to assess the
advantages and limitations of the different detection methods.
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1 Introduction

Wave breaking is a fundamental phenomenon, especially in the nearshore region. It
drives wave set-up and set-down, wave run-up, nearshore circulations (e.g. longshore
and rip currents), sediment transport, forces on structures, and many other effects. At
large scales, an important effect of wave breaking is the energy dissipation, which is
the result of many local hydrodynamic phenomena, ultimately leading to dissipation
due to small-scale viscous effects. In this paper we focus on the wave breaking closure
when wave propagation is performed by means of depth averaged Boussinesq models.

Among the main families of closures found in literature we mention the eddy
viscosity formulations [14,25,38,42,52], the breaking roller methods [8,50], and the
hyperbolic or hybrid approaches [6,24,44,47]. Within the first type of approaches, the
eddy viscosity one, the macroscopic dissipation of the energy is modelled by means
of explicitly introducing a viscous dissipation term in the momentum, or, alterna-
tively, both in the mass and momentum equations. In particular, the eddy viscosity
coefficients are defined via physical arguments, or through some auxiliary evolution
model (see, e.g. [23] and references therein), and, eventually, adjusted by means of
numerical experiments. An alternative to the eddy viscosity type modelling are the
roller approaches, that account more explicitly for the large scale effects of vorticity
on the mean flow. Finally, the hybrid approaches exploit the properties of hyperbolic
conservation laws endowed with an entropy, and model large-scale effects of wave
breaking with the dissipation of the total energy across shocks arising in shallowwater
simulations or augment/modify Boussinesq-type equations to include, for example,
additional terms caused by the presence of the surface rollers (see cf. [41]).

Independently of the chosen closure strategy, some breaking detection criteria is
very often required to trigger the onset of wave breaking. In practice it is this criteria
that leads to the activation of the closure. As well explained in [33], historically
the first detection criteria were based on quantities computed using information over
one full phase of the wave. The possibility of performing accurate phase resolved
simulations has led to the necessity of formulating newdetection criteria based on local
flow features [24,25,38,42]. More specifically, these criteria rely on a wave-by-wave
analysis more efficient to program in the context of phase resolved simulations, and
providing a physically correct detection of breaking onset and termination, provided
that a sufficiently accurate description of the wave profiles is available. In this paper
we consider a one-to-one comparison of three different detection criteria, tested on
a common solver. The wave propagation is handled by the well- known enhanced
Boussinesq equations of Madsen and Sørensen [30]. Wave breaking is modelled using
a hybrid approach and reverting locally to the non-linear ShallowWater equations. Our
focus is devoted to the comparison of numerical implementations of the non-linearity
criterion by [45–47], of the hybrid slope/vertical velocity criterion by [24,37], and
of a convective criterion, which compares the free surface velocity to the celerity
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of the wave [5]. We propose in particular an implementation in an upwind Finite
Element solver, with a novel discontinuity capturing technique, ad-hoc developed
for this application. We perform a very thorough benchmarking on flows involving
different types of waves and of breaking configurations. The results allow to validate
our numerical implementation, and insight on the advantages and limitations of the
physical behaviour of the different detection criteria. This paper extends and improves
the discussion of [2,3].

The manuscript is organized as follows: In Sect. 2 we discuss the model equations,
while Sect. 3 is devoted to the discussion of the finite element scheme used to solve
them. Some details on the detection and capturing of shocks are provided, as they
have been developed ad-hoc for this application, and provide an element of novelty.
Section 4 encompasses the definition of the breaking detection criteria, and provides
a precise description of their numerical implementation. Finally, in Sect. 5 we collect
a thorough comparison of the detection criteria on different kinds of waves along to
experimental data. The paper is concluded by a discussion and outlook on future work.

2 Mathematical Model

2.1 Enhanced Boussinesq Equations

The underlying enhanced Boussinesq model used in this work is the well-known
system by Madsen and Sørensen reading [31]

{
∂tη + ∂xq = 0

∂t q − D(η, q) + ∂x (uq + gH2/2) + gH∂xh + C f q = 0

with D(η, q) = Bh2∂xxtq + βgh3∂xxxη + h∂xh∂xtq/3 + 2βgh2∂xh∂xxη

(1)

Here, following Fig. 1, h denotes the depth at still water level, η the free surface level, u
the depth-averaged velocity, H = η−h ≥ 0 the water depth, q = Hu the volume flux,
and g the gravitational acceleration. The coefficient C f controls the friction, and all
dispersive effects are accounted for by the term D(η, q). In particular, the coefficient
values are taken as β = 1/15 and B = β + 1/3. This choice allows to match (in

Fig. 1 Sketch of the main notation
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absence of friction) a fourth-order Padé development of the dispersion relation of the
Euler equations [31].

2.2 Wave Breaking Closure: A Hybrid Boussinesq TypeModel

To account also for the effects of wave breaking, system (1) must be coupled to some
closure model. In the following, we consider a hybrid approach consisting in reverting
locally to the non-linear ShallowWater equations, obtained from (1) withD = 0. The
rationale behind this approach is that in the region of shallow waters, the waves will
locally steepen and rapidly turn into shocks, across which the volume flux and the
momentum are conserved, while the total energy is dissipated. The interested reader
can refer to [6,23,24,44,45] for further justification.

To implement this closure, we modify the model equations (1) to

{
∂tη + ∂xq = 0

∂t q − fbreak(x, t)D(η, q) + ∂x (uq + gH2/2) + gH∂xh + C f q = 0,
(2)

with the definition of D(η, q) as shown in (1). The newly introduced term fbreak,
denotes a so-called flag that allows to switch from a propagation region ( fbreak = 1)
to a breaking one ( fbreak = 0).
For planar waves (one spatial dimension) there are two key elements to define fbreak:
the detection of breaking onset and termination; the definition of the region inwhich the
breaking closure is activated. This paper focuses mainly on the study of the detection
criteria. Note that, although the analysis is performed in the context of hybrid wave
breaking closure, detection criteria are an essential element for other approaches as
well. The reader might refer to the extensive references provided in [23,24] for further
details. Our results will also be relevant for multi-dimensional flows, which will,
however, require to embed some additional elements related to the direction of wave
propagation and on water level variations in the transversal direction.

3 Numerical Approximation

3.1 Non-linear Upwind Finite Element Discretization

We propose a non-linear variant of the upwind stabilized finite element method dis-
cussed in [36]. The method exploits a standard C0 finite element approximation on
a tessellation of the spatial domain � = [0, L], consisting of N constant intervals,
or cells. The cell width is denoted by �x . Let us introduce the vector of unknowns
W = [η , q]T , along with

F(W) =
⎡
⎣ q

uq + g
H2

2

⎤
⎦, Sh = gH

[
0

∂xh

]
, S f =

[
0

C f q

]
, D =

[
0

D(W)

]
.
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Denoting by ϕi (x) (i = 0, . . . , N ) the standard linear Lagrange basis functions, the
method relies on the expansions

Wh(t, x) =
N∑
j=0

ϕ j (x)W j (t) , Fh(t, x) =
N∑
j=0

ϕ j (x)F(W j (t)). (3)

Introducing the residual

rh = ∂tWh − fbreakD(Wh) + ∂x Fh + Sh(Wh) + S f (Wh) ,

The discrete equations at a node i are obtained from the following stabilized variational
statement: ∫

�

ϕi rh dx +
N−1∑
i=0

xi+�x∫
xi

(A(Wh)∂xϕi τs) rh dx = 0, (4)

where A = ∂F/∂W denotes the shallow water flux Jacobian, and τs a stabilization
matrix. For the latter, it is well known (cf. [36] and references therein for details), that
by defining the matrix as1 τs = |A|−1�x/2, the resulting scheme can be recast as the
following upwind splitting method with a non-diagonal mass matrix:

∑
l=−1,0,1

Mi,i+l

(
dWi+l

dt
+ S fi+l

)
+

I − sign

(
A(Wi+1/2)

)
2

φi+1/2

+
I + sign

(
A(Wi−1/2)

)
2

φi−1/2

= fbreaki

∫
�

ϕi D(Wh)dx +
N−1∑
i=0

fbreaki+1/2

xi+1∫
xi

(A(Wh)∂xϕi τs) D(Wh)dx,

(5)

where we have introduced the hydrostatic fluctuations φ, with φi+1/2 = Fi+1 −
Fi + gHi+1/2[0, hi+1 −hi ] and φi−1/2 approximated analogously. The termsWi±1/2
denote cell arithmetic averages.

As for the right-hand side terms, neglecting the boundary conditions, which will be
discussed later, these are evaluated using the following approximations (cf. definition
of D in the beginning of the section and of D in (1))

∫
�

ϕiD(Wh)dx =
xi+1∫

xi−1

(
− ∂x (Bh

2
hϕi )∂xtqh + ϕi

1

3
hh∂xhh∂xtqh

+ βgϕi (h
3
h∂xw

η
h + 2h2h∂xhh w

η
h)

)
dx,

1 Matrix absolute values are computed, as usual, by means of an eigen-decomposition.
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and

xi+1∫
xi

(A(Wh)∂xϕi τs) D(Wh)dx = −
sign

(
A(Wi+ 1

2
)

)
2

Di+1/2, with

Di+1/2 =
xi+1∫
xi

[
0

Bh2h∂xtw
q
h + βgh3h∂xw

η
h + hh∂xhh∂xtqh/3 + 2βgh2hw

η
h

]
dx .

The above expressions are readily evaluated by numerical quadrature in each cell
using the linear finite element expansions to interpolate all the quantities with the “h”
subscript. Note that, for any quantity u we have ∂xuh = ui+1 − ui/�x over a cell
[xi , xi+1]. The auxiliary variables wη and wq are introduced to handle the higher
order derivatives. Their values are obtained by locally inverting the projections:

∫
�

ϕiw
η
h = −

i+1∫
i−1

∂xηh∂xϕidx,
∫
�

ϕiw
q
h = −

i+1∫
i−1

qh∂xϕidx . (6)

The interested reader can refer to [36] or more details.

3.2 Shock Capturing, Limiters, and Entropy Fix

In absence of friction and of dispersive effects, if themassmatrices on the left-hand side
of (5) are lumped, we end up with the first-order upwind flux splitting approximation:

�x
dWi

dt
+

I − sign

(
Ai+1/2

)
2

φi+1/2 +
I + sign

(
Ai−1/2

)
2

φi−1/2 = 0,

with the short notation Ai±1/2 = A(Wi±1/2). The first-order scheme above is the
basis ofmany discontinuity capturing approximations for shallowwater flows (see, e.g.
[11,12,15]). The strategy proposed here is to introduce a cell-wise mass-matrix limiter
that allows to switch from this first -order non-oscillatory method across shocks, to
the full finite element approximation, which has been shown to be third-order accurate
and is appropriate for propagation [36]. Taking into account the explicit form of the
mass matrix entries (see [36] for details), the full non-linear approximation can be
written as
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�x
dWi

dt
+

�x δi− 1
2

2

{
1

3

[
dWi−1

dt
− dWi

dt

]
+ sign(Ai− 1

2
)
dWi− 1

2

dt

}

+
�x δi+ 1

2

2

{
1

3

[
dWi+1

dt
− dWi

dt

]
− sign(Ai+ 1

2
)
dWi+ 1

2

dt

}

+
I − sign

(
Ai+1/2

)
2

φi+1/2 +
I + sign

(
Ai−1/2

)
2

φi−1/2 = 0

For the cell-wise limiter δi±1/2 we have tested several classical slope/flux limiters.
In our case, however, it is very important that numerical dissipation, in correspondence
of smooth extrema, is not excessive, as this may hinder the accuracy of the breaking
closure. For this reason we have in practice used a limiter based on a smoothness
indicator, with the main idea to combine two different approximations of a solution
derivative. To fix ideas, let us consider the case of a second-order derivative, but for
the first-order derivative one proceeds similarly. We consider a fourth-order approxi-
mation

(∂xxη)O4 = − 1

12�x2
ηi+2 + 4

3�x2
ηi+1 − 5

2�x2
ηi + 4

3�x2
ηi−1 − 1

12�x2
ηi−2

along with a second-order approximation

(∂xxη)O2 = 1

�x2
ηi+1 − 2

�x2
ηi + 1

�x2
ηi−1.

Clearly for a smooth variation of η we retrieve

(∂xxη)O4 = ∂xxη + O(�x4) , (∂xxη)O2 = ∂xxη + O(�x2)

and hence

|ηi+2 − 4ηi+1 + 6ηi − 4ηi−1 + ηi−2|
12�x2

= | (∂xxη)O4 − (∂xxη)O2 | = O(�x2).

On the other hand, for a discontinuity of finite amplitude �η around node i we get

(∂xxη)O4 ≈ 15�η

12�x2
, (∂xxη)O2 ≈ �η

�x2
,

or, equivalently,

|ηi+2 − 4ηi+1 + 6ηi − 4ηi−1 + ηi−2|
12�x2

= | (∂xxη)O4 − (∂xxη)O2 | ≈ �η

4�x2
.

We thus define the term

σi = min

(
1,

ε + |ηi−ηi−1|
�x + |ηi−ηi+1|

�x

ε + |ηi+2−4ηi+1+6ηi−4ηi−1+ηi−2|
12�x2

)
, (7)
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Fig. 2 Run-up of a solitary wave with A = 0.28 for the pure Shallow Water model with the first-order
scheme. Comparison of the wave shapes obtained with different limiters at t ′ = 15

with ε a small parameter used to avoid any division by zero. In the smooth case, while
the numerator in the right slot is bounded, the denominator is ofO(�x2), and thus the
value of 1 is retained. Across a discontinuity, the numerator gives �η/�x , while the
denominator gives approximately �η/4�x2, so σi = 4�x � 1. In practice, in every
cell we set δi±1/2 = min(δi , δi±1) where, to avoid abrupt variations of the sensor, we
set in every node

δi = 1

4
δ̂i−1 + 1

2
δ̂i + 1

4
δ̂i+1 , δ̂i =

{
σi if σi < 0.5
1 otherwise.

(8)

The advantage of this definition is its ability to better preserve smooth extrema, while
still capturing strong discontinuities. We have tested this smoothness sensor limiter
on several test cases, comparing it to more classical limiters. We report hereafter
the behaviours observed in two typical cases. The first consists in the run-up of a
solitary wave, which will be discussed in detail in Sect. 5.2. To approximate the
solution, we consider the ShallowWater equations with the first-order scheme and test
different limiting strategies. In Fig. 2, we show the free surface distributions obtained
at t ′ = 15 (cf. Sect. 5.2 for more details) for the smoothness sensor, the Superbee
and the monotonized centered [28] limiters. Comparing these approximations, one
can clearly see that the smoothness limiter improves the preservation of the wave
peak.

As a second example, we consider a dam break problem. The results of Fig. 3
show that the smoothness sensor allows to capture the strong shock, with a behaviour
somewhat close to that provided by the monotonized centered limiter. Note that,
to obtain these results, the upwind flux splitting terms sign(A)�F need to be cor-
rected with an entropy fix, for which we have adapted the techniques detailed in
[20,26,34] (see [2] for details). These two benchmark problems allow to highlight the
advantage of using the proposed smoothness limiter, and all further test cases will be
performed relying on this choice. In particular, the complete discretization in its final
form reads:
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Fig. 3 Dam break problem. Solution obtained with the smoothness sensor compared to those yield by the
Superbee and the monotonized centered (MC) limiters

�x

(
dWi

dt
+ S fi

)
+

I − sign

(
Ai+1/2

)
2

φi+1/2 +
I + sign

(
Ai−1/2

)
2

φi−1/2

+ �x
μi− 1

2

2

{
1

3

[(
dW
dt

+ S f

)
i−1

−
(
dW
dt

+ S f

)
i

]
+

[
sign(A)

(
dW
dt

+ S f

)]
i− 1

2

}

+ �x
μi+ 1

2

2

{
1

3

[(
dW
dt

+ S f

)
i+1

−
(
dW
dt

+ S f

)
i

]
−

[
sign(A)

(
dW
dt

+ S f

)]
i+ 1

2

}

= fbi

∫
�

ϕi D(Wh)dx +
N−1∑
i=0

fb
i+ 1

2

xi+1∫
xi

(A(Wh)∂xϕi τs) D(Wh)dx,

(9)
having denoted by μi± 1

2
a cell limiter computed as

μi± 1
2

=
{
1 if min( fbreaki , fbreaki±1) = 1
δi± 1

2
ωi± 1

2
otherwise.

Further, fbi = fbreaki ωi , where ω(H) is the exponential wet/dry cut-off introduced in
[35], and computed as

ωi = exp

{
−α�x

max j=0,N Hj − ε

max
(
ε,min j=i−2,i+2 Hj − ε

)
}

,
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with ε a mesh-dependent small threshold in practice set to ε = (�x/L)2, where L is
a characteristic length of the domain, and α is usually set to α ≈ 10. In practice we
set fbi±1/2 = min( fbi±1 , fbi ) and similarly for ω.
The resulting scheme can be readily shown to be well-balanced in wet regions. In
particular, considering the lake at rest state given by q = 0 and η constant across the
entire domain, one can show that all the dispersive terms, as well as the hydrostatic
fluctuationsφi±1/2 and the friction terms, are identically zero. The scheme thus reduces
to dW/dt = 0, which shows that this state is indefinitely preserved. More details of
the analysis can be found in [36]. In this work we have generalized the validity of
this property, to account also for dry areas, adopting the modifications proposed in
[11,15,35]. Finally, the integration in time of (9) is performed with a non-dissipative
implicit Crank-Nicholson method, and wave generation and boundary conditions are
handled using the source functions and absorbing layers discussed to some extent
in [36]. The interested reader can refer to this reference, and to [2], and references
therein, for more details.

Remark 1 Note that the choice of the presented method is not crucial. However, its
detailed description allows to underline the strict interplay between the numerics (lim-
iting procedure) and the modelling of wave breaking. While other schemes have been
used in combination with a similar wave breaking closure (cf. [19,23,24]), such inter-
action is always necessary. This makes the understanding of the stabilisation and
shock-capturing mechanisms critical.

Remark 2 While the numerical approximation has been extensively tested for conver-
gence on the Madsen and Søresen equations in [36], our focus here shall be on the
breaking and shock capturing features.

4 Wave Breaking Detection and Implementation

We discuss in this section the detection criteria considered in this paper. The objective
was to provide computable definitions for the breaking flag fbreak required in the
scheme. In particular,we consider three approaches: one basedonwavenon-linearities,
taken from [47,48]; the second defined on both a slope and a vertical velocity condition,
taken from [24]; the third being our implementation of the so-called convective or
critical free surface Froude criteria discussed, e.g. in [29] (see also [5,9] and references
therein). To our knowledge this is a first attempt at using such a convective criteria
in predicting wave breaking in the context of Boussinesq simulations with a breaking
closure.

From a physical point of view, it is well known that one of the main parameters
ruling wave breaking is the Froude number. However, when looking at wave breaking,
several definitions of this quantity are possible, going from the classical local value
Fr = |u|/√gH , to definitions based on the ratio of the wave amplitude over the depth
(cf. [47], or [13] for open channel flows), to other definitions involving wave by wave
analysis as the local trough Froude criteria proposed in [33], and many others.

For moving bores, the well-known studies by Favre [17] and Treske [49] show
that the limiting value of the local Froude number, relative to the bore above which
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breaking occurs, is about 1.3. In general, the onset of breaking has been identified to
happen in a range of the Froude numbers between 1.3 and 1.6 (see [33,45–48]). In
practice, defining a local Froude number starting from data issued from numerical (or
experimental) data is not a trivial task as many parameters are less clearly identified
than, e.g., in the experimental set-up of [17] and [49]. In a wave-by-wave analysis,
for example, there is the question of determining the wave’s celerity, the location in
which the velocity and Froude condition should be estimated, which velocity should
be used, and so on.

The three criteria considered here allow to cover good part of the existing detection
methods. To be able to fairly compare them, our objective was to provide approxima-
tions to the sought solution, based on the same numerical method, and within the same
breaking closure approach. As much as possible of their practical implementation is
also discussed, to enable reproducibility.

4.1 A Criterion Based on Local Non-linearity

The first criterion we have considered is the simplest to set up. It is taken from [45–48]
in which the authors present a detection method based on the non-linearity parameter
E , defined as the ratio wave amplitude over still water depth, i.e.

E = A

h
. (10)

For the onset of breaking, the value E = 0.8 is suggested. This is obtained assuming
a transition at a Froude ≈ 1.6 [33,45,48] and considering that the limit value to
obtain a stable solitary wave is E ≈ 0.78 [22]. Clearly, this criterion is purely local,
as it involves no variations (derivatives) of the wave characteristics. Concerning the
termination criterion, once E > 0.8, the breaking closure is kept active until E is back
within a range between 0.55 ÷ 0.25, as suggested in [47,48].

Wewill refer in the following to this detectionmethod as theLocal Criterion. It has
the advantage of being simple, but in some cases it lacks generality, as, for example,
in presence of wave set-up (or set-down), and in general when the value of h is not
anymore relevant to define a reference depth or wave celerity.

In our implementation of this detection method, we have computed in each node
the discrete analogue of (10) given by

Eh = |η|
|h| + ε

, (11)

with ε ≈ (�x/L)2, which allows to avoid any division by zero when considering the
run-up on sloping beaches. Further, whenever a point in space satisfies E > Ecritical,
with Ecritical = 0.8, we seek the point downstream in the wave direction satisfying
E = 0.3. The downstream direction is either known a priori, or determined using the
technique discussed in Sect. 4.3. In the whole region between the two points we set
fbreak = 0.
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4.2 Hybrid Slope/Vertical Velocity Criterion

The second criterion we consider was initially proposed in [24]. It combines two
criteria: one related to the steepness of the wave [38] and the second involving the
vertical displacement of the free surface [7]. In practice, the onset of breaking is
determined by the validity of one of the two following conditions:

|∂xη| ≥ tan φ with φ ∈ [14◦, 33◦]
∂tη√
g|h| > γ with 0.35 ≤ γ ≤ 0.65.

(12)

In [24], the value γ = 0.6 is prescribed as a default. Note that the second condition
closely resembles a Froude number condition based on the velocity of the free sur-
face. This condition is inefficient for steady hydraulic jumps, in which case the slope
criterion is more effective. For this the choice of the critical angle depends strongly
on the breaking type. As in [24] and [44], and unless explicitly mentioned, we have
used the default value φ = 30◦. The termination of breaking is based in this case on
the Froude condition proposed in [44], which relies on the analysis of moving bores.
Following [24], this detection method is referred to as Hybrid Criterion.

The practical implementation is done in four phases as follows:

1. Pre-flagging We compute in every node

Frnwi
:= |ηni − ηn−1

i |
�t

√
g(|hi | + ε)

and

∇ηni := max

( |ηni+1 − ηni−1|
2�x

,
|ηni − ηni−1|

�x
,

|ηni+1 − ηni |
�x

)
.

If

Frnwi
> γ or ∇ηni ≥ tan φ,

we set fbreaki = 0. Adjacent cells involving flagged nodes are clustered, thus
obtaining a preliminary definition of the breaking length.

2. Peak and trough water level In each cluster of breaking cells we determine the
maximum and minimum values of the free surface elevation, H2 and H1, and the
corresponding mesh points xmax and xmin, as on Fig. 4.

3. Termination check. We use the criteria proposed in [44] and compute the bore
Froude number Frb defined as

Frb =

√√√√√
(
2 H2
H1

+ 1

)2

− 1

8
. (13)

If Frb < Frbcr , we set fbreak = 1 along all the breaking length and move to the
next cluster of breaking cells. We set Frbcr = 1.3, as proposed in [24,44].
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Fig. 4 Sketch of the lengths that
determine the roller magnitude

4. Roller magnitude estimation and final flagging If Frb > Frbcr , we follow again the
definitions of [24,44]: we compute the physical roller length as lr = 2.9(H2−H1),
and we define a numerical roller of length lN SW = 2.5lr . We set fbreaki = 0 in all
points verifying 2xi − (xmax + xmin) < l̄N SW .

4.3 The Convective or Critical Free Surface Froude Criterion

The main idea behind this detection method was that wave breaking occurs when
the free surface velocity at the peak of the wave exceeds the celerity of the wave.
Therefore, one may consider the Froude number:

Frs = us
cb

, (14)

with us the free surface velocity at the wave crest, and cb the celerity. If Fr > 1 then
the wave should break. In the following we will refer to this detection method as to
the Physical Criterion.

To implement this method in practice, we must provide computable definitions
of both the free surface velocity and the celerity. Concerning the first, we recall the
asymptotic development of the horizontal velocity reading [27]

u(z) = u −
[
(z − h)2

2
− H2

6

]
∂xxu −

(
H

2
+ z − h

)
(2∂xh∂xu + ∂xxhu),

where u is the depth averaged velocity. The idea is then to evaluate the above expression
on the free surface, for z = η = H + h, and at the wave’s crest, where it is assumed
that ∂xu = 0. Evaluating the above expression, we obtain

us = u − H2

3
∂xxu − 3q

2
∂xxh. (15)
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Concerning the celerity of the wave, we combine the two relations

∂tη + cb∂xη = 0 and ∂tη + ∂xq = 0,

obtaining

cb = ∂xq

∂xη
. (16)

With these definitions, we proceed to an implementation based on the following four
steps:

1. Pre-flagging Same as for the hybrid criterion (see Sect. 4.2).
2. Peak and trough water level Same as for the hybrid criterion (Sect. 4.2).
3. Evaluation of Frs We need to evaluate the free surface velocity in correspondence

of xmax, as well as the celerity. For the discrete free surface velocity ush , we use
(15) in which the second derivative of the velocity is computed first by means
of standard second-order centred finite difference formula, and then smoothed,
in order to remove some of the numerical noise. The filtering is done using one
iteration of a 5-point moving average, using 2 mesh points on either side of xmax.
We neglect the second term in (15) in all the computations performed, which
involve piecewise constant slopes. The implementation of (16), used to evaluate
the celerity, is

cbh = q(xmax) − q(xmin)

η(xmax) − η(xmin) + ε
, (17)

with ε added to avoid any division by zero. The critical free surface Froude is then
discretely evaluated as

Frsh = |ush |
|cbh | + ε

. (18)

4. Roller magnitude estimation and final flagging. If Frsh > Frscr , we proceed as in
Sect. 4.2:wedefine lN SW = 2.5lr with lr = 2.9(H2−H1), andwe set fbreaki = 0 in
all points verifying 2xi −(xmax+ xmin) < l̄N SW . The critical value by default used
is Frscr = 1, but, as we shall see in the numerical experiments, other values have
been tested to compensate for the shoaling behaviour of the considered Boussinesq
model.

Remark The determination of thewave celerities necessary for the convective criterion
is a key point for future extensions. This issue is common to both numerical and
experimental techniques aiming at characterising in detail the wave-field. The filtering
approach used here is a first solution, but more involved techniques will be for sure
required to implement this approach in a more general context, both concerning the
quality of the estimated celerities and the extension to multiple space dimensions.

4.4 Additional Implementation Details

As discussed in detail in [23], the wave breaking closure used here introduces easily
oscillations at the interface of the coupling between the Bousisnesq model and the
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Shallow Water equations. Indeed, in [23], it is shown that this is especially important
when a mesh refinement is involved, as, if uncontrolled, it would lead to the blow up
of the computation, instead of the sought mesh convergence. In particular, on coarse
meshes the amplitude of these perturbations remains very small. However, since there
is no clear understanding of the link between the mesh size and numerical spuri-
ous effects, we have tried to minimize the sources of instability. To this end, some
techniques for the minimization of the oscillations have been already mentioned, as,
e.g., the use of filtering to evaluate the second derivatives of the velocity. Further-
more, through the determination of the roller magnitude, as, e.g. within the fourth
step of the practical implementation of the physical criterion, we have also avoided
the introduction of spurious breaking. Specifically, we have throughout avoided the
introduction of rollers with a size smaller than the stencil of our numerical scheme,
i.e. for l̄N SW ≤ 4�x , we set back fbreaki = 1. Similarly, if two breaking regions are
too close, they are merged, such that, if the distance between two breakers is less than
4�x , we set fbreaki = 0 also for the nodes in between.

Finally, we avoid any possible wrong detection, as, e.g., the breaking being detected
on the rear side of the wave via the check of the fulfilment of cbh(xmax − xmin) ≥ 0.

5 Numerical Tests and Results

5.1 Wei’s SolitaryWave Shoaling on a Slope

In order to study the physics of the wave breaking, we consider the benchmark prob-
lems proposed in Wei et al. [51], involving solitary waves shoaling over different
constant slopes. These tests are used to investigate the physical behaviour obtained
with the different breaking criteria.

5.1.1 Case 1: Slope of 1:35

The set-up is given by a solitary wave of amplitude A = 0.2m over a spatial domain
defined within [−12, 40]m. The bathymetry, set initially with h0 = 1m depth, has a
constant slope 1:35 between 0 ≤ x ≤ 35m and continues till the end of the domain
with a flat slope. The solitary wave starts at the toe of the slope set at x = 0m. The
total considered time is 30s. The time step is dictated by the CFL number ν = 0.3 on
a mesh with�x = 0.05m. Absorbing boundary conditions are set on the left and right
ends of the domain using sponge layers 3m wide (see [36] for details). The wave’s
evolution is described as a function of a dimensionless time t ′ = t

√
g/h0.

As in [51], we will focus on four different discrete times: t ′1 = 16.24, t ′2 = 20.64,
t ′3 = 24.03 and t ′4 = 25.94. We visualize the wave profile at these times when using
the three different detection criteria: local (Fig. 5a), hybrid (Fig. 5b), and physical
(Fig. 5c). In particular, η′ denotes η

h0
and x ′ = x

h0
.

From the figures we can see that all criteria provide the same wave profile at t ′1
and t ′2, at which the wave propagates and starts shoaling, becoming taller and less
symmetric. The shoaling continues at t ′3 with the hybrid and physical criteria, but with
the local criterion the smooth wave peak has been already flattened, which is the sign
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(a)

(b)

(c)
Fig. 5 Benchmark problem of [51] with slope 1:35. Comparison between different wave breaking criteria

of an early onset of wave breaking. This becomes even clearer at time t ′4, at which
this criterion provides a wave shape very close to that of a shock. The hybrid criterion
fares better; however, the first signs of an early activation of the breaking closure are
outlined. Indeed, the wave at t ′3 is still smooth; however, we can see the wave height
reducing from t ′4 can be seen as the wave profile is already shorter than the previous
one, a sign that breaking has taken over the shoaling phase. The physical criterion,
instead, shows wave profiles still growing from t ′3 to t ′4, meaning that shoaling is still
the dominating phenomenon. As a general remark, compared to the plots in [51], the
wave shapes are shorter and less steep. This is related to the fact that the Boussinesq
model (1) under-shoals compared both to fully non-linear models and to other weakly
non-linear models known to be prone to over-shoaling, as, e.g., the one used in the
reference. This is a known phenomenon. The interested reader can refer to [18], where
the behaviour of well-known weakly non-linear Boussinesq models, including the one
used here, is studied in the transition between weakly and fully non-linear waves. To
get further insight into the behaviour of the different solutions, we have singled out the
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(a) (b)

(c) (d)

Fig. 6 Benchmark problem of [51] with slope 1:35. First instants of wave breaking activation for different
wave breaking detection criteria

first time of breaking for all the considered detection criteria. In Fig. 6, we visualize
the wave’s position and shape, as well as the closure region at the first breaking instant
computedwith the procedure described in Sect. 4.As shown in Fig. 6a, the local criteria
provides a very early first onset of wave breaking at t ′ = 23.02. The figure also shows
that the breaking termination condition used within this criteria gives a very short
sized roller, which does not reach the foot of the wave. Figure 6b provides the same
visualization for the hybrid criteria. The onset of breaking is at t ′ = 25.48,much closer
to the reference one. The size of the roller is, in this case, larger, and allows to cover
the whole front of the wave, including its foot. This is most likely a better situation
for the stability of the criteria, as the steeper parts of the wave are all embedded in the
roller. Passing to the physical criterion, we can see in Fig. 6c that for Frscr = 1, this
method provides a late onset of breaking at t ′ = 28.04. This is a consequence of the
undershoaling properties of the Madsen and Sørensen model that provide waves with
reduced steepness, and thus curvature at the peak. This leads to a late explosion of the
free surface velocity us in (15). The lateness in the onset of the breaking also leads
to a considerably taller wave, and, as a consequence, a roller thickness much larger
than that observed, e.g., in Fig. 6b. To compensate for the behaviour of the Boussinesq
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model, several solutions are possible. One could be, for example, to modify (15) in
order to compensate for the aforementioned properties of the model, e.g. by replacing
the vertical development u(z) by a development on q(z), using ideas discussed in [18].
Here we adopt a simpler solution, and introduce a reduced value of the critical Froude,
set to Frscr = 0.75. As shown in Fig. 6d this provides a breaking time t ′ = 25.91,
within 0.1% of the reference, and a slightly reduced roller thickness. The wave profiles
obtained in this case are identical to those of Fig. 5c. In [51] a very interesting analysis
is reported visualizing the dynamics of the wave in terms of evolution of the peaks
celerity versus the particle speed at the peak. This is particularly relevant here, as the
physical criterion is actually based on the location where these two curves cross each
other. In Fig. 7 we compare the temporal evolution of the non-dimensional wave’s
celerity c′

b = cb/
√
gh0 to the non-dimensional particle velocity of the wave’s crest

u′
s = us/

√
gh0. Note that in the reference the authors report the celerity obtained

from ĉ′
w = dxc

dt /
√
gh0, where xc corresponds to the position of the wave’s crest. Here,

we use both for cb and for us the discrete definitions proposed in Sect. 4.3, so that the
breaking onset for the physical criterion is exactly represented on the plot.
In Fig. 7, we also represent with red circles the first activation of breaking (represented
as a circle in the reference as well). Even though neither of the underlying models,
nor the computation of the celerity and of the particle speed are the same as in [51],
the behaviours observed are very close to those of the reference.

As the wave shoals, with all the criteria we obtain an increase in the particle velo-
city at the crest, and a decreasing celerity at the front. This is expected for shoaling
conditions. The results allow to see graphically the early onset of breaking for some
of the criteria, which is, of course, natural as the only one actually using the physical
quantities involved is the physical criterion. It is interesting to note, however, that after
the start of the breaking, all closure models provide a strong increase in the particle
velocity at the crest, which is absent in the reference. This is certainly a consequence
of the wave profile sharpening, and eventually converging into a shock, and of the
use of (15) to compute us . Interestingly, very similar excursion in the free surface
velocities in breaking waves can be observed experimentally, see, e.g. [32].

5.1.2 Case 2: Slope of 1:15

We consider the same problem set-up, with a solitary wave of amplitude A = 0.3m,
shoaling on a slope 1:15. Following [51], we start looking at the dimensionless time
instants t ′1 = 3.23, t ′2 = 6, t ′3 = 8.4 and t ′4 = 11.32. Differently from the previous
case, these instants do not include a breaking point for the reference [51]. In our case,
all criteria provide, nevertheless, breaking before t ′4, as shown in Fig. 8.

As before, the earliest onset is obtained with the local criterion for t ′ = 7.67. The
hybrid detection method predicts a first breaking at t ′ = 9.32, while the physical
criterion gives breaking onset times of t ′ = 10.99 and t ′ = 10.12 with Frscr = 1
and Frscr = 0.75, respectively. The latter thus provides the latest breaking onset, and
gives wave profiles very close to the ones reported in [51], including the peak within
the last wave which has not dissipated yet. These observations are confirmed by the
wave profiles at the first breaking instant, reported in Fig. 9. As in the previous case,
we see that the local criterion gives a smaller roller which does not involve the foot of

123



Implementation and Evaluation of Breaking Detection. . .

Fig. 7 Benchmark problem of [51] with slope 1:35. Parametric study of the breaking criteria: time evolution
of the celerity and of the free surface velocity at the peak

the wave, while the roller obtained with the hybrid criterion encompasses the whole
front of the wave. The physical criterion with Frscr = 1 provides a taller wave with
a roller length which touches the end of the wet area, while with Frscr = 0.75 a
reduced roller is obtained. For both values of Frscr the wave front is sharper than the
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(a)

(b)

Fig. 8 Benchmark problem of [51] with slope 1:15. Direct comparison of the wave profiles for two different
choices of Frscr within the Physical Criterion

one obtained with the other two criteria. As before, we compare the time evolution of
the crest’s free surface velocity with the wave’s celerity. The results are summarized
in Fig. 10. The breaking point of the local and hybrid criterion occur very early. The
dissipation of the wave is such that the curves never cross. This may be due to the
effects of activating the limiter in the shock smoothing of the waves peak. Conversely,
the physical criterion provides a similar behaviour as the one observed in the previous
case, with a blow-up of the particle velocity at the crest after breaking onset. This is
consistent with the sharper wave fronts seen in Fig. 9.

5.2 Breaking and Run-Up of a SolitaryWave

This is a classical benchmark due to by [43], which adds further complexity to the
previous one, and considers the whole transformation of a solitary wave, including the
processes of breaking, run-up, and backwash. The set-up consists in a solitary wave
of amplitude A = 0.28m propagating on an initial depth of h0 = 1m and shoaling on
a 1:19.85 slope. A sketch of the test is shown in Fig. 11.

Computations have been run with a Manning coefficient of 0.01, a CFL= 0.3 and
�x = 0.1m, i.e. the same parameters suggested in [24]. The solution is visualized at
several discrete instants, corresponding to the beginning of the shoaling, the shoaling,
the run-up, and the back-wash. Results are displayed w.r.t. the non-dimensional time
t ′ = t

√
g/h0 and compared to experimental data. The same problem has been used

in Sect. 3 to evaluate the smoothness detection strategy proposed in the paper (see
Fig. 2).
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(a) (b)

(d)(c)

Fig. 9 Benchmark problem of [51] with slope 1:15. Comparison between different wave breaking criteria

The results are summarized in Fig. 12. Despite the differences observed in the
previous case, in this test we can hardly see any distinction between the solutions
obtained with the considered detection methods. Overall, each approach shows an
excellent agreement with the experimental data. We can see a slight phase advance
at t ′ = 15, which, however, is independent of the detection criterion, as none of the
computations has started breaking at this point. This phase difference is assumed to be
linked to the celerity of the exact solitary wave for (1) given by (see [36] for details)

c = √
gh0

√√√√(
A

h0

)2 1 + A
3h0

A
h0

− ln(1 + A
h0

)
>

√
gh0.

The effect of this phase advance is not visible in the solutions at later times. We
underline the nice capturing of the hydraulic jump at t ′ = 45, which validates the
numerical limiting procedure proposed (cf. Sect. 3).All of the breaking criteriamanage
to capture this feature. The exception to this is the solution obtained with the local
criterion that outlines someweak oscillations, revealing a weak flagging of this region.
Last, wewould like to remark that for this type of problems a singularity is encountered
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Fig. 10 Benchmark problem of [51] with slope 1:15. Parametrical study of the breaking criteria: time
evolution of the celerity and of the free surface velocity at the peak

for the local criterion as h goes to zero when the slope crosses the line corresponding
to the initial/still water depth. This singularity is handled by the addition of a small
quantity at the denominator, as discussed in Sects. 4.1 and 4.2. More importantly, the
value of h in vicinity and after this point is not relevant any longer for the definition
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Fig. 11 Sketch of the test for the run-up of a solitary wave taken from [43]

of the physical quantities used in the breaking citeria. In particular, we can note that
the local criterion always breaks after this point, as |η| = |H − h| > |h| when h < 0.
Similarly, the first condition in the pre-flagging (12) loses its physical meaning, as√
gh no longer represents a relevant celerity. For cases as the one in this section, this

does not seem to affect the results. This is due to the fact that the three criteria end up
detecting breaking in the run-up phase, and close to the backwash region where the
depth is very small. These features are very well reproduced by the Shallow Water
equations. However, as wewill see later, for periodic waves, and especially in presence
of strong set-up, this may be a source of inaccuracies.

5.3 PeriodicWave Over a Submerged Bar

In this benchmark we consider monochromatic waves propagating over a submerged
bar. According to [40], this test originates from Dingemans [16] who verified Delft
Hydraulics numerical model HISWA, and was then repeated by Beji and Battjes later
[4].

The test consists in a periodic wave with amplitude A = 0.027 m and period
T = 2.525 s. The wave is generated at X0 = 22 m over an initial water depth of
h0 = 0.4 m. The bathymetry has a fore slope of 1:20, and a rear one of 1:10. The
length of the plateau is of 2m, and the corresponding depth of 0.1m. Experimental
data in four gauges (cf. Fig. 13) are available for comparison. The problem is solved
on the domain [0, 60]m, with �x = 0.04 m, and absorbing conditions on both ends.
Periodic waves are generated using the source method of [36]. This is a difficult case,
and following [24], we modify the values of Sect. 4 for the detection criteria. We set
Ecritical = 0.6 for the local criterion, and γ = 0.3, φ = 30◦ for the hybrid and physical
ones. For the latter, we will use only Frscr = 0.75.

For Frscr = 1 no breaking is observed at all. Moreover, reflections due to the
boundary conditions may induce a phase shift in the results, affecting the comparison
with the experimental data [21]. For this reason, as in [24]wehave focusedour attention
on the first generated waves, before any interaction with the boundary conditions on
the right end of the domain has taken place. In practice, the first gauge is used to
re-phase the numerical signals, and the resulting phase calibration is applied to all
gauges. The resulting water elevation time series in the three remaining gauges are
reported in Fig.14.
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(b)(a)

(d)(c)

(f)(e)

Fig. 12 Results at different instants for the run-up of a solitary wave with A = 0.28 m for the hybrid model.
Comparison between the local, hybrid, and physical breaking criteria

The comparison shows that the hybrid criterion is the only one capturing the correct
magnitude and phase of the waves. The local criterion essentially fails to capture the
onset of breaking, even with the reduced value of Ecritical = 0.6. This leads to wrong
amplitudes as well as to a shift in the phase of parts of the signal. The physical criterion
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Fig. 13 Sketch of the submerged bar test case set-up
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(a) Gauge G1 - beginning of the upward slope
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(b) Gauge G2 - beginning of the plateau
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(c) Gauge G3 - midpoint of the plateau
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(d) Gauge G4 - beginning of the downward slope

Fig. 14 Periodic waves over a bar. Time series of the free surface elevation at gauges
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Fig. 15 Periodic wave over a submerged bar. Comparison of the instances when the breaking first occurs
on a wave (left) at a mid-time (center) and the last breaking point (right)

gives acceptable results, managing to capture the phase of the experimental data. The
amplitudes remain slightly higher than those of the data and obtained with the hybrid
detection. This may be the consequence of a later onset of breaking, as well as of some
intermittency in the breaking process, reducing the overall dissipation.

To better understand the differences in the time series, we have plotted the wave
profiles at time instants corresponding to the first and last breaking instants on the
plateau. Note that these differ for the three criteria. We also have included the wave
profile for all the solutions at the same intermediate time. The resulting free surface
distributions are displayed in Fig. 15.

If we set t = 0 in correspondence of the first breaking of the hybrid criterion,
the physical criterion breaks roughly at 0.18 T , while the local detection gives an
onset at t = 0.345 T , with T the incoming wave period. The delay is clearly vis-
ible in the left pictures in Fig. 15. The plots also show that the local criterion still
gives a very small roller, while the hybrid and physical criterion gives a breaking
region of comparable size. The central pictures, referring to t = 0.365 T , show that
the local criterion has already deactivated the flagging, while both the hybrid and
physical criteria are still breaking. Before the wave leaves the plateau, the local cri-
terion activates again at t ≈ 0.82 T , probably due to the decrease in bathymetry.
This sudden flash in breaking has no effect on the wave shape. The hybrid and
the physical criteria keep the flagging activated until t ≈ 0.77 T s and t ≈ 0.70 T ,
respectively. One must, however, also consider that in general, at least in our imple-
mentation, the lack of memory in the flagging introduces a degree of intermittency.
This is observed more for the physical criterion than for the hybrid one. The cause
may be the noise in the evaluation of the derivatives defining us (cf, Sect. 4.3),
and the result is a weaker dissipation leading to the slightly higher amplitudes of
Fig. 14.
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Mesh Convergence Study

We use this test to evaluate the mesh dependence of the closure and detection criteria.
Note that a very thorough investigation of this issue has already been presented in [23].
The reference, as well as our study shows that the type of breaking closure based on the
coupling of Boussinesq-type equations with the Non-linear ShallowWater model and
the approximation of the rollers by bores, introduces instabilities, that lead to a blow
up, as the mesh gets refined. This behaviour corresponds most likely to a mismatch
between the energy transported in the dispersive field which is not entirely transmitted
at the interface. Smoothing the coupling numerically only delays this blow up. Note
that similar results, albeit with different schemes, are reported in [19,23,39].

The grid convergence study reported in this section allows to include in the grid
convergence analysis the effect of using different detection criteria. For the scheme
andmodel used here, grid convergence for smooth, non-breaking, cases can be already
found in [19,36]. We thus repeat the computations of the submerged bar by halving
the mesh size from �x = 0.04 m, used in the previous section, to �x = 0.02 m and
�x = 0.01 m. Only, the local criterion has allowed to compute the whole solution
with an additional refinement of �x = 0.005 m.

On Fig. 16 we report the results for the water levels in gauge G3, but the trends
observed in the other gauges are similar. In the figure, the first row reports the results
obtained with the local criterion, the second those of the physical detection criterion,
and the last the results obtained with the hybrid criterion. For the last two criteria our
results are very similar to those of [23] and show the appearance on the finer meshes of
unphysical high-frequency oscillations superimposed to the trend of the coarse mesh
solution. This phenomenon is a not as visible for the results obtained with the local
criterion, which only flashes at the end of the upward slope. Compared to the weakly
nonlinearmodel analysed in [23] the oscillations obtained here seem slightlyweaker in
both in frequency and amplitude. We believe this to be a consequence of the shoaling
properties of the Madsen–Sørensen equations used here which have a tendency to
under-shoal, compared to the Nwogu-model of the reference, and to give lower and
longer waves, especially in the nonlinear range [18]. Concerning the detection criteria,
themain conclusionswe can draw are that the onset and growth of the instabilities seem
to be more visible with the hybrid detection which for this case is the one breaking
more strongly. The phenomenon is still very intense with the physical criterion, which
still detects wave breaking on most of the plateau, and much less present with the
local detection criterion which breaks very weakly. Indeed, the local criterion, for the
mesh �x = 0.005m appears to have the same shape as a Boussinesq-type solution,
i.e. without any breaking applied at all, as can be seen from Fig. 17.

Finally, as a last comparison, in Fig. 18 we show how the physical and hybrid
criterion start failing with the very first breaking instances, when the mesh gets too
fine, as with here �x = 0.005 m.

5.4 Breaking and Set-Up of MonochromaticWaves on a Shore

As a last benchmark, we consider the shoaling and breaking of monochromatic waves
over a shore, based on the experiments of Hansen and Svendsen [10]. This is an
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Fig. 16 Periodic waves over a bar. Time series of the free surface elevation at gauge G3 for each criteria
with different mesh sizes
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Fig. 17 Periodic waves over a bar. Comparison on gauge G3. Local criterion on �x = 0.005 m vs. pure
Madsen–Sørensen (MS) model on �x = 0.01 m

interesting case, as the set-up is induced by the breaking near the shore. The waves
considered are generated on a still water depth h0 = 0.36 m and then propagate on a
slope of 1:32.26. As in [24] the grid size used is �x = 0.025 m. Wave generation, as
well as the sponge layers on the left end of the domain, is set up following [36].

Case 051041 For this case waves have a period T = 2 s and amplitude A = 0.018
m, corresponding to an Ursell number U = 4.8077. We visualize in Fig. 19 the wave
profiles at the first and last breaking instants (for a fixedwave) detected by each criteria.
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Fig. 18 Periodic waves over a bar. Snapshots with first high-frequency oscillations at �x = 0.005 m

Fig. 19 Hansen and Svendsen test 051041. Snapshots of the first and last breaking times

As before, the breaking region is highlighted by vertical lines. As in the other cases,
the onset of breaking is predicted slightly later by the physical criterion when Frscr =
1.Differently than in the other benchmarks, here for Frscr = 0.75 the onset is predicted
earlier than with all other methods. The termination is also shifted accordingly for the
two cases. We can also see again that the roller size computed by the local criterion is
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Fig. 20 Hansen and Svendsen 051041. Wave height (left) and mean water level (right)

much shorter. For the latter, we can see a single vertical line at x ≈ 11.5, corresponding
to the zero of h, where breaking is turned on until the end of the domain.As discussed at
the end of Sect. 5.3, this is a consequence of the use of h in the definition of a reference
depth in the breaking detection. In Fig. 20, we compare the spatial distribution of the
wave height and the mean water level (set-up) with the experimental data of [10]. The
results are qualitatively close to those reported in [24]. The prediction of the wave
heights is clearly affected from the prediction of the breaking onset. Even though
under-predicting the breaking wave height, the physical criterion with Frscr = 1 gives
the best result for this case in terms of position of the breaking onset and slope of the
height after the breaking point. All the other criteria, including the physical one for
Frscr = 0.75, provide a very early onset of breaking, with an under-prediction of the
breaking wave height, and a milder slope after. Some of the height underprediction
may be also related to the under-shoaling characteristics of the Madsen and Sørensen
model (1). Looking at the wave set-up, reported on the right in the same figure, we
can clearly see the effects of the use of h in the local criterion. An unrealistically high
set-up is observed. As shown in [6], this can be related to the amount of dissipation
injected in the region where h < 0 which is entirely flagged as breaking. This has no
effects on the results obtained with the other criteria, providing a correct set-up.

Case 031041 In this case waves have a period T = 3.333333 s and amplitude A =
0.0215 m, corresponding to an Ursell number U = 17.5588.
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Fig. 21 Hansen and Svendsen test 031041. Snapshots of the first and last instant of breaking for different
detection criteria

The results are summarized in Figs. 21, and 22, reporting, respectively, the wave
profiles at breaking onset/termination for a given wave, and the mean water levels and
set-up. We can observe a behaviour similar to the one discussed in the previous tests.
The local criterion gives very thin rollers and flags as breaking occurs within the entire
region where the bathymetry is above the zero of h. The onset is predicted slightly
later for the physical criterion if Frscr = 1, but the difference is less important in this
case. Concerning the mean water level, the best is again the one obtained with the
physical criterion and Frscr = 1; the other methods, including the physical criterion
for a lower value of the critical Froude, are affected by the early prediction of breaking
onset.

The same drawbacks of the local criterion can be observed in thewave set-up, which
is too large for this detection method, at least with the implementation discussed in
Sect. 4. A good prediction of this quantity is instead provided by the hybrid and
physical criteria.
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Fig. 22 Hansen and Svendsen test 031041. Wave height (left) and mean water level (right)

6 Conclusions and Outlook

We have discussed the numerical implementation and the extensive benchmarking
of three breaking detection criteria in a finite element Boussinesq model. Breaking
closure is handled by means of the hybrid method that reverts the enhanced Boussi-
nesq equations to the hydrostatic Shallow Water system, and models wave breaking
fronts as shocks. The detection criteria tested involve an original implementation in a
numerical scheme of a more physical detection based on the comparison of the free
surface particle velocity at the peak of the wave, with the wave celerity. In the case
of the convective criterion, the lowering of the Frscr to 0.75 has been set empirically,
to account for the under-shoaling of the Boussinesq model [18]. The thorough bench-
marking performed shows an advantage in using detection methods based on more
sound physical arguments. In its current implementation the physical criterion is com-
parable to the hybrid slope/vertical velocity method proposed in [24], which is already
quite satisfactory in a wide range of cases. It also allows to obtain improved results
in some cases, as the Hansen and Svendsen experiments of Sect. 5.4. The results also
show some limitations related to the adequacy of the detection criteria to the propa-
gation model. More specifically, the classical asymptotic formula used for the vertical
velocity profile may be less well adapted for the type of Boussinesq model used than
for, e.g, the standard Peregrine equations of Beji and Nadaoka [18]. This is clearly

123



Implementation and Evaluation of Breaking Detection. . .

an aspect which could be refined and investigated in the future, also including fully
non-linear models. Further, the switch between the detection criteria undergoes some
smoothing but this will not guarantee the stability of the coupling as �x → 0. This
has been already investigated in [19,23] for the Green-Naghdi and Nwogu Boussinesq
equations. The grid convergence study performed here confirms this observation also
for the Madsen and Sørensen Model. The study also allows to give some highlight on
the impact of the nature of flagging on this aspect. In particular more than the intermit-
tency of the flagging, the results suggest that the stronger the duration of the breaking
process the earlier the breakdown. When convergence is obtained, as in the case of
the local criterion in our test, the converged solution is essentially the non-breaking
Boussinesq one, which we have shown quantitatively. The breakdown of the solution
as the mesh is refined is a flaw for this closure, which deserves a specific investigation.

Another element which deserves further study is the definition of the front celerity,
which becomes less trivial in multiple space dimensions. This may require to combine
the ideas explored here with techniques used in image processing, as well as, in wind
waves analysis. The main challenge will be to retain the locality of the detection,
thus avoiding non-local operations as, e.g., Fourier transforms. Other elements more
specifically linked to the numerical method also deserve some further refinement. It is
the case for example for the approximation of the second derivatives necessary in the
vertical velocity development. These may require special attention in the multidimen-
sional case, especially on unstructured grids. The use of methods based on high-order
polynomial expansions (see [1]) may help, but some form of filtering will certainly
still be necessary.
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