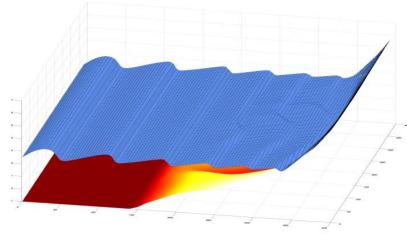
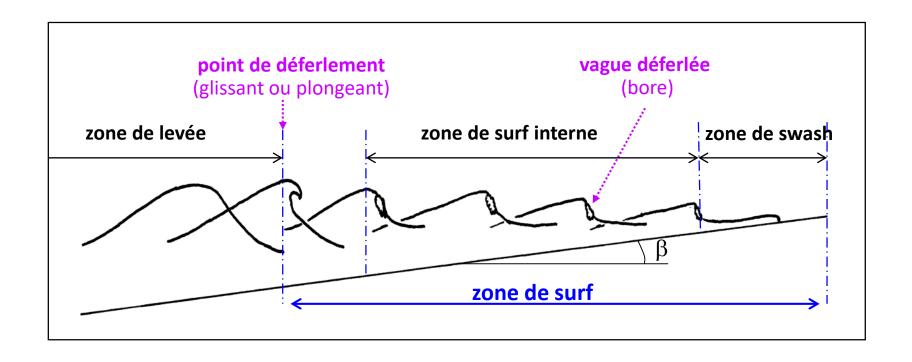
Modélisation de l'hydrodynamique en zone de surf

Philippe Bonneton

EPOC, équipe METHYS, Bordeaux Univ., CNRS



modèles de vague à résolution de phase



La zone affectée par le déferlement contrôle les échanges hydro-sédimentaires entre la côte et le large

Morphodynamique des environnements sableux

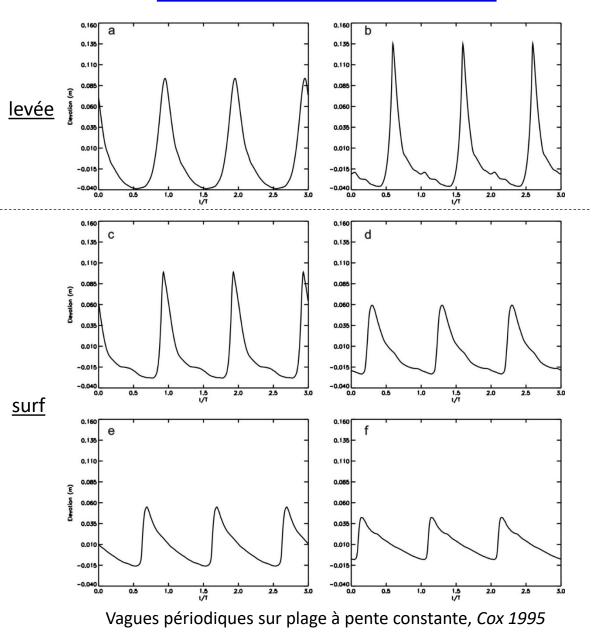
plages sableuses

embouchures tidales

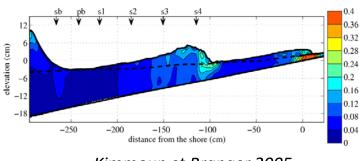
Processus liés au déferlement → impact, franchissement et submersion

Pour ces différentes applications il est essentiel d'avoir une bonne compréhension et modélisation des processus hydrodynamiques dans la zone de surf

Non-linéarités et fronts d'onde



> dissipation d'énergie

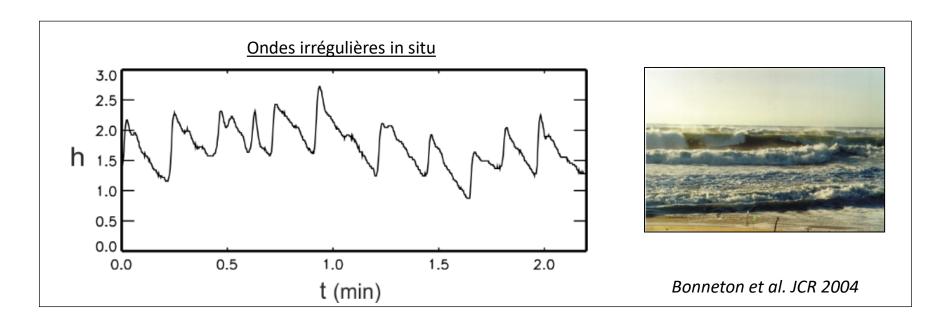


Kimmoun et Branger 2005

- > très fortes non-linéarités
- > ondes en dents de scie

Non-linéarités et fronts d'onde

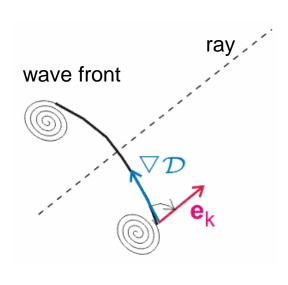
→ Ondes en dents de scie



Forme universelle caractéristique des ondes pour lesquelles les <u>processus non-linéaires</u> sont très largement prépondérant devant la <u>dispersion</u>

→ ex.: acoustique non-linéaire

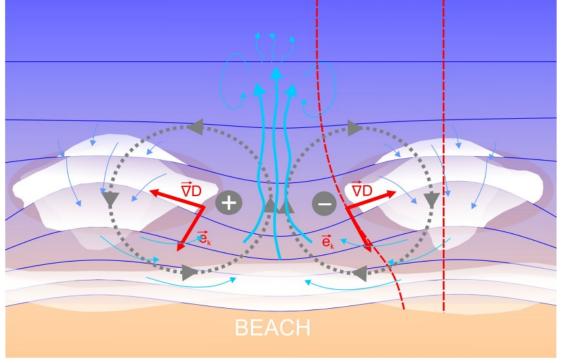
Déferlement différentiel et vorticité



$$\frac{\partial \bar{\omega}}{\partial t} + \nabla \cdot \left(\bar{\omega} \bar{\mathbf{u}} + \overline{\tilde{\omega}} \bar{\tilde{\mathbf{u}}} \right) = \nabla \mathcal{D} \wedge \mathbf{e}_k$$

Bonneton et al. 2010

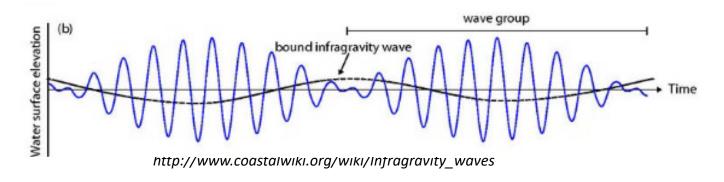
Courant d'arrachement



Castelle et al. 2013

Ondes infra-gravitaires

- Ondes de gravité de surface T~ 25-250 s
- o 2 mécanismes principaux de génération
- → Ondes liées aux groupes d'onde



- → Modulation du point de déferlement
- Rôle très important dans la zone affectée par le déferlement et plus particulièrement en zone de swash

<u>Article de synthèse</u>: *Bertin et al., Earth Science Reviews* 2018

Plan de la présentation

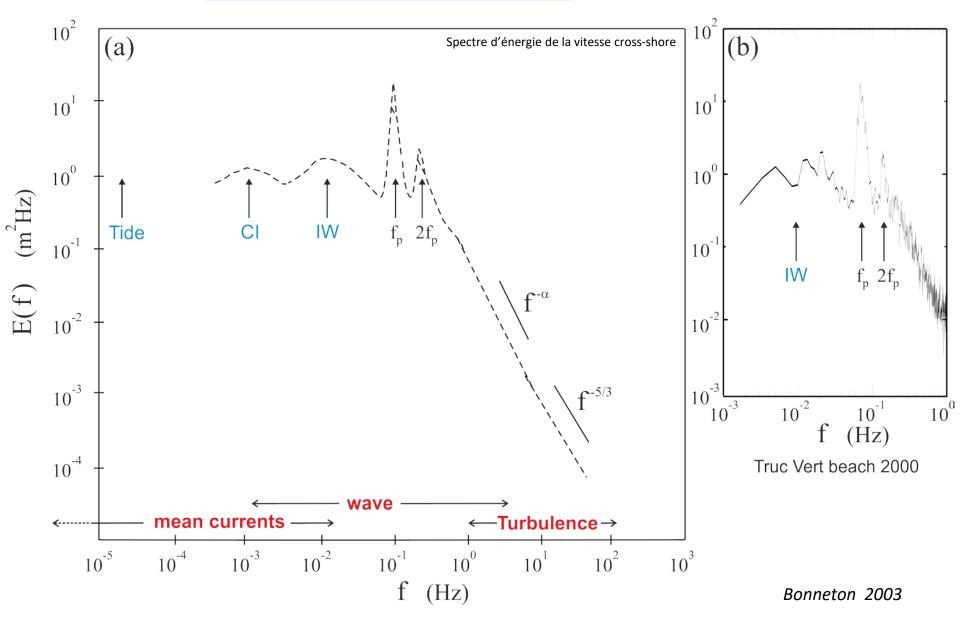
- ☐ Introduction
- ☐ Stratégies de modélisation
- ☐ Modèles à résolution de phase
- ☐ Modèle SGN et processus dissipatifs
- ☐ Conclusion

Plan de la présentation

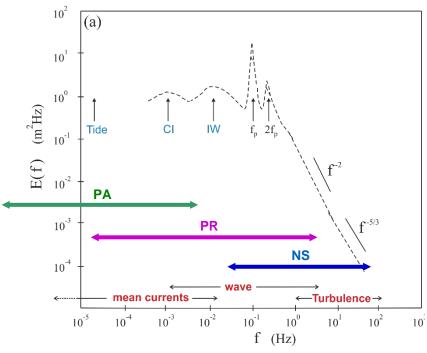
- ☐ Introduction
- **☐** Stratégies de modélisation
- ☐ Modèles à résolution de phase
- ☐ Modèle SGN et processus dissipatifs
- □ Conclusion

Stratégie de modélisation

Spectre d'énergie en zone de surf

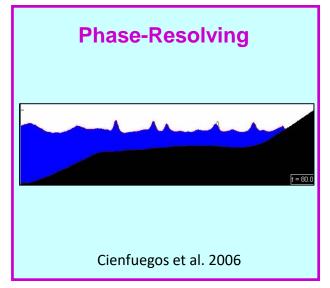


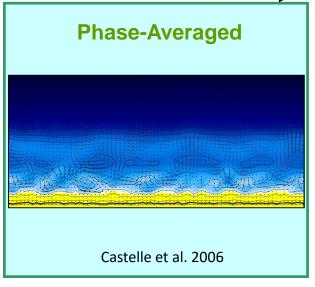
Stratégie de modélisation



small scales large scales

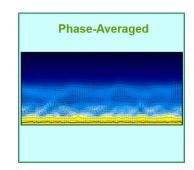
Two-phase flow NS Lubin and Glockner 2015



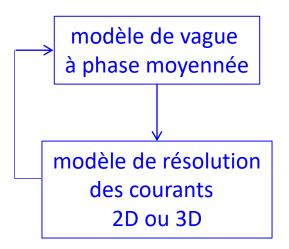


séparation en terme d'échelles temporelles entre les mouvements lents (marée, courants induits par les vagues, ...)

et les mouvements rapides (vagues, ondes infagravitaires, ...)



→ hypothèse naturelle hors de la zone affectée par le déferlement



→ modèles spectraux (SWAN, WWIII, TOMAWAC, ...)

$$\frac{\partial N}{\partial t} + \nabla_{\vec{x}} \cdot \left((\vec{C}_g + \vec{U}) N \right) + \frac{\partial C_{\sigma} N}{\partial \sigma} + \frac{\partial C_{\theta} N}{\partial \theta} = \sum_{i} \frac{S_i}{\sigma}$$
$$N(\sigma, \theta) = \frac{E(\sigma, \theta)}{\sigma}$$

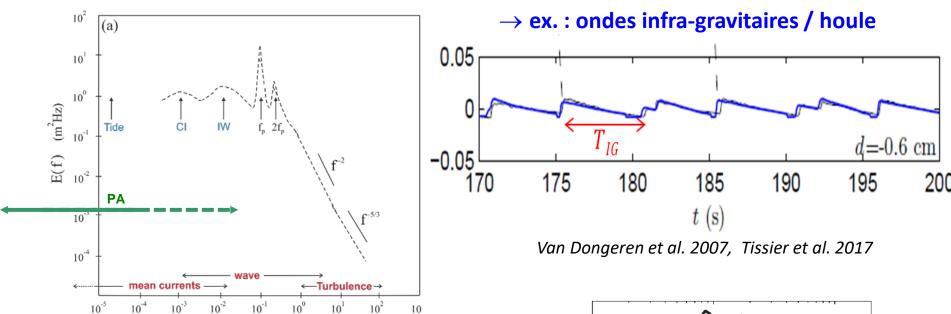
ex.: Roelvink and Reniers 2012, Ardhuin et al. 2017

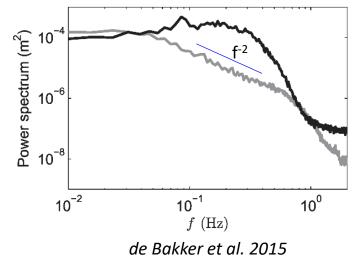
→ bonne description de la circulation littorale et côtière induite par les vagues à grande échelle

Zone de surf : <u>Dynamique très fortement non-linéaire</u>

→ hypothèse de séparation d'échelles ?

(Hz)





Zone de surf : <u>Dynamique très fortement non-linéaire</u>

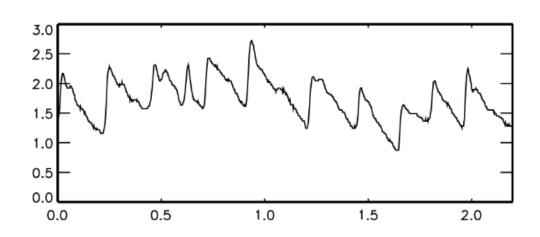
Modélisation spectrale

$$\frac{\partial N}{\partial t} + \nabla_{\vec{x}} \cdot \left((\vec{C}_g + \vec{U}) N \right) + \frac{\partial C_{\sigma} N}{\partial \sigma} + \frac{\partial C_{\theta} N}{\partial \theta} = \sum_{i} \frac{S_i}{\sigma}$$

$$N(\sigma, \theta) = \frac{E(\sigma, \theta)}{\sigma}$$

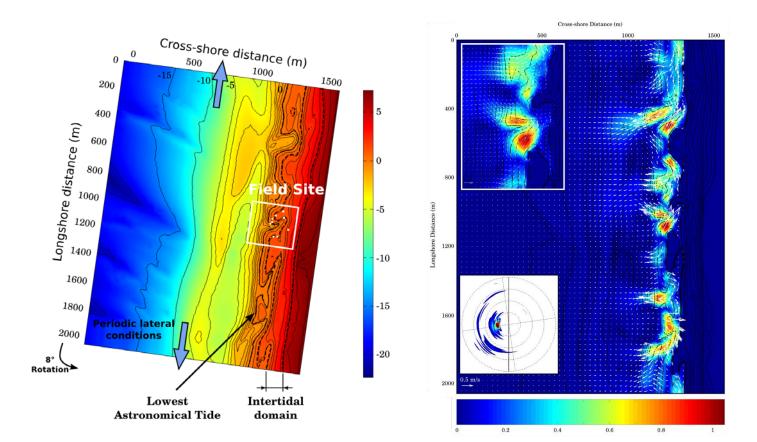
$$S_b = \mathcal{D}_b \frac{E(\sigma, \theta)}{E_{tot}}$$

 $\mathcal{D}_{ extsf{b}}$ donnée par Battjes and Janssen 1978



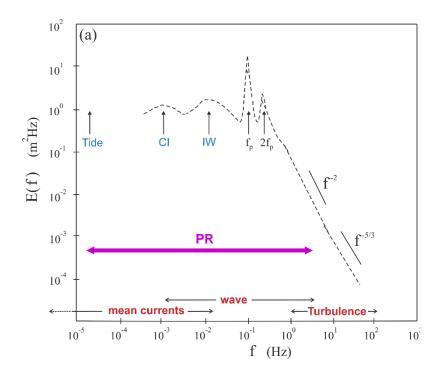
Seule approche adaptée pour

- > temps longs : morphodynamique des littoraux
- grande échelle : échanges hydro-sédimentaires côte / large
 - → codes: 2DBeach, ROMS, CROCO, ...



Bruneau et al. 2011

- dynamique instationnaire des vagues en zone de surf et de swash
- impact, franchissement et submersion
 - → modélisation à résolution de phase



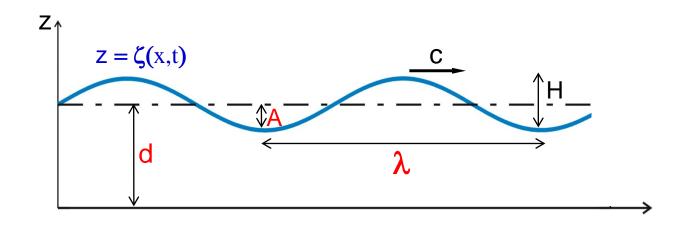


Plan de la présentation

- ☐ Introduction
- ☐ Stratégies de modélisation
- Modèles à résolution de phase
- ☐ Modèle SGN et processus dissipatifs
- □ Conclusion

Modèles à résolution de phase

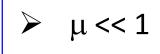
Zone affectée par le déferlement



$$\mu = \left(\frac{d}{\lambda/2\pi}\right)^2 = (kd)^2$$

$$\varepsilon = \frac{A}{d}$$

$$\geq$$
 $\epsilon = O(1)$



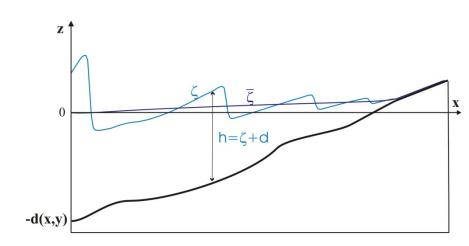
Equations d'Euler 3D à surface libre

 \rightarrow développement asymptotique par rapport à μ

Equations 2DH adimensionnées

$$\partial_t \zeta + \nabla \cdot (h\mathbf{u}) = 0$$

$$\partial_t \mathbf{u} + \varepsilon (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \zeta = \mu \mathcal{D} + O(\mu^2)$$



Equations 1D fond plat

$$\frac{\partial \zeta}{\partial t} + \frac{\partial hu}{\partial x} = 0$$

$$\frac{\partial u}{\partial t} + \epsilon u \frac{\partial u}{\partial x} + \frac{\partial \zeta}{\partial x} = \mu \mathcal{D}$$

$$\mathcal{D} = \frac{1}{3h} \frac{\partial}{\partial x} \left(h^3 \left(\frac{\partial^2 u}{\partial x \partial t} + \epsilon u \frac{\partial^2 u}{\partial x^2} - \epsilon \left(\frac{\partial u}{\partial x} \right)^2 \right) \right)$$

- ☐ ordre 0 : équations de Saint Venant
 - → non-dispersives et totalement non-linéaires

Equations 1D fond plat

$$\frac{\partial \zeta}{\partial t} + \frac{\partial hu}{\partial x} = 0$$

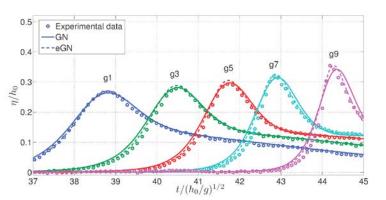
$$\frac{\partial u}{\partial t} + \epsilon u \frac{\partial u}{\partial x} + \frac{\partial \zeta}{\partial x} = \mu \mathcal{D}$$

$$\mathcal{D} = \frac{1}{3h} \frac{\partial}{\partial x} \left(h^3 \left(\frac{\partial^2 u}{\partial x \partial t} + \epsilon u \frac{\partial^2 u}{\partial x^2} - \epsilon \left(\frac{\partial u}{\partial x} \right)^2 \right) \right)$$

- ☐ ordre 0 : équations de Saint Venant
 - → non-dispersives et totalement non-linéaires
- **Ο**(μ) et ε=O(μ) : **équations de Boussinesq** $\mathcal{D} = \frac{1}{3} \frac{\partial^3 u}{\partial x^2 \partial t}$
 - → faiblement dispersives et faiblement non-linéaires
- \Box O(μ) et ϵ =O(1) : **équations Serre ou Green Naghdi (SGN)**
 - → faiblement dispersives et totalement non-linéaires

Prise en compte des non-linéarités

Filippini et al. JCP 2016



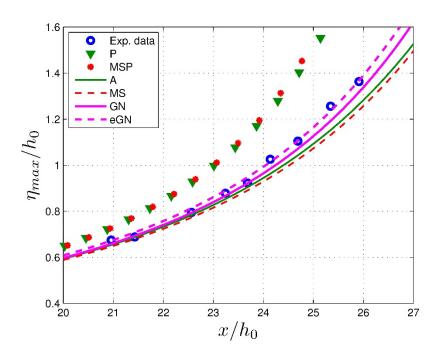


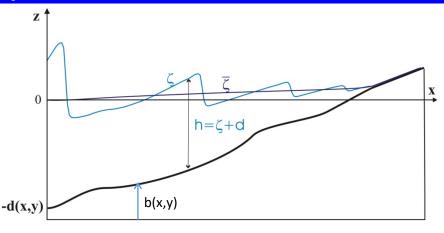
Figure 1.18: Nonlinear shoaling. Comparison between the computed wave peak evolutions in space and laboratory data from Grilli *et al.* [1994] for the models discussed.

Equations 2D fond variables

$$\partial_t \zeta + \nabla \cdot (h\mathbf{u}) = 0$$

$$\partial_t \mathbf{u} + \varepsilon (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \zeta = \mu \mathcal{D} + O(\mu^2)$$

Lannes and Bonneton (2009)



$$\mathcal{D} = -\mathcal{T}[h, b]\mathbf{u}_t - \varepsilon \mathcal{Q}[h, b](\mathbf{u})$$

where the linear operator $\mathcal{T}[h,b]$ is defined as

$$\mathcal{T}[h,b]W = -\frac{1}{3h}\nabla(h^3\nabla\cdot W) + \frac{1}{2h}[\nabla(h^2\nabla b\cdot W) - h^2\nabla b\nabla\cdot W] + \nabla b\nabla b\cdot W$$

and the quadratic term $Q[h, b](\mathbf{u})$ is given by

$$\mathcal{Q}[h,b](\mathbf{u}) = -\frac{1}{3h}\nabla\left(h^3((\mathbf{u}\cdot\nabla)(\nabla\cdot\mathbf{u}) - (\nabla\cdot\mathbf{u})^2)\right)$$
$$+\frac{1}{2h}[\nabla(h^2(\mathbf{u}\cdot\nabla)^2b) - h^2((\mathbf{u}\cdot\nabla)(\nabla\cdot\mathbf{u}) - (\nabla\cdot\mathbf{u})^2)\nabla b] + ((\mathbf{u}\cdot\nabla)^2b)\nabla b$$

Méthodes de resolution hybrides

$$\partial_t \zeta + \nabla \cdot (h\mathbf{u}) = 0$$

$$\partial_t(h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + gh\nabla \zeta = \mathcal{D}$$

étape hyperbolique

$$(I + \alpha T)\mathcal{D} = T(gh\nabla \zeta) - Q(\mathbf{u})$$

étape elliptique

Etape hyperbolique SV → domaine de recherche tres actif en math appli : nombreuses méthodes numériques performantes

- gestion de la ligne d'eau, positivité de h
- schémas numériques équilibrés (well-balanced) en présence de fortes variations de pente bathymétrique
- ➤ Méthodes VF et EF d'ordre élevé sur maillage non-structuré

Méthodes de resolution hybrides

$$\partial_t \zeta + \nabla \cdot (h\mathbf{u}) = 0$$

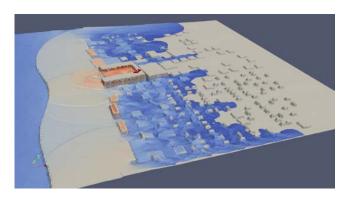
$$\partial_t(h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + gh\nabla \zeta = \mathcal{D}$$

étape hyperbolique

$$(I + \alpha T)\mathcal{D} = T(gh\nabla \zeta) - Q(\mathbf{u})$$

étape elliptique

- o Bonneton et al., JCP 2011; Tissier et al., CE2012 \rightarrow VF/DF sur maillage structuré
- \circ Duran and Marche CCP 2015 \rightarrow DG-FE/DG-FE, maillage non-structuré; code WAVEBOX
- \circ Filippini, Ricchiuto et al., JCP 2016 \rightarrow VF/FE ou FE/FE, maillage non-structuré; code SLOWS
- Popinet JCP 2015 → Méthode multi-grille, maillage adaptatif; code BASILISK
- modèle de vague communautaire UHAINA
 EPOC, IMB, INRIA Bx, IMAG
 - → Sébastien De Brye et al., JNGCGC 2018



Plan de la présentation

- ☐ Introduction
- ☐ Stratégies de modélisation
- ☐ Modèles à résolution de phase
- Modèle SGN et processus dissipatifs
- □ Conclusion

Approche classique pour les équations de type Boussinesq

- Zelt 1991 : inspirée du concept de viscosité turbulente pour RANS
 - → ajout d'un terme ad hoc de diffusion turbulente dans l'équation de la qdm

$$\partial_t \zeta + \nabla \cdot (h\mathbf{u}) = \mathcal{D}_h$$
 $\partial_t (h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + gh\nabla \zeta = \mathcal{D} + \mathcal{D}_{hu}$

$$D_{hu} = \frac{\partial}{\partial x} \left(v_{hu} \frac{\partial (hu)}{\partial x} \right) \qquad D_h = \frac{\partial}{\partial x} \left(v_h \frac{\partial h}{\partial x} \right)$$

$$D_h = \frac{\partial}{\partial x} \left(v_h \frac{\partial h}{\partial x} \right)$$

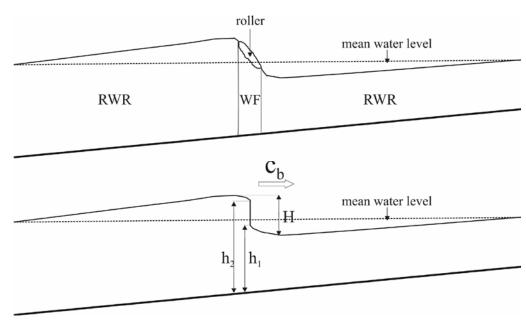
- Kennedy et al. $2000 \rightarrow \text{application aux équations SGN, (code FUNWAVE)}$ 0
- Cienfuegos, Barthélémy, Bonneton, $2010 \rightarrow \text{ ajout de coefficients de mélange turbulent}$ 0 aux 2 équations : masse et qdm

Approche classique pour les équations de type Boussinesq

→ manque de bases physique et mathématique

- > nécessite la calibration de nombreux paramètres ajustables
- difficultés pour gérer des bathymétries complexes, le franchissement et les lignes d'eau multiples

Vagues déferlées dans la zone de surf interne



$$\partial_t \zeta + \nabla \cdot (h\mathbf{u}) = 0$$

$$\partial_t(h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + gh\nabla \zeta = 0$$

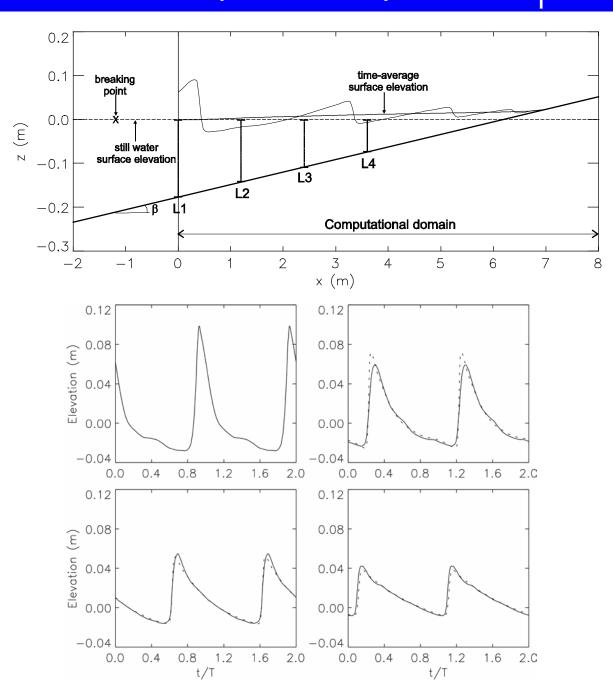
$$-c_b[h] + [hu] = 0$$

 $-c_b[hu] + [hu^2 + \frac{1}{2}gh^2] = 0$

Eq. SV avec chocs → méthodes numériques à capture de choc

→ dissipation d'énergie des vagues : pas de paramétrisation ad hoc

$$D_b = \frac{g}{4} \left(\frac{g(h_2 + h_1)}{2h_1 h_2} \right)^{1/2} (h_2 - h_1)^3$$



Cox's (1995) spilling breaking experiment $H_0=0.115$ m, T=2.2 s, $\beta=1/35$

Numerical parameters

 $\Delta x=0.04$ m, $\Delta t=0.01$ s, f_r=0.015

- √ dissipation d'énergie
- √ distorsion non-linéaire
- ✓ ondes en dents de scie

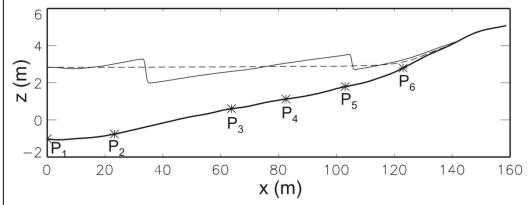
Bonneton (2007)

front déferlant / choc SV

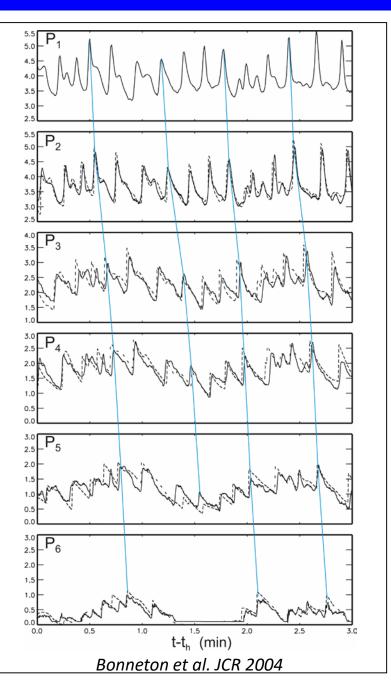
Comparison with field data

Truc Vert Beach 2001

- Offshore wave conditions: $\theta \approx 0^{\circ}$, Hs=3 m, Ts=12 s
- Maximum surf zone width: 500 m



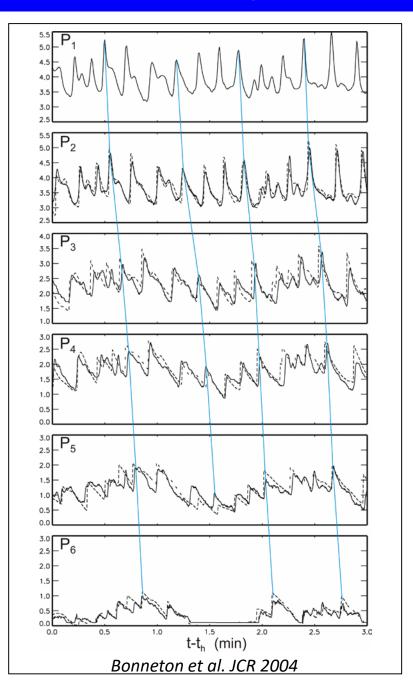
Bottom topography and pressure sensor locations



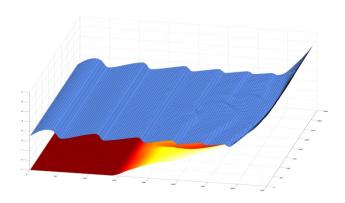
Modèle SGN et processus dissipatifs

front déferlant / choc SV

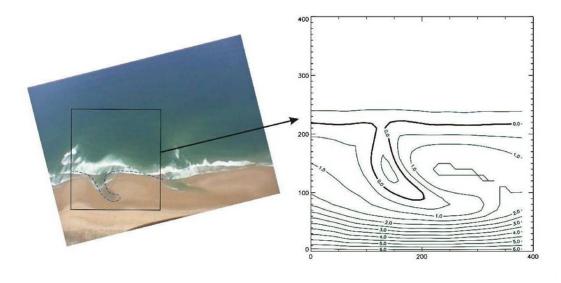
- √ dissipation d'énergie
- √ distorsion non-linéaire
- √ ondes en dents de scie
- √ ondes infra-gravitaires

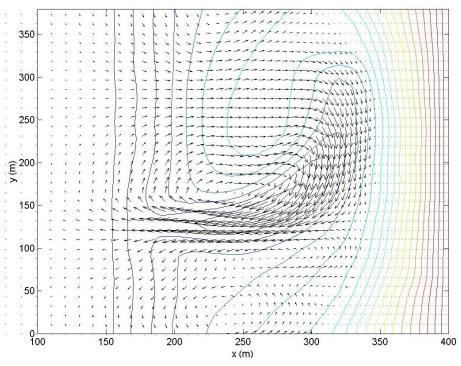


- √ dissipation d'énergie
- √ distorsion non-linéaire
- √ ondes en dents de scie
- √ ondes infra-gravitaires



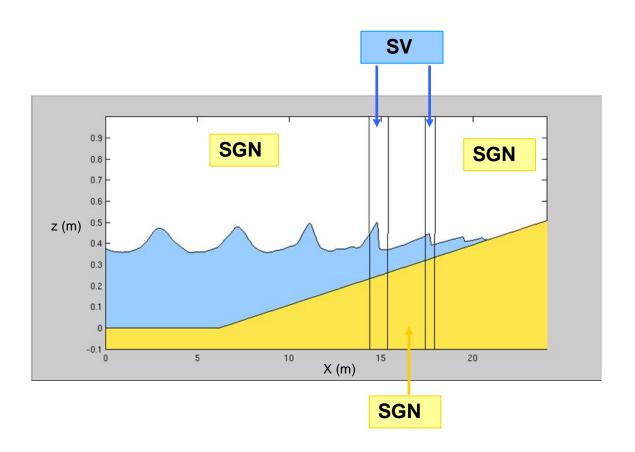
Marche et Bonneton, 2006



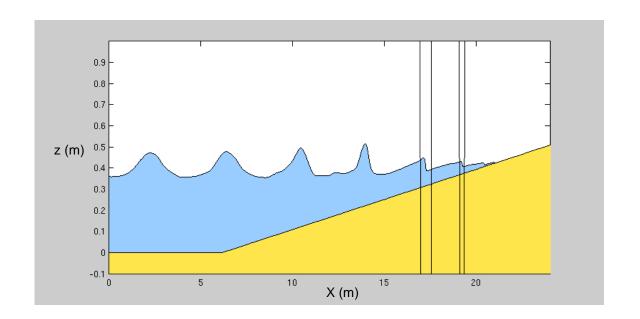


Modélisation des vagues de la zone de levée jusqu'aux zones de surf et de swash

$$\begin{array}{cccc} \partial_t \zeta + \nabla \cdot (h\mathbf{u}) &=& 0 \\ \partial_t \mathbf{u} + \varepsilon (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \zeta &=& \cancel{\triangleright} & & \\ \mathbf{Vagues\ non-d\'eferlantes} && \mathbf{Vagues\ d\'eferl\'ees} \\ &\rightarrow \ \ \acute{\mathbf{e}} \mathbf{quations\ SGN} && \rightarrow \ \ \acute{\mathbf{e}} \mathbf{quations\ SV\ avec\ choc} \end{array}$$



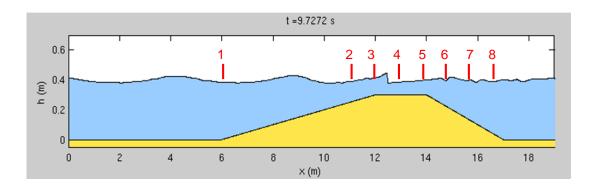
Tissier et al. 2012



Tissier et al. 2012

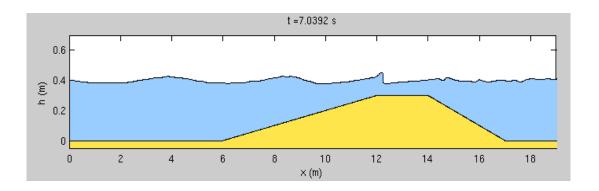
Periodic waves breaking over a bar

Beji and Battjes (1993) experiments



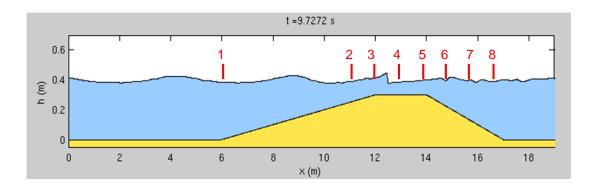
Periodic waves breaking over a bar

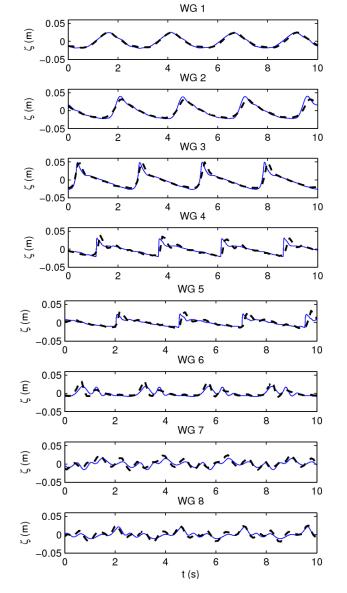
Beji and Battjes (1993) experiments



Periodic waves breaking over a bar

Beji and Battjes (1993) experiments

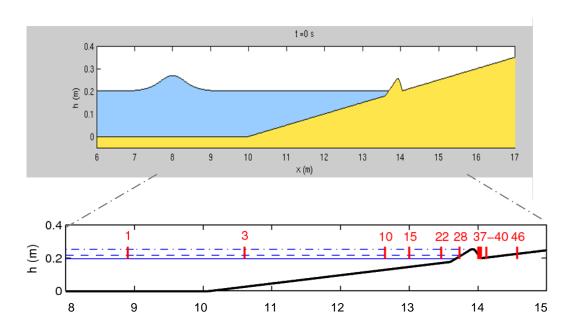


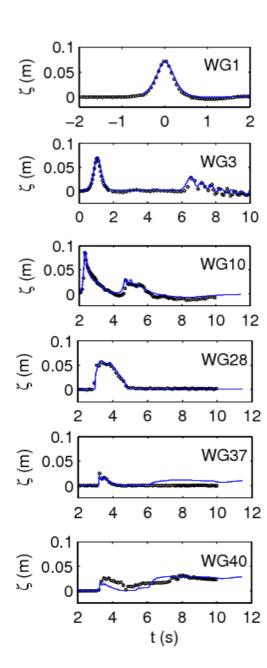


Laboratory data
Model prediction

Wave overtopping and multiple shorelines

Solitary waves overtopping a seawall (Hsiao and Lin, 2010)

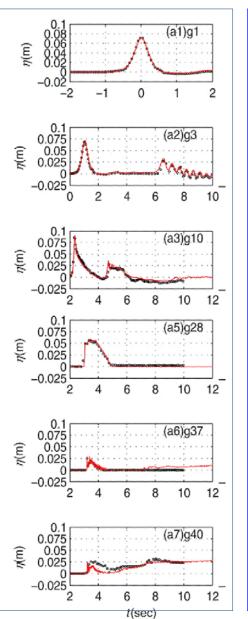


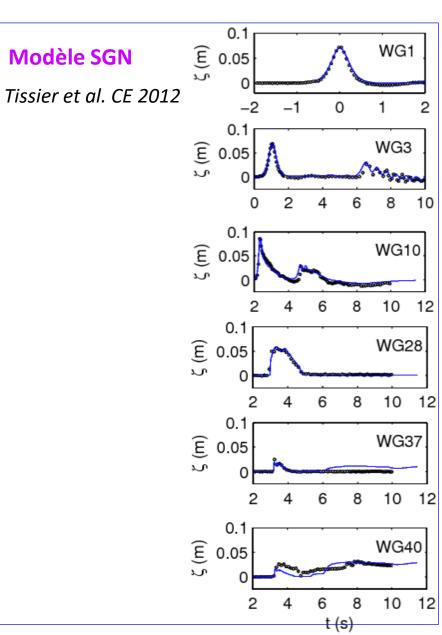


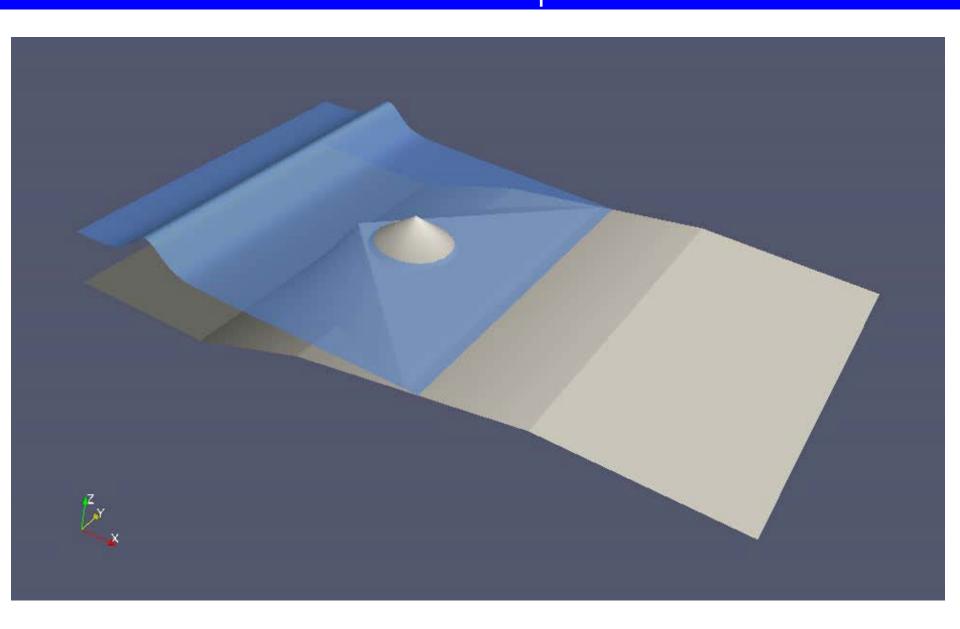
Wave overtopping and multiple shorelines

Modèle VOF, RANS

Hsiao et Lin (2010) COBRAS model

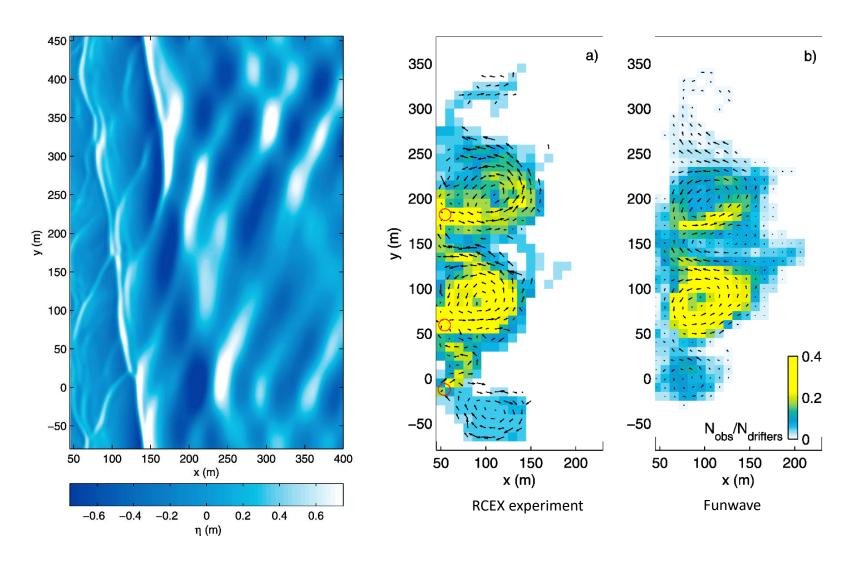






Marche et Lannes, 2014

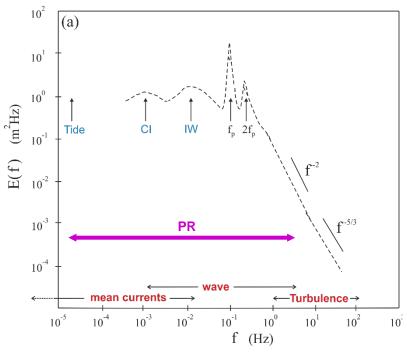
Courants d'arrachement et vorticité



FUNWAVE - Geiman, Kirby et al. JGR 2011

Conclusion et perspectives

Modélisation de l'hydrodynamique en zone de surf → modèles à résolution de phase



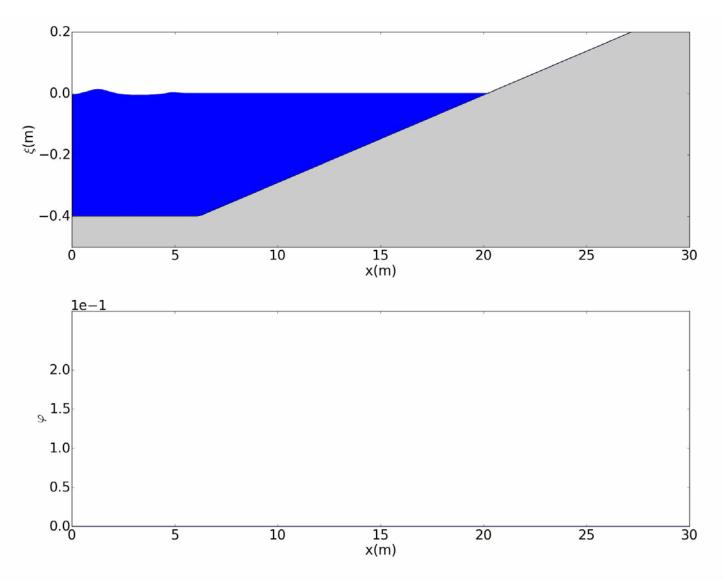
[=80.0

- √ dissipation d'énergie
- √ distorsion non-linéaire
- √ ondes infra-gravitaires
- √ vorticité verticale et circulation

- bathymétrie complexe
- lignes d'eau multiples
- franchissement

Mieux modéliser la dynamique des fronts déferlés

- **➤ asymétrie verticale** → transport sédimentaire
- > vorticité horizontale (rouleau de déferlement)
 - → Richard et Gavrilyuk JFM 2013



Duran, Richard and Kazakova 2018

Mieux modéliser la dynamique des fronts déferlés

- > asymétrie verticale
- > vorticité horizontale (rouleau de déferlement)
- > dynamique de la vorticité : horizontale/verticale

Mesures in situ hautes fréquences des vagues et de la circulation

- vagues : reconstruction non-linéaire, mesures directes acoustiques ou Lidar
- circulation et vorticité : méthodes vidéo PIV, radar

Merci de votre attention

