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Chapter 1

Introduction Générale

1.1 Intéréts et enjeux scientifiques

Le travail de recherche qui sera présenté dans cette thése s’insére de maniére générale
dans le domaine de l'ingénierie cotiére. Nous aborderons en particulier des aspects
théoriques et pratiques en rapport avec la description et la prédiction de I’hydrodynami-
que littorale depuis des profondeurs intermédiaires et jusqu’au trait de cote. Les outils
mathématiques a développer devront alors étre capables de fournir une description
fiable et précise des différents processus, essentiellement non linéaires, qui s’avérent
étre les principaux responsables de la déformation spatio-temporelle que les vagues
subissent lors de leur propagation sur des bathymétries complexes.

L’intérét croissant que la communauté scientifique internationale a porté ces dernié-
res années aux aspects hydrodynamiques liés a la propagation de la houle et du défer-
lement bathymétrique a été en grande partie motivé par 1’aggravation progressive et
généralisée des problémes d’érosion cotiére. Ce phénoméne a pour conséquence visible
une diminution importante des surfaces des terres émergées. C’est ainsi qu’une étude
menée & I’échelle mondiale a montré que prés de 70 % des cotes (en longueur) auraient
été en phase d’érosion vers la moitié des années 1980’s (cf. Bird [16]). Par ailleurs,
une récente étude commanditée par ’Union Européenne conclue qu'un cinquiéme du
littoral de ses pays membres serait fortement touché a I’heure actuelle [59]. Il s’avére
de maniére assez claire que cette situation préoccupante est la conséquence, plus ou
moins directe, des effets que les activités humaines peuvent avoir sur ’environnement.

D’autre part, il est de plus en plus évident que les enjeux économiques et sociaux
liés aux zones littorales sont considérables. En effet, une partie importante de la
population mondiale habite & moins de dix kilométres des cotes [16] et les activités tel

que le transport maritime et portuaire, I'industrie et le tourisme sont particuliérement
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concernées. D’un autre coté, les sites naturels situés a la frontiére entre la terre et
la mer produisent souvent un cadre propice pour le développement d’une biodiversité
richissime et constituent donc un patrimoine écologique inestimable. Malheureusement,
ces écosystémes privilégiés sont la plus part du temps le résultat d’intéractions bio-
physiques subtiles et leur existence méme peut étre compromise lorsque les équilibres
naturels sont légérement perturbés.

Tout le long du XXéme siécle, la lutte contre 1’érosion des cotes a été principalement
abordée a I’aide de solutions radicales qui ont nécessité la mise en place de structures
lourdes tel que des digues ou des brises-lames, produisant les effets attendus seule-
ment de maniére trés locale. En effet, on commence & comprendre aujourd’hui que
ces ouvrages d’ingénierie modifient de facon importante le transit sédimentaire na-
turel provoquant dans le moyen ou le long terme une aggravation globale du probléme
initialement visé. Par conséquence, une gestion du littoral respectueuse des équilibres
naturels qui trouverait un compromis efficace et durable entre la protection des intéréts
anthropiques et de I'environnement doit étre encouragée par les autorités concernées.
Bien évidemment, la tache est d’envergure, non seulement en raison des divers conflits
politiques, économiques ou environnementaux qui en découlent, mais aussi et surtout
parce que l’état actuel des connaissances scientifiques qui permettrait de fournir des
réponses plus ou moins objectives, reste encore largement insuffisant.

Les predictions de court ou moyen terme des évolutions hydrosédimentaires des
plages sableuses ont été jusqu’a présent abordées surtout a partir de modéles méso-
échelles. Ces outils résultent d’'un moyennage des équations du mouvement, a la fois
spatial sur la profondeur d’eau et temporel sur une période caractéristique de la houle
incidente. Dans la pratique, cette approche méso-échelle permet de fournir des informa-
tions importantes sur I'organisation globale des courants moyens dans la zone cotiére.
Cependant, elle s’avére inefficace dans la prediction de certains processus sédimentaires
qui nécessitent la prise en compte de phénomeénes plus fins. C’est le cas en particulier
de la dynamique complexe des barres sableuses dans la zone de déferlement. Or, ces
barres littorales constituent une protection naturelle contre 1’érosion en favorisant la
dissipation de 1’énergie incidente des houles et en fournissant du sable pour remblayer
les plages.

Dans les derniéres années quelques constributions marquantes suggérent que des
efforts de recherche visant & améliorer la prédiction numérique, a la fois dans I’espace
et dans le temps, de I'évolution des profils des vagues doivent étre poursuivis. C’est
ainsi qu’a ’aide d’une modélisation discréte d’un lit de grains de sable soumis a un
forgage hydrodynamique périodique de forme paramétrique, Drake et Calantoni [52]

furent en mesure de confirmer qu’un flux net de sédiments dans la direction de propa-
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gation de la houle pouvait étre engendrée sous I'influence des effets d’accéleration que
I’écoulement introduisait dans la couche limite de fond. En particulier, le coefficient
d’asymétrie horizontal associé a la série temporelle de la vitesse du fluide fut identifié
comme étant le paramétre responsable de ce type de réponse hydro-sédimentaire. Il
est important d’attirer I’attention du lecteur sur le fait que ce résultat théorique a
des conséquences pratiques importantes en ce qui concerne la conception de solutions
alternatives pour lutter contre les problémes d’érosion évoqués précédemment. En
effet, Drake et Calantoni [52| ont pu mettre en évidence le mécanisme physique res-
ponsable du remblayement naturel des plages qui est normalement observé en périodes
d’accalmie.

L’idée sous jascente dans les méthodes de protection du littoral dites « douces » con-
siste justement a renforcer ou favoriser le mécanisme naturel de rechargement des plages
par le biais d’apports supplémentaires de sédiments stratégiquement placés visant par
exemple 4 la création ou le rétablissement d’un systéme dunaire au large des sites con-
cernés. Cependant, cette stratégie qui s’avére étre respectueuse de I’environnement
ne pourra étre envisagée efficacement qu’a condition de disposer d’outils de prédiction
fiables qui tiendraient compte au minimum des effets non linéaires responsables de la
déformation spatio-temporelle des houles par le fond.

Les conclusions apportées par I’étude de Drake et Calantoni [52] ont été récemment
confirmées dans le milieu naturel par Hoefel et Elgar [78] qui ont réussi a reproduire
numériquement la migration vers la cote d’une barre de sable longitudinale en utilisant
une formule de transport sédimentaire incluant les effets d’accélération dissymétrique
du fluide prés du fond. Ce mécanisme d’accrétion sédimentaire serait en effet efficace
lorsque le courant de retour est faible, ce qui expliquerait pourquoi le remblayement
naturel des zones littorales a lieu pincipalement en périodes de beau temps.

Dans I'état actuel des connaissances, une description mathématique compléte des
processus physiques concernés n’est pas encore possible. En particulier en raison de
la compléxité inhérente aux interactions houle-courant-turbulence qui mobilisent une
quantité non négligeable de sédiments dans le zone affectée par le déferlement. Cepen-
dant les travaux cités plus haut fournissent des pistes précieuses en ce qui concerne les
mécanismes que nous devons au minimum étre en mesure de décrire.

Dans ce contexte, les travaux présentés dans cette thése cherchent en particulier a
fournir un outil de prédiction fiable et efficace de la déformation spatio-temporelle que
subit la houle sous 'influence du fond lors de sa propagation vers la cote. L’effort est
porté, en raison des arguments exposés précédemment, sur une modélisation hydrody-
namique capable de fournir une description détaillée de la propagation des ondes de

gravité a proximité du littoral. Nous cherchons & développer une approche numérique
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Figure 1.1: Définition schématique des domaines d’application des équations de Boussinesq et Serre
ainsi que les équations de ’eau peu profonde de Saint-Venant.

qui, d’une part permettrait de décrire les principaux mécanismes non linéaires respon-
sables de I’évolution des vagues dans la zone de levée, et d’autre part, qui inclurait le
phénomeéne du déferlement en introduisant une dissipation d’énergie a 1’échelle macros-
copique en accord avec la réalité physique tout en reproduisant la forme caractéristique
des vagues en dent de scie dans la zone de déferlement.

Les équations dites de la famille de Boussinesq répondent parfaitement au cahier
des charges établi pusiqu’elles se situent a mi chemin entre une modélisation 3D com-
pléte, qui s’avére trés cotiiteuse en terme de ressources informatiques, et une approche
méso-échelle moyennée dans la phase qui nécessite une paramétrisation supplémentaire
de facon a reconstruire les profils temporels des vagues. En effet, et contrairement aux
équations de Saint-Venant qui sont tout au mieux valables dans la zone de surf interne
(cf. [17, 174]), les versions les plus récentes des modeéles de Boussinesq permettent une
description convenable de la propagation de la houle depuis des profondeurs intermé-
diaires et jusqu’au trait de cote (voir par exemple la référence [87] ainsi que le schéma
présenté dans la Figure 1.1). Cependant, des efforts sont encore requis en ce qui con-
cerne la paramétrisation du déferlement dans le cadre d’application de cette famille
d’équations, en particulier de maniére & décrire correctement & la fois la décroissance
en amplitude des ondes qui a lieu dans la zone affectée par le déferlement et I’asymétrie
horizontale qui caratérise I’évolution spatio-temporel des profils de surface libre.

Il est important de noter que méme si le travail développé tout le long de cette thése
s’insére dans une optique hydrodynamique visant & terme des aspects sédimentaires, le
domaine d’application des équations de Boussinesq dépasse ce cadre. Elles constituent
un outil prédictif performant utilisable, par exemple, dans des études d’agitation por-

tuaire (e.g. [182]), ou encore sur des problémes d’interaction houle-structure (e.g. [64]).
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Figure 1.2: Spectre idéalisé de I’énergie incidente sur une plage apportée par les marées et les houles
(d’aprés Bonneton [20]).

1.2 Contexte scientifique : le projet PATOM

Le travail scientifique developpé dans cette thése fait partie d’un projet plus ambitieux
mené depuis 'année 2001 au sein de la communauté Francaise. Il s’agit du projet
« Hydrodynamique dans la zone affectée par le déferlement » conduit au sein du « Pro-
gramme National Atmosphére et Océan & Multiéchelles » du CNRS-INSU!. Ce projet,
animé par H. Michallet, regroupe 11 équipes de recherche et aborde des aspects en
rapport avec la propagation de la houle dans la zone littorale et plus particuliérement
le phénoméne du déferlement bathymétrique. Il s’agit de proposer des améliorations
pratiques sur la représentation mathématique des divers processus hydrodynamiques
concernés. Ces améliorations devraient permettre a terme d’aborder des aspects sédi-
mentaires en rapport avec les problémes d’érosion evoqués dans la section précédente.

Dans le cadre du PATOM, des actions sont menées visant a la fois & un appro-
fondissement des connaissances physiques fondamentales a ’aide d’expériences de la-
boratoire et in-situ ainsi qu’a I’amélioration de la modélisation de ’hydrodynamique
littorale. Les axes de recherche concernent diverses échelles physiques comme le montre
le contenu fréquentiel d’énergie qui atteint la cote dans la Figure 1.2. Ces différentes

échelles spatio-temporelles sont étudiées avec des outils adaptés de maniére & mieux

'Programme PATOM, Centre National de la Recherche Scientifique (CNRS), Institut National des
Sciences de I"Univers (INSU).
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Figure 1.3: Principales actions de recherche menées par la communauté Frangaise dans le cadre
du projet « Hydrodynamique dans la zone affectée par le déferlement » du PATOM (d’aprés la
présentation & la « Réunion Prospectives Septembre 2005 »).

apréhender les mécanismes responsables du rapide transfert de quantité de mouvement
et de masse qui ont lieu au cours du déferlement. Il s’agit en méme temps d’explorer
des techniques opérationnelles ayant pour but de simuler numériquement leur évolution

(voir schéma de la Figure 1.3).

C’est ainsi que des études en laboratoire sont en cours dans le canal & houle du LEGI
(36 m) o des conditions d’équilibre morphodynamique résultant d’un for¢age de houle
aléatoire sur un fond mobile ont été obtenus [82, 83| (voir cliché de la Figure 1.4).
Cette expérience originale fourni un cadre favorable a I’obtention de nouvelles informa-
tions indispensables & la compréhension des processus hydro-sédimentaires complexes
responsables, entre autres, de la formation de profils & barre dans la nature. Il faut
ajouter a cela que des mesures fines de turbulence ainsi que de la mobilisation des
sédiments sous les vagues déferlées ont été déja réalisées et devront fournir dans le
futur proche une base de données adaptée a la validation du couplage entre les modéles

numériques de propagation de houle et des formules de transport sédimentaire.
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Figure 1.4: Déferlement d’une vague sur un fond granulaire dans le canal & houle du LEGI (photo
prise par E. Perrin, CNRS).

Parallélement, des expériences menées par les équipes EGIM-IRPHE basées & Mar-
seille sur une plage uniforme de pente 1:15 ont permis d’obtenir une représentation fine
du champs des vitesses sous des vagues déferlantes a 1’aide de la technique d’imagerie
de particules (PIV) [86]. Ces mesures constituent une contribution novatrice au sein
de la communauté internationale et devraient permettre de mieux appréhender les
mécanismes de génération de vorticité et du transport d’énergie turbulente au cours
du déferlement dans des conditions trés proches de la réalité. Il est important de re-
marquer que ’obtention de tels mesures a nécessité la mise au point d’un savoir faire
expérimental assez unique. La Figure 1.5 présente un exemple du champ de vorticité
déterminé par la technique d’imagerie de particules.

Des mesures in-situ ont été réalisées par le laboratoire EPOC de I’Université Bor-
deaux dans 'océan Atlantique (campagne du Truc Vert, 2001 [138]) et par I'Université
de Perpignan sur la plage de Séte en Méditerranée [33]. Ces expériences de terrain
visaient & étudier d’une part les mécanismes de transfert non linéaire de 1’énergie de la
houle incidente vers des basses fréquences et le transport d’énergie turbulente a 1’échelle
nature, et d’autre part 'intéraction entre le forcage hydrodynamique et la morphologie
des plages. De la méme maniére, les données disponibles pourront servir & poursuivre
la validation des modéles de propagation de houle actuellement en développement.

Les aspects de modélisation numérique ont été abordés au sein du projet en utili-
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Figure 1.5: Exemple des mesures de vorticité sous des vagues déferlantes obtenues par I’équipe
EGIM-IRPHE dans le canal & houle de Marseille (d’aprés Kimmoun et Branger [86]).

sant des approches Navier-Stokes 3D complétes (NS3D) trés sophistiquées (e.g. |56,
103]), des stratégies « Boundary Element Methods » sur les équations d’Euler (e.g.
[61]), des équations intégrées sur la profondeur type Saint-Venant et Boussinesq (e.g.
[21, 39]), ainsi que des modéles méso-échelles moyennés dans la phase (e.g. [32]). 1l est
important de noter que chacune de ces stratégies de modélisation constitue en fait un
sous-ensemble de plus en plus fin, et que cette approche multi-échelle devrait permettre
d’améliorer la paramétrisation des processus non-résolus par les modéles opérationnels
utilisables a 1’échelle kilométrique.

Les différentes équipes ayant travaillée sur des aspects NS3D diphasique se sont
consacrées de maniére particuliére a la description de la zone de transition qui a lieu
immeédiatement aprés qu'une onde de surface ait atteint la condition de déferlement. En
effet, cette région est caractérisée par une dissipation d’énergie rapide, ainsi que par une
intensité turbulente importante. Il faut noter que les paramétrisations du déferlement
utilisées dans les modéles type Boussinesq ou méso-échelles ne peuvent décrire cette
transition que de maniére trés grossiére. Les efforts de modélisation NS3D constituent
donc une maniére intéressante de mieux représenter et analyser la dynamique de la
zone de transition afin d’améliorer les approches opérationnelles.

Finalement, il est impotant de noter que la nouvelle paramétrisation du déferlement
qui sera présentée dans cette thése, est en bonne partie le résultat des intéractions
scientifiques qui ont pu avoir lieu au sein du PATOM. En particulier, les travaux
réalisés depuis quelques années sur les approches numériques de capture de choc visant
a représenter la dynamique des vagues en zone de surf interne ont fourni une base

théorique inestimable pour I'approche alternative du déferlement qui sera développée
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ici dans le cadre d’application des équations de la famille de Boussinesq.

1.3 Principaux objectifs et démarche scientifique

Cette thése vise spécifiquement au développement d’un modéle hydrodynamique capa-
ble de décrire les évolutions spatio-temporelles de la houle au cours de sa propagation
le long d’un profil de plage depuis la zone de levée et jusqu’au trait de cote. De maniére
a remplir les exigences de départ nous utilisons le systéme d’équations fortement non
linéaire adapté a la description des écoulements non stationnaires a forte courbure
obtenu pour la premiére fois par Serre [140]. Les travaux de Serre, malgré leur origi-
nalité, n’ont pas eu une grande répercussion au niveau de la communauté scientifique
internationale au moment de leur publication. Cependant, ils ont continué a étre
approfondis en France, et en particulier au sein de ’ancien Institut de Mécanique de
Grenoble. C’est ainsi qu’un certain nombre de théses de doctorat ont été, de fagon plus
ou moins directe, consacrées a 1’étude théorique des domaines de validité des équations
de Serre dans un contexte d’eau peu profonde. Nous pouvons citer a titre d’exemple
les travaux de Staub [147], Temperville [159], Seabra-Santos [135] ou encore Guibourg
[74] qui abordérent des aspects mathématiques et pratiques concernant surtout des
problémes en rapport avec la propagation d’ondes solitaires non déferlantes. En effet,
ce n’est que trés récemment qu'une reconnaissance internationale a été accordée au
systéme d’équations de Serre dans un contexte d’ingénierie cotiere (cf. [110]).

Les équations de Serre, généralisées dans la référence [136] a des applications sur
fond variable, constituent une forme particuliére de ce que I’on appelle aujourd’hui dans
la littéraure anglosaxone les modéles de Boussinesq « fully nonlinear » ou compléte-
ment non linéaires. Elles s’obtiennent par intégration sur la verticale des équations
d’Euler prenant soin de retenir tous les termes d’accélération convective associés aux
fortes courbures des lignes de courant, et cela jusqu’a 'order O[(%)Q] ol h et L sont
respectivement des grandeurs représentatives de la profondeur d’eau et de la longeur
d’onde. C’est ce compromis entre des termes d’ordre supérieur, a la fois non linéaires et
dispersifs, qui rendent possible I’application de ce type d’équations & des conditions de
propagation d’ondes de gravité jusqu’au point de déferlement comme a été démontré
en particulier par les travaux réalisés dans I’Université de Delaware aux Etats Unis
(e.g. [69, 178]).

Ce travail de thése reprend donc le modéle de propagation de houle au stade ou
il avait été produit par Guibourg [74]. Cependant un certain nombre d’améliorations

indispensables & son application dans un environnement cotier seront présentées car
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Iobjectif principal est de rendre disponible un outil hydrodynamique opérationnel a
I’échelle de 'ingénieur. De maniére & étendre dans la pratique le domaine de valid-
ité des équations de Serre vers des profondeurs plus importantes, ou alternativement,
vers la représentation d’ondes de longueurs plus faibles, nous adoptons les méthodes
d’amélioration des propriétés dispersives proposées par Madsen et al. [109] et Madsen
et Schéffer [110]. Cette approche consiste & introduire des termes d’ordre supérieur dans
I’équation de conservation de la quantité de mouvement afin d’obtenir une meilleure
approximation de la relation linéaire de dispersion de Stokes. Par ailleurs, une ap-
proche alternative pour l'incorporation des effets liés au déferlement sera étudiée en
nous inspirant, a la fois de la théorie des chocs dans le cadre des équations de I'eau
peu profonde, et de quelques résultats expérimentaux récemment publiés. De plus,
un effort important sera consacré au développement d’un schéma numérique original,

particuliérement adapté a la résolution du modéle hydrodynamique ainsi obtenu.

1.4 Organisation de la thése

En accord avec les objectifs que nous nous avons fixés, le travail de thése a été articulé
en deux grandes parties. La premiére d’entre elles est consacrée a 1’obtention d’un
systéme d’équations étant en mesure de décrire les phénoménes non linéaires associés
a la propagation de la houle sur des bathymétries complexes dans la zone de levée
et jusqu’au point de déferlement. Ensuite nous décrivons une stratégie numérique
originale spécialement congue pour intégrer le systéme a dérivées patielles a la fois
dans 'espace et le temps (Chapitres 2 et 3). Dans la deuxiéme partie, nous aborderons
des aspects théoriques et expérimentaux en rapport avec le déferlement bathymétrique
de fagon & construire un modéle mathématique qui puisse introduire la dissipation
d’énergie associée tout en respectant la forme caractéristique en dent de scie des vagues
déferlantes (Chapitres 4 et 5).

Les aspects théoriques et pratiques concernant 1’obtention du systéme d’équations
de Serre étendu et sa résolution numérique seront développés dans les Chapitres 2 et
3. Le Chapitre 2 est consacré a la présentation de la démarche théorique permettant
I’obtention des équations, les principales hypothéses requises ainsi que leurs limites
d’applications. De la méme maniére, une description compléte et analyse du nouveau
schéma aux volumes finis spécialement concu pour résoudre le systéme d’équations est
présenté dans ce chapitre. En particulier, I’étude des propriétés spectrales, stabilité
linéaire ainsi que la performance du schéma en présence de fortes non linéarités sera

abordé en profondeur. Cette démarche permettra d’illustrer de maniére objective les

26



principaux avantages pratiques que la nouvelle méthode présente par rapport aux précé-
dentes stratégies utilisées pour intégrer des équations équivalentes. Dans un deuxiéme
temps, le Chapitre 3 sera consacré a la validation de la pertinence physique des équa-
tions de Serre dans le cadre de I’hydrodynamique littorale. Pour cela, des conditions
aux limites adaptées a la problématique visée seront développées et la performance du
modéle testée a 'aide de nombreuses applications expérimentales originales ou déja
disponibles dans la littérature. Une fois cette tache accomplie, nous pourrons ensuite
avancer vers l’incorporation du déferlement dans le modéle.

Dans le Chapitre 4, une analyse critique de 1’état de I'art des connaissances en
rapport avec le phénoméne du déferlement sera présentée. Nous nous consacrerons a
étudier le concept de rouleau de déferlement tel qu'il a été introduit par Svendsen [154]
en 1984. En utilisant des mesures expérimentales rigoureuses et récentes obtenues sur
toute la colonne d’eau pour des ressauts quasi-stationnaires en similarité de Froude
avec des vagues en zone de surf, nous évaluerons la validité du concept de rouleau de
déferlement ainsi que ses limites pratiques. De la méme maniére, nous obtiendrons une
nouvelle équation d’évolution pour l'aire du rouleau de déferlement utilisable dans les
modeéles hydrodynamiques & phase moyennée en prenant soin de pointer les principales
différences existantes entre deux approches équivalentes présentées par Stive et De
Vriend [150] et Dally et Brown [47]. Nous montrerons par ailleurs que la théorie
des vagues déferlantes en équilibre développée dans un contexte d’eau profonde par
Cointe et Tulin [40], peut étre valable et trés utile pour améliorer la modélisation du
déferlement en zone de surf.

Enfin, dans le Chapitre 5, les bases théoriques pour le développement d’une nou-
velle paramétrisation du déferlement pour la famille d’équations de Boussinesq seront
exposées. Cette approche originale peut étre considérée comme une extension du mod-
éle de déferlement introduit par analogie avec une couche de mélange par Kennedy et
al. [85], puisque la forme mathématique adoptée pour les termes supplémentaires sera
elle aussi de type diffusive. Néanmoins, nous introduirons a la fois un terme de rédis-
tribution locale de la masse dans I’équation de continuité, et un terme de déficit local
de quantité de mouvement, tout les deux appliqués sur la face avant des ondes défer-
lantes. La paramétrisation ainsi que les valeurs numériques affectées aux différentes
quantités concernées seront obtenues a l'aide d’arguments physiques étroitement liés
a la téorie de choc des équations de ’eau peu profonde, et aux résultats empiriques
étudiés dans le Chapitre 4. A I’aide de cas test expérimentaux, nous montrerons que
le nouveau modéle permet, contrairement a celui proposé par Kennedy et al. [85], de
bien représenter a la fois la décroissance en amplitude et la forme caractéristique en

dent de scie des vagues en zone de surf.
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Chapter 2

A High Order Finite Volume Scheme

for Boussinesq-type Equations

2.1 Introduction

In recent years, important research efforts have provided a solid theoretical background
for a new generation of the so-called Boussinesqg-type wave equations. This new class of
equations, which takes advantage of pioneering contributions made by Boussinesq [22],
Korteweg and de Vries |92], Serre [140| and Peregrine [125], have proven to adequately
describe most of the water wave phenomena taking place in the nearshore zone. Recent
developments concern the extension of these shallow water sets of equations to deeper
water propagation problems [105, 108, 109, 114, 122, 180|, and to describe surf zone
dynamics by adding extra wave-breaking terms [85, 133, 172, 184] and removing the
originally embedded weakly nonlinear hypothesis [136, 137, 178]. Even though those
important improvements have provided a powerful set of mathematical tools to describe
the hydrodynamics of coastal zones, the question of constructing efficient, stable and
accurate numerical schemes to solve them have received considerably less attention.
Numerical solutions of Boussinesqg-type equations have been mostly tackled with
finite difference methods |1, 4, 62, 70, 141, 153, 177|, and to some extent, using finite
element techniques [5, 141, 175, 181, 182]. On the contrary, the application of the finite
volume method to discretize them has been only reported very recently [15, 24, 58, 145|.
Even though finite volume techniques have been successfully applied to the strictly hy-
perbolic dispersionless set of nonlinear shallow water equations (NSWE) using shock
capturing solvers (see [165] for a comprehensive review), parabolic terms responsible
for the dispersive nature of Boussinesq-type equations make the extrapolation of such

approaches to coastal applications rather difficult. However, shock capturing methods
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may provide an efficient and elegant way to numerically integrate Boussinesq equa-
tions but novel strategies are to be developed in order to adequately handle the mixed
hyperbolic-parabolic mathematical nature of the system. Several authors are work-
ing in that direction, developing in particular hybrid or operator splitting techniques
where convective hyperbolic-type terms are treated using shock-capturing approaches
while high order dispersive terms are handled with help of standard finite difference
approximations (e.g. [15, 58]). Such strategies have only been reported in applications
concerning weakly nonlinear forms of Boussinesqg-type equations. On the other hand,
achieving high order accuracy in the latter is quite demanding from a computational
point of view and there is still no clear knowledge of what type of flux reconstruction
strategy would be the most appropriate in the framework of dispersive wave propaga-

tion problems (see for instance reference [58]).

In the present work, a finite volume technique is applied to the fully nonlinear and
weakly dispersive set of Serre equations first derived by Seabra-Santos et al. [136].
The inclusion of a dispersion correction term following the lines given in Madsen and
Schiffer [110] allows for an extension of the range of application of this set into moder-
ately deep waters. The choice of integrating equations with a finite volume technique
appeared naturally because it is possible to recast continuity and momentum equa-
tions in an attractive weak conservative form using an auxiliary variable as given in
reference [135]. Here weak conservative is used in order to make a distinction between
a formulation written in terms of primitive variables, i.e. the water depth and the
depth-averaged velocity, and a strongly conservative formulation which would require
to express the momentum conservation equation in terms of the momentum flux. We
recall that recent applications of finite volume methods to Boussinesq-type equations
mostly concern weakly dispersive and weakly nonlinear versions of these sets (e.g., a
KdV-like system in references [15, 24] and a low order Boussinesq model in references
[68, 145]). Similarly, most of discretization strategies implemented in previous finite
volume approaches appears to be 2nd order accurate in space. On the contrary, our
aim here is to develop an efficient high order finite volume scheme applicable even for
strongly nonlinear situations. However, no attempt is made to take advantage of shock-
capturing methods mainly because : i) this convenient conservative set of equations is
not really in a strong conservative mathematical form, ii) high order accuracy in space
and time was intended at low computational cost, and iii) shocks do not naturally
emerge in Boussinesq-type equations because there is a balance between nonlinear and
dispersive terms [179]. Nevertheless, our numerical approach borrows some recently
developed ideas from modern computational fluid dynamics (CFD) which make high

order accuracy and high spectral resolution possible at an affordable computational
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cost. Such techniques are based on a compact reconstruction of cell-face values at a
high order by solving implicit algebraical equations |90, 93|. Indeed, fourth order accu-
racy is achieved by solving an implicit tridiagonal system. Similarly, spatial derivatives
are estimated with a fourth order truncation error using compact differencing [95]. Fi-
nally, numerical solution is advanced in time with help of the four-stage Runge-Kutta
method.

This chapter is organized as follows : in Section 2.2 governing equations are derived
by vertically integrating Euler equations, while Section 2.3 deals with the numerical im-
plementation of the newly developed compact finite volume scheme. A comprehensive
linear numerical analysis of the method is given in Section 2.4 and additional informa-
tion on the performance of the finite volume scheme is obtained with help of numerical
experiments in Section 2.5. In particular the influence that strong nonlinearities may

have in stability and accuracy is investigated.

2.2 Governing equations

Serre equations describe the 2D, irrotational and shallow water flow of an incompress-
ible and inviscid fluid over uneven bottom bathymetries. This set of equations rules
the total water depth and the depth-averaged horizontal velocity. In the following we
expand on the derivation of Serre equations for horizontal bathymetries as given in
reference [9].

Generally speaking, Boussinesg-like equations are valid only for long waves. Long
wave dynamics are characterized by a small parameter 0 = ho/L < 1 where hy and
L are respectively a vertical length scale (say a typical water depth) and a horizon-
tal length scale of the flow. The continuity equation implies the following order of
magnitude relationship,

w

2~ (2.1)
where u and w are respectively the horizontal and vertical fluid velocities (~ stands for
order of magnitude). The bottom boundary condition suggests that bottom slopes &,
should be of order o, since w/u = &, at the bottom. Obviously bottom horizontal scales
are not disconnected from the scales of the waves. In other words the flow length scales
adapt to the bottom ones. Hence bottom slopes for long wave propagation should be
mild which is what is assumed here. Even though this assumption is implictly adopted
in most of the available long wave propagation models, thus introducing practical
limitations in the latter, Serre equations have been successfully used to describe solitary

wave propagation over a submerged step in reference [136]. This settled, the scaling
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Figure 2.1: Definition sketch for wave propagation over uneven bathymetries. z = 7 is the

free surface elevation, z = £ is the bottom location, and h = 1 — £ is the instantaneous water
depth (here & has a negative value).

detailed in [9] leads to the following dimensionless forms of continuity, irrotationality,

momentum equations and boundary conditions,

ou* ow*

=0 2.2
Ooz* * 0z (22)
ou* o, OW™
_ g2 — 2.
oz 0 0z 0 (2:3)
ou* 5 0 , . , 0 op*
_ * * * — 2'4
eat*+€8:v*(u )+€8z*(u w*) oy (2.4)
ow* ow* ow* op*

2 2,2 % 252 W = — -1 2.
€0 - + ‘0% u e + €0 w o 9 (2.5)
w* = u* 43 at the bottom 2* = ¢* (2.6)

Ox*
w* = g;?* +eu gZ* at the free surface z* =en" (2.7
p* =0 at the free surface z* =e¢n’* (2.8)

Where * indicates dimensionless variables. Here, p* represents the pressure, n* is the
free surface elevation and € = a/hg is the nonlinear parameter with a being the local
wave amplitude relative to the chosen reference level (see Figure 2.1). For simplicity,
we introduce in the following the function,

ow* ow* ow*
I*(z*, 2", t") = - +6( e o )a

o T \"ar TV oz (2.9)

which is related to the vertical acceleration of fluid particles.

Recall we seek a set of equations for the depth-averaged horizontal velocity u* and

the water depth h* = e n* — £*. Depth averaging a function f* results from applying
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the following operator,
1 en’
fr=— frdz". (2.10)
h* Jes
Depth averaging continuity equation yields,
on* 0
ot* + ox*

Depth averaging the z-momentum equation (2.4) and following the derivation along

[h* W] = 0. (2.11)

similar lines as in reference [9] gives,

*

ou* _ Ou* on* 0 €n * en*
« e T u*+h,* n*+02 / z*F*dz*—FaQai/ ™ dz* =

h ot* o0x ox ox* £ ox*

§*

—€ 0 /677 (u*? — (u)?) dz*. (2.12)

So far no approximation has been invoked, but the integrals in (2.12) cannot be reduced
to partial differential expressions without approximating the integrands. We aim at
obtaining a set of equations comprising terms at most of O(¢?). To be consistent, the
two integrals on the left-hand side should be expanded to order 0. Further inspection

is required for the one on the right-hand side which also reads,

/ - @) d=nt (07 - @), (2.13)
£
This term has given rise in the past to discussions as to whether it is of O(c*) or not
for uneven bathymetries. Dingemans [51| (volume II page 613) argues it is not. It
has been then taken advantage of this argument to mistrust Serre equations for long
wave propagation over uneven topographies. Nevertheless, it can be readily shown that
(2.13) is of order o*. Rearranging results reported by Dingemans [51] (volume IT page
656) the series expansions of u* and w* read (see also the alternative derivation of Serre
equations given in Appendix A),

ut(x*, 2%, 1) = uh(a*, 1) + o(2F — &) ub(z*, t7) + O(o?) (2.14)

8 *
()~ ("~ €)

*
oug

ox*

w*(z*, 2%, t") = + 0% (2" — &) wi(a*,t*) + O(c*)
(2.15)

showing in addition that u* and w* also have even series expansions in ¢ for uneven
bathymetries. Using (2.14), clearly u*2 — (u*)? = O(o*) without having to express u;
and u} in terms of u* as done in [51].
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Left-hand side integrals in (2.12) are evaluated with the above series expansions

expressed in terms of u*,

u*(z*, 25, t%) = u*(x*, t*) + O(o?) (2.16)

K w -1 10

w*(x*, 25, %) = O(o?) (2.17)

Retaining all terms up to O(o?) leads to the following set of equations expressed in

terms of dimensional variables and unknowns :
n: + (h U):c =0 (2.18)
1 1 1
hﬂt—i-hﬂﬂm-l—ghnx—i-[h2(§P+§Q)] +§$h<§’P+Q>=O (2.19)

P = —h [ty + T Uy — ()] (2.20)
Q=¢& (U +70Uy) + &y U (2.21)

where P + Q and Q represent respectively the vertical fluid acceleration at the free
surface and at the bottom (see Appendix A). This fully nonlinear set of equations
contains all € order of magnitude terms because no hypothesis have been introduced
concerning nonlinearities (i.e., € ~ O(1)). Some of these € terms are related to the
convective vertical acceleration neglected in low-order Boussinesq equations [125]. One
of the interesting properties of the Serre equations for horizontal bottom lies in the
fact they have a closed form solitary wave solution which happens to be the Rayleigh
solitary wave [75], which expression is,

h(z,t) = ho + a sech? [K (z — Ct)] (2.22)
u="C <1 — %) (2.23)

3a
K= Coy/1+— and Cp=+/gho 2.24
42 (hy +a) +h0 and o= (224)

where hg is the water depth at rest, ¢ the amplitude, C the phase speed and K the
outskirt decay parameter. This solution will be used later to numerically test the
proposed finite volume scheme.

Additionally, the range of validity of this set of equations can be easily extended to
wave propagation problems in deeper waters using the dispersion correction technique
discussed in references [109, 110]. A Padé (2,2) expansion for Stokes linear dispersion

is achieved by adding the following term in the left hand side of equation (2.19),

B(LL', t) = _ah 52[ﬂwwt + (ﬂﬂm);m + g(h + g)www]a (225)
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where « is an adjustable parameter (~ 1/15) that must be tuned in order to match
(at best) the linear Stokes dispersion relation.

Finally, it is possible to show that continuity and momentum equations, including
the dispersion correction term and assumig that bottom variations are only function of
the spatial coordinate = can be written in a weak quasi-conservative form by introducing
a dependent variable ¢ which aggregates all time derivatives of equation (2.19) and
(2.25). This convenient mathematical form reads (see also reference [135]),

hi + F, =0, (2.26)
¢+ Gy =5, (2.27)
0= 1+ 77— o () — 0, (2.29)
with flux functions,
F = ha, (2.29)

G=qu+gh+§&— %EZ(l + ) + (&u — %hﬂx)hﬂz — 0?2 + Ulyy + g(h + &) al,
(2.30)

and the non-conservative right hand side term S (analogous to a source term) in (2.27)

has the following expression,
S = —20€8, [at, + g(h +&)a], - (2.31)

The latter contains a small correction for the dispersive properties of the system. More-
over, r = (hy + &)& + %hfm and thus traduces some bathymetric effects. In what
follows, overbars will be dropped for convenience.

2.3 Numerical method

Because dispersive terms embedded in Boussinesqg-type equations may have a similar
mathematical form than lower order terms associated to truncation errors of discretized
equations, high order schemes, both in time and space, are needed. Furtheremore, non-
linear processes and frequency dispersion are responsible for the broadening/narrowing
of initial wavelength scales in time and numerical methods used to solve Boussinesq
equations must be able to adequately reproduce interactions between different wave
modes without damping physical ones nor introducing spurious short-wave noise. In
this context we will develop a 4th order compact finite volume scheme for spatial inte-
gration of equations derived in previous section over a uniform 1D staggered grid while

time integration will be performed using a standard 4th order Runge-Kutta method.
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Figure 2.2: 1D computational domain meshed with staggered control volumes Q; and ;.

2.3.1 Finite volume method for spatial discretization

The computational domain is schematically described in Figure 2.2 where €2; and ;
are control volumes centered around i-nodes (: = 0,1,..,I — 1) and around j-nodes

(j =0,1,...,I) respectively, i.e.,

Qi = {z € [z, 2]}, (2.32)
Q; ={z € [zi1, ]}, (2.33)

where I is the number of {2; control volumes used to discretize the physical domain.
Nodal coordinates are defined as z; = Az/2 + iAz and x; = jAz, where Az is the
constant spatial grid resolution (length of control volumes). The governing equations
will be integrated over this staggered domain in order to optimize the cell face interpo-
lation process but also to improve accuracy and minimize short-wave noise generation
[65, 141].

Equations (2.26) and (2.27) can be easily integrated over control volumes €2; as

follows,
0 Zj+1
a ' hdx + F(l‘j.H, t) — F(.Tj, t) = 0, (234)
o [*+t J Tjt1
o [ a6l — G = [ sa, (2.35)

where flux functions are evaluated at cell faces of each control volume (j-nodes).
Unlike previous equations, the auxiliary relation (2.28) which links variable ¢, to

the physical variables & and u will be integrated over staggered control volumes €2;,

/ [(1 +7r)u— %(h?’uw)z — a&Zum] dz = / gdx. (2.36)

Numerical approximations will be introduced in the following to evaluate flux functions

at cell faces and volume integrals.
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In continuity and momentum equations (2.34) and (2.35), volume integrals of h and
g can be stored as cell-averaged values and no further approximations need to be done.
For example, the cell-averaged value of a generic function ® over control volume (); is
written as,
~ 1 Zj+1

Az, x (2.37)

The discretized counterpart of equations (2.34) and (2.35) is then obtained by perform-
ing the finite volume integration over the whole domain,

dhr 1
dtz :—A—(FJZI—FJ—"), for i=0,1,....1 —1 and j =1, (2.38)
X
pral ’_A—( j+1—Gj), for i=0,1,...,1—1 and j =1, (2.39)
X

where we have introduced for simplicity the notation 7 = ®(zj,t,), with the dis-
crete time coordinate t, = nAt (n = 0,1,..., N) and At is the time step. The non-
conservative term will be approximated using a centered in space approach where,

~ 1 Zj+1

2 an an
i = AL ’ Sdr ~ —A—xfi(fz)i ( 1 T Sj) 5 (2.40)

and S = uty + g(h + &), This discretized expression will introduce only slight errors
in the overall numerical approximation since this term represents a small correction of
O(o*) for dispersive properties.

On the other hand, evaluation of flux functions at cell faces requires a reconstruction
of h; and g¢; values from cell-averaged variables because time integration of equations
(2.38) and (2.39) will produce h; and ;. Here, cell face values will be estimated at each
time step using the implicit 4th order interpolation technique developed in references
[90, 93]. This approach results in the following system of I — 1 equations for internal
nodal points,

1 1 3
18-+ 5+ B = o (

1+ ®;), for j=1,2,..,1—1 and i=j. (2.41)
At boundary nodes, 7 = 0 and j = I, boundary conditions must provide the correct
values for h and gq.

When using equation (2.41), 4th order accuracy is achieved in the evaluation of
cell face values by solving a tridiagonal system. On the contrary, using a pointwise
4th order method where volume integrals are estimated using Simpson’s rule and cell
face values are interpolated with piecewise cubic polynomials, it is necessary to solve

a pentadiagonal system (see for instance reference [39] also reprinted in Appendix
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C). Thus, computational cost is significantly reduced when implementing the present
compact scheme.

Evaluation of flux functions requires in addition the prescription of depth-averaged
velocity values at cell faces. The latter are obtained at the end of each time step,
once h; and g; have been computed at internal nodes, by solving the auxiliary relation
(2.36). Different integrals appearing in this equation are approximated as follows,

1 i .
A—ac/ (1+r)ude ~ (1 +1;)uy,

Ti—1
L wi i 3 - 1 3 . 5 |
Az ), o, (Wua)a do = = P [h2 (uz)i — B2 (ug)is]
1 Zi ) a
_ E /wi—l Ck§ Ugy =~ —Egj [(uz)z — (um)i—l],
1 Ti PP,
Az [, | qaxr = qj-

At this point, some care must be taken for the reconstruction of depth-averaged
velocity values at j-nodes using equation (2.36). Since we want to obtain u; directly
and still preserve a tridiagonal structure in the discrete system, it is necessary to link
cell-averaged values 4; and diffusive fluxes to pointwise values at j-nodes carefully. The
latter can be achieved using the following strategy.

On the one hand, combining Simpson’s rule to evaluate volume integrals over €2;
and Qj,

~ 2 1
;= S+ o (&5 + Bjp0) + O(Az?), (2.42)
~ 2 1
) = 3@ + ¢ (®is + @) + O(Aa?), (2.43)

and equation (2.41), provides the following relation,
~ 1

(I)j = ﬂ ((I)j—l + 22(131 + (I)j—f—l) + O(A$4), (244)
which still has a tridiagonal matrix form. On the other hand, the velocity gradient (u);
must be written in terms of pointwise u-values at j nodes. Therefore, it is preferable
to use an explicit formula to approximate its spatial derivative. However, an explicit
4th order formula will break down the tridiagonal nature of the system because 5-point
stencils will be necessary to compute diffusive fluxes. One way to preserve a tridiagonal

structure is to use a deferred-correction approach which is expressed as [60],

(uj1 — uy) (uj 1= 27u; + 27w — ujp9)  (ugen —uy) | ™
2)i = + , (24
() Ax 24Ax Az (245)
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where superscript old is used for depth-averaged velocities evaluated at the previous
level of the iterative process. Thus, the discretized equation associated to (2.36) must
be solved iteratively because a 2nd order approximation is used for the implicit part,
and a 4th order formula appears in the explicit contribution in brackets. When some
convergence criteria will be satisfied between old and new uj;-values, the overall ap-
proximation for u, will be 4th order accurate. In practice only few iterations will be
needed to obtain sufficient accuracy. The convergence criteria for fixed-point iterations
is based on a L; norm and reads,

”u.l {uJ}Old”

[l

<, (2.46)

where Uy = [Uj—o Uj=3 ... Uj=1_2 Uj=7_1] is the vector containing cell face values of the
most recently computed depth-averaged velocity and 7 is the tolerance for the relative
error between succesive iterations. Hence, internal nodal values of u; are obtained by
solving the following implicit tridiagonal system,

1+1;) 22(1 + 7, 1 [(h,+h?
{( 1) — ( +a£>}uj_1+{ (24 ])+A:v2 [( éh- )+2a£f}}u
J
(1+7) 1 1 [ h o
+{ = - +a§ Ui = 50142205+ G)+ 3og | 3 ;U

1
~ A }UO“{, for j=1,2,..,]—1 and i=7, (2.47)

where,
old 1 old
Ui = ﬂ {Uj,1 - 3U,j + 3Uj+1 U]+2} (248)

Near boundaries, evaluation of the last relation will require to compute depth-
averaged velocity values outside the physical domain. In the case of non-periodic
boundaries, ghost nodes values will be extrapolated from interior nodes using suitable
piecewise polynomial functions. Similarly, boundary conditions must be treated with
caution because there is a coupling between the cell face reconstruction of ¢; values
(equation (2.41)) and the right hand side of equation (2.47). However, in the present
chapter only periodic bundary conditions will be considered. The special treatment of
boundary and ghost nodes in the framework of wave propagation over a beach will be
addressed in Chapter 3.

Finally, derivatives of water depth, h, and depth-averaged velocity, u, must be com-
puted at j-nodes in order to complete the evaluation of the flux function G, the source

term §, and the dependent variable r; at each time step. Similarly, water depth values
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at --nodes must be interpolated to compute matrix coefficients in equation (2.47) while
bottom function £ and its derivatives must be prescribed at 7 and j nodes. The latter is
not difficult because bottom bathymetry constitutes a known input data which is not
time dependent. On the other hand, i-values of water depth will require an interpola-
tion which can be performed easily from computed values of ﬁz and h; using relation
(2.42). It is relevant to note that the strategy of overlapping the control volumes where
equation (2.36) is integrated has allowed us to minimize this interpolation process.
Estimates of derivatives are performed using a 4th order finite difference compact
scheme as described in [95]. These compact formulae have better spectral properties
for short-length waves than their explicit 4th order finite difference counterpart and
matching conditions at boundary nodes are less tedious. It is important to note that
the highest derivative that one needs to estimate here will be of 2nd order. In fact, the
finite volume method applied to the quasi-conservative set of equations derived here
has allowed us to lower the highest xz-derivative order by one when compared to other
equivalent set of equations (e.g. [178, 181]). Derivative estimates at internal j-nodes

are obtained from cell face values using the following implicit formulae [95],

1 1 3

Z((I)z)j_l + ((pac)j + Z(q)z)J+1 = m(¢j+l — (Dj—l)a fOI' ] = 1,2, ,I -1 and ’L = j,
(2.49)

1 1 6 .
E(q)zz)j—l + (Pue); + 1_0((I)zz)j+l = m(q’jﬂ —20;+Q; ), forj=1,2,.,1-1

and i = j. (2.50)

Again, special care must be taken at boundary nodes as discussed in [95, 139]. It is
worth to point out that these compact forms can be verified manipulating relation
(2.44).

Spatial discretization of equations (2.34), (2.35) and (2.36) using the present finite
volume technique allows us to write the original system of partial differential equations
(PDE) as the following set of ordinary differential equations (ODE),

dx?
=1 2.51
a0 (2.51)
A(B}) - uf = B qf +C(h}) - {u]'}*", (2.52)
where,

fl'f1 n

xP= | and = P _ | AF;

ai Sr AG?
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Here bold letters represent vectors containig cell-averaged values of associated variables
over the whole domain. Hence, a generic vector ®}* contains cell-averaged values over
control volumes §2; of function ® evaluated at time ¢ = ¢,. Similarly, the notation
1
ARY = 5 (B
matrices obtained from the discretized equation (2.47). In the next subsection, we will

— Q’J“) indicates a cell face flux difference vector, and A, B and C are

use an explicit 4th order Runge-Kutta method to numerically integrate the system of
ODE just derived.

2.3.2 Numerical time stepping

The implementation of a high order numerical ODE solver for time integration is
justified since spatial derivatives are discretized using a high order scheme as well.
The finite volume discretization technique is theoretically 4th order accurate in space
so we wish to reach a similar discretization error when integrating the system (2.51)-
(2.52) in time. The 4th order Runge-Kutta method is an attractive alternative for
the solution of wave-type equations and can be quite efficient when compared to other
high order schemes [55]. In the present context the standard four-stage Runge-Kutta
method can be stated as follows :

First estimation at ¢ = t,41/2

p®) = Arfy, R =gp 4 p, (2.534)
W o Am [B QT remT). {u§+5}Old] . (2.53b)
Second estimation at ¢ = t,1/2
p® = AEE RIS 4 p®), (2.5%)
I L B i S PR )
First estimation at ¢ = ¢,
p® = Arg*E g —gp L), (2.53¢)
W = AR [B QP e - (upy ] (2.53f)
Second and final estimation at ¢t = ¢,
p™@ = At frrl el ogn gy é (p(l) +2p@ 4+ 2p® 4+ p(4)) ’ (2.53g)
it = AT B gt e - {up ] (2.53h)
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At each step, j-values of water depth, A, and auxiliary variable ¢ must be recon-
structed from cell-averaged quantities using the implicit relation (2.41) before solving
the equation for depth-averaged velocity, u. As explained in the previous subsection,
the latter is solved iteratively and at each stage the last computed value of u; is used as
first guess. A relative tolerance for iteration errors, 7, of 10~* has shown to give good
accuracy by requiring only 1-3 iterations. On the other hand, the numerical scheme
requires at each step the inversion of tridiagonal matrices which can be performed at
low computational cost using the Thomas algorithm (see for instance reference [128]).
The number of operations needed to solve each matrix equation will then be linearly

proportional to the number of unknows in the system.

2.4 Spectral analysis and linear stability

Important information about the general performance of our finite volume resolution
can be obtained by analyzing its linearized version. In this section we will study in
particular the stability, accuracy in spectral space and dispersion relation preserving
properties (DRP) of the scheme using spectral analysis [139]. Our main goal here is
to find necessary conditions that will ensure that the numerical scheme will behave
properly when describing wave propagation phenomena. For simplicity we will restrict
ourself to the analysis of linear wave propagation over flat bottoms.

When using relation (2.41) in equations (2.38)-(2.39) and assuming that fixed point
iterations have converged (i.e., {u}}?* = ul) in (2.47), the linearized version of the
discretized system of equations can be recasted as,

1dhr,  dhr 1dh,, 3

4 1 = —1nn i — Ff 2.54

4 dt * dt 4 dt AAT (Ffo — Fa) (2.54)

1 dqn—l dq? 1 dqn+1 3 . .

4 d]t dt] 4 d]t T T 4Az (GF = Gia), (2.55)
28 54

%u?& + (1 — —Qﬁ) u;-‘,l + (22 + —f) u;‘
283 3 (2.56)
(122 s+ =20+
where,
FP=houl,  GF=gh? —ahlg(ha)?,  B=(1/3+a), p=Az/h
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and hy = || is the still water depth of the horizontal bottom flume. This set of
equations will be used in what follows in order to analyze the numerical properties of
the scheme. It is interesting to note the close resemblance between equations (2.54)-
(2.55) and the implicit formula for the first spatial derivative estimate (2.49).

2.4.1 Semi-discrete system of equations and numerical disper-
sion

Spectral accuracy of the spatial discretization is studied first by decomposing the nu-
merical solution into finite Fourier series. It is important to point out that spectral
accuracy is related to the ability of the scheme to resolve the different length scales
present in the problem [139]. Therefore, it is paramount to assess how well the numer-
ical scheme is able to describe the physical range of wavelengths. In order to perform
this analysis we replace the following individual Fourier components into the discretized

system of equations,

h} h
| = |q. eZ(njAm—wT t) (2 57)
J ’ :
u? Uy
where i = y/(—1) is the imaginary constant, h,, g, and u, are Fourier amplitudes, x

is the wave number of the individual component and w, is the associated numerical
frequency. Numerical dispersion can be studied by substituting (2.57) in equations
(2.54), (2.55) and (2.56) and solving the resulting system of equations for w,. Before
doing so, we need to find the spectral expression for the second spatial derivative
that appears in the flux function G7. The numerical estimation of this derivative has
the form (hg,); = —&? hy, € 82w t) " where by substitution in the implicit difference

formula (2.50) the associated numerical wave number is written as,

(1 — cos kAx)

kAz)” =12 .
(RAz) (5 + cos kAx)

(2.58)

Similarly, substituting the Fourier components (2.57) into equation (2.56) gives the

following relation between ¢, and u,,
Gx = U uy, (2.59)

where,

(1/3 4+ «) (27 + cos 26Az — 28 cos KAx)

=1
* p? (11 + cos kAx)

(2.60)
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Finally, if we use the Fourier components (2.57) and relation (2.59) in continuity and
momentum equations (2.54)-(2.55), the compact finite volume scheme takes the follow-

ing form in the Fourier space,

Uk

(K+Tiw,)- [h“] =0, (2.61)

where I = %( 132 Igl ) is the spatial discretization operator whose components read,

sin KAz
Ki=—-tl———m"FT 2.62
' L(2 + cos kKAx)’ (2.62)
_ Kl 2 ~ 2 CYO ?
K, = T [p* + a(kAz)7] (Ax) , (2.63)

I is the identity matrix and Cy = /¢ hy. Nontrivial solution of equation (2.61) provides
the discrete dispersion relation associated to our compact finite volume method which
can be written in an non-dimensional form as,

2, 1 (wr)2:_< 3 )2K2[p2+a(mx)2]

c: 2 \k KA ! iz
_ 3 sin KAz 2 (11 + cos kAZ) [p? + a(kAz)?]
-~ \ KAz (2+coskAx) ) [p2(11 + cos kAT) + (1/3 + ) (27 + cos 2k Az — 28 cos kAx)]’

(2.64)

with Cy, being the numerical phase speed associated to the finite volume scheme.
Therefore, the non-dimensional discrete dispersion relation depends on the wave num-
ber, KAz, and on the parameter p = Ax/hy. Although this general expression cannot
be reduced to a simple form, some relevant information may be obtained by exploring
its aymptotic behaviour as p — 0 (which can be viewed as the deep water limit) and
as p — oo (which corresponds to the shallow water limit).

In order to do some comparisons between the discretized system of equations and
the original set of PDE we recall that the non-dimensional physical dispersion relation

that belongs to the linearized Boussinesq model can be written as [9],

1/2
Cin

Co

2
1/2 KAT
1+ a (kho)? I+ a (5"
(r5ho) )2] — (") (2.65)
1+

1+ (1/3 + @) (kh (1/3+a) (%)2 |

where CYy, stands for the phase speed associated to the theoretical dispersion relation

produced by the extended system of Serre equations.
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Figure 2.3: Leading-order truncation error term v/s o = shg for, (—) a =0, (---) a = 1/30, (- -)
a =1/20 and (- - -) @ = 1/10. a) Full 4th order compact finite volume scheme. b) Mixed 4th and
2nd order discretization strategy.

In the shallow water limit it can be shown that the ratio between the physical and
the discrete dispersion relation is,

Cro 3 sin kAz 1 4 6
li =1-——(kA O|(kA 2.66
rheo Oy KAT (2 4 cos kAZ) 180 (rAz)" + Ol(rAz)]; (2.66)

proving that the numerical scheme mimics the exact relation with 4th order accuracy
in kAz. Similarly, in the deep water limit we have,

. Cro 3 sin kAx 6 (11 + cos kAx) 172
P Cy, KAz (2+ coskAx) [ (13 — cos mAm)(S + cos KAx) (2.67)
=1- A Az)°

which shows that the phase-speed error is also of 4th order in kAz. In the general case

the leading-order truncation error term of O [(kAz)*] will be a function of the dispersive
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characteristics of propagating waves, 0 = khg. In fact, it can be demonstrated that the
maximum value for the leading-order coefficient will always occur at the shallow water
limit, where o — 0, independently of the chosen « value as shown in Figure 2.3-a). It
is also interesting to note that the asymptotic behaviour in deep water (i.e., 0 — o0)
changes when « = 0 converging then to —1/576.

Even though it is generally acknowledged that numerical dispersion constitutes
an important property of any scheme, dispersion relations associated to previously
published finite difference or finite element high order Boussinesqg-type models have
rarely been reported. Moreover, it is commonly argued that numerical dispersion can
be avoided if O(c?) dispersive terms are discretized with 2nd order truncation error
approximations, while convective or first order terms are approximated through 4th
order centered finite difference formulae (e.g., [1, 177]). Even if from a practical point
of view the latter could be sufficient for well-resolved waves, the numerical scheme
will only be 2nd order accurate in kAz and in the general case more nodal points
per wave length will be needed to reproduce the associated phase speed correctly.
In order to illustrate this we will discretize high order dispersive terms appearing in
the flux function G’ of equation (2.55) and in the linearized version of the auxiliary
equation (2.36) by using explicit 2nd order finite difference approximations. It is worth
emphasizing that no direct comparison can be made with the finite difference technique
used in [177, 178] or with finite element models based on similar mized order approaches
[175, 181] since our numerical resolution is based on a compact finite volume integration
on a staggered grid. In spite of that, the following analysis can be useful to see what
consequences this kind of strategy may have in our particular numerical method. Thus,
2nd order derivatives are approximated now using the following explicit 2nd order

formula,

1

(Pga)j = N

(B0 — 28, + B; 1), (2.68)

and the corresponding spectral relation is found to be (after substitution of a Fourier

component),

(' Az)* = 2(1 — cos kAZ). (2.69)
Similarly, using 2nd order approximations for high order derivatives in the linearized
version of auxiliary equation (2.36) it can be shown that,

(1/3+ a) 24 (1 — cos kAx)

U =1 .
+ p? (11 + cos kAx)

(2.70)
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Substituting relations (2.69) and (2.70) in (2.64) provides the following form for the

discrete dispersion relation associated to the mized approach,

C_}v B 0_2[(a —1/3) + a(a+1/3)0?

o = T BT ac [ 5 (at1/3)0y A0 +OlsA)]. (2.71)

Therefore, using second order finite difference folmulae to evaluate dispersive terms
results in an overall reduction in the spectral resolution of the method. However, the
coefficient that multiplies the O [(kAz)?] term will be relatively small (but positive!)
near the shallow water limit (see Figure 2.3-b)) in such a way that the accuracy of
the scheme would not be dramatically affected. The latter constitutes the main ar-
gument behind the mized approach used in several finite difference and finite element
Boussinesg-type models. Nevertheless, we will show in the rest of the section that the
full 4th order scheme has better numerical properties and is more robust than its mized
counterpart.

Another important and challenging property to test is the ability of a particular
numerical scheme to correctly reproduce group velocities. This property is related to
wave energy propagation and usually imposes more severe restrictions on the appli-
cation of numerical methods than the dispersion relation preservation condition. The
wave group velocity associated to the numerical scheme and the linearized set of PDE

can be estimated from the non-dimensional dispersion relation as,

1w C, 0 c

Again, the general discrete relation will depend on KAz and p but asymptotic expres-
sions can be found as before. In the shallow water limit the ratio between the numerical
and the physical group velocity reads,

1
lim % = 1 o (rA0)" + O[(sA0)'), (2.73)
g9

while in the deep water case we have,

11
lim Corv =1

— —(kAx)* Az)" 2.74
lim 20 = 1 ()" 4 Of(s0)') (274

showing that the truncation error is still 4th order in KAz but with a leading-order
term an order of magnitude larger than in the phase speed case. Similarly, it is possible
to demonstrate that when the mized order strategy is used the overall truncation error
for the group velocity estimate is 2nd order in KAz, except in the shallow water limit
(p — o0) where it has the same form as (2.73).
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Figure 2.4: Ratio between computed and physical phase speed v/s KAz for a = 1/15, when (—)
p— 00, (--) p—=0and (---) p=0.1. a) Full 4th order compact finite volume scheme. b) Mixed 4th
and 2nd order discretization strategy.

Phase speed estimates using both approaches, the full 4th order and the mized
one, are plotted using o = 1/15 in Figure 2.4. It can be seen that when p — oo,
both strategies provide the same results. This means that for a given water depth,
ho, phase speed estimates get better in the mizred model if Ax — oo which is of
course rather problematic. Conversely, for a fixed spatial grid resolution, the modified
finite volume method tends to give better phase speed estimates as the depth becomes
shallower. However, larger errors could arise in deepest regions of the computational
domain exactly where dispersive effects become predominant and the model is intended
to perform better. On the contrary, the parameter p has only a marginal influence on
phase speed errors when the full 4th order model is used. Thus the full 4th order
compact finite volume method is more robust, in the sense that phase speed estimates
are less sensitive to changes in the p parameter, than the mized order version. For

comparison, numerical results obtained with p = 0.1, which is a reasonable value for
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Figure 2.5: Ratio between computed and physical group velocity v/s KAz for a = 1/15, when (—)
p— 00, (--) p—=>0and (—-—) p=0.1. a) Full 4th order compact finite volume scheme. b) Mixed
4th and 2nd order discretization strategy.

that parameter, are also plotted in Figure 2.4. It is seen that the numerical estimate
converges to the physical solution (within a 0.5 % error) when KAz ~ 0.3257 (L/Ax ~
6.1) in the full 4th order case, and when KAz ~ 0.202 7 (L/Az ~ 9.9) in the mized one.
Hence, for a reasonable value of p, the mized version requires nearly 62 % more nodal
points per wavelength than the original one in order to properly describe linear phase
speed. As explained before, the phase speed error in the mized order model can be
reduced if the parameter value p = Ax/hy is increased, however, the worst error occurs
when Az/hy — 0. In that limit the 0.5 % error level is reached for kAz ~ 0.1527
(L/Az ~ 13.2). Compared to the full 4th order scheme and for a given water depth
more than twice nodal points per wavelength will be needed to achieve the same phase
speed accuracy in the limit of very good grid resolution. Finally and in accordance with
the leading-order truncation error analysis made before, close examination of Figure

2.4 shows that when p = 0.1 phase speed of well resolved waves (i.e. KAz < 7) are
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sligthly overestimated by the mized order scheme.

Similar qualitative conclusions can be drawn when comparing numerical results for
group velocities presented in Figure 2.5. The main difference here is that one obtains
negative values for group velocities in the case of poorly resolved waves (kAz > 0.677).
On the other hand in order to describe group velocities within a 0.5 % error when p =
0.1, the full 4th order finite volume method requires kAz ~ 0.213 7 (L/Axz ~ 9.4) while
the mized scheme reaches the same accuracy when KAz ~ 0.1177 (L/Ax ~ 17.2). It
is confirmed then that proper numerical representation of group velocities is a more
challenging task because more nodal points per wavelength are needed to converge to
the physical solution and poorly resolved waves will transmit their energy in the wrong
direction. In this particular test, the full 4th order numerical scheme shows an even
better performance when compared to the mized version because the latter requires
roughly 83 % more nodal points per wavelength in order to reach the same level of
spectral resolution. In the limit of very good grid resolution for a given water depth
(Az/ho — 0) the mized order model reaches the 0.5 % error in group velocities when
kAz ~ 0.088, thus requiring more than 22 nodal points per wavelength.

The analysis that have been presented not only demonstrates the clear superiority
of the full 4th order version, but also shows that mizred order approaches must be taken
with care since the associated discrete dispersion relation has a misleading dependence
on p = Az/hg. On the other hand, mized order strategies have been introduced in
previous numerical models to avoid pentadiagonal or more complicated patterns in
matrices that need to be inversed. We believe that compact schemes or deferred-
correction strategies constitute a more satisfactory way to overcome this problem in
the framework of dispersive wave propagation phenomena.

2.4.2 Analysis of the full discrete system

In order to achieve a comprehensive numerical analysis of the scheme we study in this
section the full discrete system of equations which takes into account the Runge-Kutta
time stepping. Individual Fourier components that one needs to substitute in linearized
discrete equations (2.54), (2.55) and (2.56) have now the following form,

h} By b
| = | g el (Rida—(wrtiw)ndt) — | o A" €? (kjAz—wr nAt) (2.75)
Un ulﬁ) ulﬁ

j
where w, and w; correspond to real and imaginary parts of the frequency and |\|= evi2*

is the amplification factor of the numerical scheme. It can be seen that the analysis
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expounded in the previous subsection on the semi-discrete system of equations will
be equivalent to the one we are going to present now in the limit of good numer-
ical temporal resolution as w;At — 0. Indeed, the real part of the frequency will
give information about phase speed errors (numerical dispersion), and the associated
imaginary part contains information about the stability of the scheme (numerical am-
plification /dissipation). Numerical properties of the discrete scheme are now driven by
three free parameters, KAz, p = Az/hy and the Courant number, C, = Cy At/Axw.

It is worth to point out that analogous linear stability analysis have been performed
recently on a finite element resolution of an equivalent Boussinesq set of equations by
Woo and Liu [181], and on several finite volume resolutions of a KdV-like system of
equations by Bradford and Sanders [24]. In what follows we will compare the numerical
performance of our scheme with those previously published. Similarly, some compar-
isons between the full 4th order method and the mized order version will be given for
completion.

As before, we substitute Fourier components in the discrete system of equations
(2.75). After using relation (2.59) in order to eliminate the auxiliary variable ¢ in the
4th order Runge-Kutta time stepping process (2.53), it can be shown that the full
discrete scheme takes the following form in the Fourier space,

i H _
(G(K) —TI|)e ) - =0, (2.76)
U
where G(s) = 322 L (At-s)? is the Runge-Kutta time stepping operator and K is

p=0 p!
the spatial discretization operator introduced in the previous subsection. Nontrivial

solution of equation (2.76) yields,

2
At)? 27 (A’ ;
1+ 2 (8 kw2 (2 (K1K3)” — |Ale~r 2
2\ p 8 \p

(2.77)

Invoking definitions (2.62) and (2.63) we write,

At\? in? kA 2 + a(fkAz)?
P (_t) KoK, = — S KAT [p? + a(RAzx) ]03 (2.78)

p (2 + cos KAx)? A\
Thus, equating real and imaginary parts in equation (2.77) results in the following,
9, 27,
Al cosw,At =R =1— §\KH—§|K\ ) (2.79a)
3
A[sinwpAt = £T = 42 (2 - 3|K]) | K |2, (2.79b)
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Squaring and adding previous relations gives the amplification factor, while dividing
(2.79b) by (2.79a) provides the discrete dispersion relation of the numerical scheme,

ie.,

N=VRZ+I2, (2.80a)

T
tan wEAt = t- (2.80b)

Although the dispersion relation (2.80b) has two roots, in the frequency range
of resolvable waves (w,At € [0,7]) only the root with a positive imaginary part is
meaningful. Because of the change in sign of the function Z when |K|= 2/3, the mode
associated with the first root, w;" At, remains in the plane of resolvable waves as far as
|K|< 2/3. On the other hand, the second mode associated with w, A¢, will be valid
when |K|> 2/3. It is then concluded that, even though the numerical scheme does not
have any spurious computational mode in the frequency range of resolvable waves, it
is preferable to remain in the region defined by the inequality |K|< 2/3.

Numerical stability is studied now by looking at the amplification factor defined
in (2.80a). The scheme produces non-amplifying solutions as far as |A[< 1, so it is
straightforward to show that if,

8
K|< 2, (2.81)

9
the RK4 compact finite volume scheme is stable. In the general case, the stability
condition on the Courant number will be a function of o, p and KAz, but it can be

shown that the most stringent situation occurs when p — oo. Replacing relations
(2.58) and (2.60) in (2.78) provides the following stability condition in that limit,

C < 2v/2 (2 + cos kKAZ) < 2\/% (2.82)

- 3 sin KAz

The numerical scheme is thus unconditionally stable if the Courant number is chosen
to be less than 1.633 no matter what values of « and p are used and for all resolvable
wave numbers. Nevertheless, the stability limit can be moved further on by decreasing
the parameter value p, i.e. by improving the spatial grid resolution for a fixed hg. In
the limit of very good grid resolution (p — 0), the stability condition (2.81) takes the

following form,

23 (2 + coskAz) [(1/3+ a) (5 + cos kAz)(13 — cos kAZ) (1/3+ «)
Cr < . < 1.6034/ ——.
9 sin KAz « (11 + cos kAx) «
(2.83)

92



— 1.0 A

Al

0.4

0.4

0.2

0.2

0 1 1 1 1 0 1 1 1
0 02 04 06 08 1.0 0 0.2 0.4 0.6 0.8 1.0
KAX/TT KAX/TT

Figure 2.6: Numerical dissipation and phase speed error of the 4th order compact finite volume
scheme for a = 1/15, p = 0.2 at different Courant numbers : (—) C, = 1.0, (- -) C, = 2.0, (---)
C. =3.0 and (-x-) C,. = 4.0. a) Amplification factor. b) Ratio between computed and physical phase
speed.

Therefore, when taking o = 1/15 the method remains stable for all resolvable wave
numbers, kAz, if the Courant number is less than 3.926 in the limit of very good
spatial resolution. It is interesting to note that the high order dispersion correction
term introduces some kind of instability in the system because the stability limit is
increased by reducing the weight of this term (i.e., « — 0). On the other hand, for
finite values of p, it can be shown that the stability limit will be bounded by the two
asymptotic values given in (2.82) and (2.83).

Even though stability is a necessary condition in order to ensure that the numerical
scheme will not produce unbounded solutions in time, it doesn’t say anything about
the accuracy of the method in terms of dissipative and dispersive errors. For instance,
Figure 2.6 shows numerical dissipation and phase speed errors for different Courant

numbers and for a fixed value of p = 0.2 (keeping @ = 1/15). This particular p-
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value has been chosen in order to perform a comparison with the numerical analysis
presented in papers from Woo and Liu [181] and Bradford and Sanders [24]. It is
seen in Figure 2.6-a) that when C, = 1.0 the present compact finite volume scheme is
stable and nearly neutral (i.e. |A| ~ 1.0), thus introducing a clear improvement over
the Petrov-Galerkin finite element model described in reference [181] because with the
same numerical parameters, amplifying modes were already present in the latter. In
fact, those authors were only able to ensure stability when the Courant number was
less than 0.5 which is a value more than three times smaller than the most stringent
stability limit expressed in equation (2.82). Similarly, stability of several linear finite
volume schemes (Lax-Wendroff, Fromm and Warming-Beam) and a centered 2nd order
finite difference scheme used to solve a KdV-like system of equations was compared
in reference [24]. For an almost equivalent set of numerical parameters (C, = 1.0
and p = Azx/hy ~ 0.18), Bradford and Sanders showed that only the Fromm and the
Warming-Beam methods were stable but they appear to be dissipative for mid to high-
range spatial frequencies. Thus, it can be concluded from this particular comparison
that the present numerical scheme has a wider stability region and is less damping
than those studied in references |24, 181]. Moreover, using Maclaurin series to expand

(2.80a) it can be shown that for small values of KAz,

6
r

,}i_)1£10|A|: 1— 16:14 (kAz)° 4+ O[(kAZ)?), (2.84a)
lim[A]= 1 - 5{4 [ﬁ] (kAz)® + O[(kAz)®]. (2.84b)

Therefore, the dissipative error for the present finite volume scheme is O[(kAx)®], while
linear finite volume schemes studied by Bradford and Sanders [24] only showed to be
O[(kAx)*] accurate.

Further information on the damping modes associated to our numerical model can
be obtained from Figure 2.6-a) when looking at amplification factors associated to
increasingly high Courant numbers. It is seen that for C, = 2.0 and C, = 3.0 some
mid-range frequency dissipation is present with a maximum located at KAz ~ 0.662 7.
Additional computations show that the numerical scheme is non-amplifying (stable)
for p = 0.2 as far as () < 3.71. However, mid-range frequencies begin to be heavily
damped before reaching that limit (see Figure 2.6-a)). As discussed in reference [80)],
this dissipative behaviour is mostly due to the Runge-Kutta time stepping.

Phase speed errors obtained for p = 0.2 and for different Courant numbers are pre-
sented in Figure 2.6-b). It is seen that phase speed estimates get worse when increasing

the Courant number. Again, an unstable rapidly growing mode can be identified and
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coincides with the one observed for the amplification factor. It is also evident from
this figure the passage from one root to the other in the numerical dispersion relation
(2.80b) that takes place between Courant numbers Cr = 3.0 and C, = 4.0. As before
and in the limit of small KAz, it can be shown that a Maclaurin expansion of the

dispersion relation yields,

. Cfv _ 1 § 4 4 6
}LIEO Co = 1 120 (1 +3 Cr> (kAz)” + O[(kAZ)"], (2.85a)
lim Cro _ 1-— . 1+24 | — 2 2 C* ) (kAz)* 4 O[(kAZ)° (2.85Db)
230 Cn 2880 1/3+a)] T ' ‘

Therefore, phase errors dominate over dissipative errors in the present compact finite
volume scheme. Linear finite volume schemes studied by Bradford and Sanders [24]
showed similar characteristics but with larger truncation errors. Figure 2.6 also indi-
cates that in the present example, stable neutral solutions are obtained if C, < 1.5. It
is important to note that phase speed will not be overpredicted in this range of Courant
numbers.

In the general case, it is possible to construct stability and phase error contour
plots in the (C,, kAx) plane for different values of the p-parameter. Before doing so we
recall that, to the authors knowledge, detailed analysis of the spectral resolution of pre-
viously published numerical methods used to solve equivalent sets of Boussinesq-type
equations have not been reported. However, this property is paramount when dealing
with physical problems where different wavelength scales are naturally present or can
emerge as a consequence of nonlinear interaction. For example, recent extended ver-
sions of Boussinesq-type equations can theoretically match the Stokes linear dispersion
relation up to o ~ 6 when formulated in surface and horizontal velocity variables (e.g.,
[70, 110]), and up to even higher values (o ~ 25) if the vertical velocity is in addition
retained as unknown (see reference [108|). Nevertheless, if numerical schemes used to
solve the associated systems of PDE are not carefully concieved to correctly reproduce
phase speed and group velocity for all physical wavelengths, theoretical improvements
concerning the extension of the o range may be unpractical. For instance, if the mized
order strategy is used to discretize convective and dispersive terms, the asympotic error
analysis given in the previous section showed that the 0.5 % phase speed error limit
remains between 0.157 < (kAzx)os% < 0.3m when w;At — 0. Therefore, the lower
limit of this inequality, which occurs asymptotically in deep waters, is an indication of
the numerical resolution of the scheme when dealing with extremely dispersive waves.
This means that the discretized model will correctly describe linear phase speed for

wave numbers kAx being less than 0.157 and this value fixes the p-parameter that will
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Figure 2.7: Contours of 0.5 % and 5 % dissipative errors for « = 1/15 and p = 0.1 in the (C,, kAz)
plane. |A|< 0.95 in region I (damping), and |A\|> 1.05 in region II (amplifying). a) Full 4th order
compact finite volume scheme. b) Mixed 4th and 2nd order discretization strategy.

ensure that all physical wavelengths will be well represented (because KAz = op). If
the physical o range of the discretized Boussinesqg-type equations is 6, then a value of
p = Az/hg < 0.08 must be used in the mized order finite volume scheme. Similarly,
if the physical range is moved further on to reach o ~ 25 as it is the case in reference
[108], then the spectral resolution of the numerical scheme imposes the discretization
parameter p to be less than 0.02. It is evident from results presented in the previ-
ous subsection that, for group velocities, the ratio Az/hg must be further reduced
to achieve an accurate representation of this property. Moreover, for finite Courant
number values spectral resolution will drop even more. This simple but important
discussion allows us to illustrate the relevancy of the spectral resolution in terms of
phase speed and group velocity of numerical schemes. In the framework of numerical
resolution of Boussinesq-type equations, this important DRP property must be stud-

ied. More specifically, if extended versions of those equations, which may allow for the
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description of highly dispersive waves are to be discretized, the use of low-resolution
explicit finite difference formulae can lead to overwhelming computational efforts if an
accurate representation of group velocities is intended (even if high order schemes are
used). Indeed, it is widely aknowledged that such approximations have significantly
worse spectral properties than equivalent compact formulae [90, 93, 95].

Contour plots for the dissipative errors in the (C,, kAx) plane are presented in
Figure 2.7 for the full 4th order scheme and the mized order approach. The p-parameter
is fixed at 0.1, a value that allows both numerical approaches to describe all physical
wavelengths because the linear dispersion relation associated to the PDE system match
the theoretical Stokes relation up to o ~ 3 when o = 1/15 [9]. This figure shows that
there is a wide region where both schemes remain stable and nearly neutral (white
region). In region I, the numerical scheme starts to damp mid-range frequencies but
it remains stable. Amplifying unstable modes begin to disturb the numerical solution
when the thin region located between zones I and II is reached. Therefore, the upper
edge of region I roughly represents the stability limit of the scheme. It is seen that the
full 4th order version will be stable for all frequencies if C, is taken to be less than
3.8, and that the mized order one will remain non-amplifying if C, is less than 4.1.
Hence, the use of low order explicite finite difference formulae to discretize dispersive
terms results in a slight improvement in stability and similar conclusions were given
in reference [63]. However, for practical computations, spectral resolution in terms
of phase speed, group velocity and numerical dissipation will impose more stringent
conditions than stability and the Courant number will be in general choosed to be less
than 1.5 in order to ensure a proper representation of all physical wavelengths.

As discussed before, spectral resolution and DRP properties of numerical schemes
used to solve wave-type equations must be studied as emphasized in reference [139].
A wide range of stability region is for sure a desired quality for any numerical solver
because small unphysical perturbations will not grow unboundly. However, the use
of too high Courant numbers (even if they are below the stability limit) to integrate
the equations in time can produce poor results in terms of phase and group velocities
and this was already illustrated in Figure 2.6. Now we generalize this result plotting
countours of phase speed and group velocity errors in the (C,, kAx) plane in Figures 2.8
and 2.9. It is seen that numerical errors in phase speeds and group velocities are rather
insensitive to changes in the Courant number as long as the latter remains below a
value of 1.5. For Courant numbers laying above that limit, the extent of the DRP
region in terms of wave numbers KAz is reduced as the Courant number increased and
this is more evident for the full 4th order scheme. On the other hand, the DRP region

for a given Courant number is bigger when using the full 4th order approach than when
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Figure 2.8: Contours of 0.5 % and 5 % phase speed errors for « = 1/15 and p = 0.1 in the (C,., kAz)
plane. a) Full 4th order compact finite volume scheme. b) Mixed 4th and 2nd order discretization
strategy.

discretizing dispersive terms with 2nd order explicit finite difference formulae. Indeed,
if the Courant number is kept below a value of 1.5, the extent of the region where
numerical errors in group velocities are less than 0.5 % is almost two times bigger
in the full 4th order version than in the mized one. A similar trend is observed in
Figure 2.8 for the comparative analysis of numerical representation of phase speeds.
This clearly shows the inconvenience of using mized order strategies to simplify the
numerical treatment of high order terms because it results in an important overall
reduction of the spectral resolution in this particular finite volume scheme. Therefore,
significative more nodal points per wavelength will be needed to properly describe
wave kinematics; moreover, if the numerical scheme must also be able to deal with
extremely dispersive/short waves, this critical limitation may also obscure theoretical

improvements in the o-range of application of Boussinesq-type equations.

Finally, it can be concluded from the linear analysis that keeping the Courant
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Figure 2.9: Contours of 0.5 % and 5 % group velocity errors for a = 1/15 and p = 0.1 in the
(Cr,kAx) plane. a) Full 4th order compact finite volume scheme. b) Mixed 4th and 2nd order
discretization strategy.

number below 1.5 and using p = 0.1 for numerical computations will ensure that the
compact finite volume scheme used to discretize the set of PDE derived here is stable,
non-damping and with a maximized DRP region.

2.5 Numerical experiments and discretization errors

In this last section we study the stability of the proposed numerical scheme using an
heuristal approach that allows us to explore how this property is affected by nonlinear-
ity. Besides, the discretization error is estimated numerically by comparing analytical
and computed results using the solitary wave solution presented in Section 2. Dis-
cretization error is related to the order of approximation of the scheme and is different
(although somehow related) from the spectral properties investigated in the previous

section. Here, we will instead determine how truncation errors, which belong to numer-
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ical approximation of partial derivatives, are reduced when the spatial and temporal
grid is refined.

2.5.1 Discretization errors

Whithout dispersion correction terms (i.e. a = 0) and for a flat bottom, equations
(2.18)-(2.19) have the solitary wave solution expressed by relations (2.22)-(2.24). This
interesting property is used here to estimate discretization errors by comparing the
numerical and the exact solution for this particular PDE system. In order to do that,
a solitary wave of relative amplitude a/ho = 0.2 is propagated during two characteristic
wave periods over a still water depth of hg = 1 m. The characteristic period is estimated
from the characteristic length of the solitary wave, L, following the definition used in
reference [181]. Hence, L is the distance over which n/hy > 0.001, where n is the
location of the free surface. The equivalent solitary wave period is then defined as
T = L/C and can be computed invoking the definition for the phase speed of the
soliton given in equation (2.24). The average numerical error is estimated using the L,

norm and reads,
I=L i pn _ pe

=1
;:0 ”h§||1

where h® and A" are respectively the exact and the numerically computed solution,
I is the total number of finite volumes used to discretize the spatial domain, and
water depth values are evaluated at cell faces of each control volume (j-nodal points).
Equations are integrated using the solitary wave solution centered at x = X, as initial
condition. Computations are carried out during two wave periods and results compared
with the analytical soliton centered at position x = Xy + 2L. All numerical tests are
performed using a fixed point iteration tolerance of 7 = 10™* to solve (2.47). Spatial
discretization error is studied using a small time step of At = 0.002 s in order to
ensure that most of the errors belong to the spatial grid resolution used to perform
computations. Estimated convergence errors obtained by increasing the number of
finite volumes per wavelength (i.e. decreasing p) are presented in Figure 2.10-a) where
it can be seen that, except for the last two computed errors using the smallest p, the
ideal slope for a 4th order spatial discretization is fairly well recovered. It is believed
that for the two last computed values, round-off errors or some influence of the time
step (because it is not small enough for the prescribed p value) are responsible for the
slight divergence from the ideal slope. Nevertheless, it is widely confirmed that the
finite volume discretization of the system of PDE is O[(Az)?] accurate.

An equivalent numerical test is performed on discretization errors due to time in-
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Figure 2.10: Discretization errors for a propagating solitary wave. (——) Ideal 4th order slope; (o)
computed errors when a/hg = 0.2; (A) computed errors when a/hg = 0.6. a) Convergence error in
Az using a fixed At = 0.002 s. b) Convergence error in At using a fixed p = 0.1.

tegration for a fixed p = 0.1 and monotonically decreasing the Courant number. As-
sociated numerical errors are presented in Figure 2.10-b) and compared against the
theoretical 4th order slope. Again, it is fairly well confirmed that the convergence
error is O[(At)*], except for the last point where, probably for the same reasons stated
before, the computed slope slightly diverges from the theoretical one. Therefore, the
proposed RK4 compact finite volume scheme is O[(Az)?, (At)*] accurate.

In addition, convergence errors obtained for a highly nonlinear propagating solitary
wave (a/hy = 0.6) are also plotted in Figure 2.10. It is seen that the rate of con-
vergence for the discretization error in Az is slightly worse than the one observed in
the moderately nonlinear case investigated before. The latter is not surprising since
strong nonlinearities may affect the model performance. Nevertheless, the convergence
rate is still well above O[(Ax)3] for this challenging test and the computed slope only
starts to diverge from the theoretical one when Axz/hy < 0.4. This trend, which has
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been also noticed in the previous example, is probably associated to the fixed time
step value used to estimate errors since in this highly nonlinear case the equivalent
wavelength (and the associated wave period) is much smaller than the previous one.
On the contrary, the convergence rate for temporal discretization appears to be rather
insensitive to changes in nonlinearity since the ideal slope is well recovered. Thus, the
four-stage Runge-Kutta scheme used to integrate the system in time has an excellent
performance even for highly nonlinear cases.

This numerical test also validates the chosen deferred-correction approach used to
preserve the tridiagonal structure of the matrix that links the auxiliary variable ¢ with
the depth-averaged velocity u in matrix equation (2.47). Moreover, the convergence
rate was rather insensitive to changes in the fixed point iteration tolerance as long as
7 < 107%. Indeed, 7 = 10~* proved to be a sufficient choice in all computations.

Another important property that any numerical scheme used to solve Boussinesq-
type equations must fulfill concerns its ability to preserve wave form and phase speed
in time. These qualities have been already investigated from an analytical point of
view through the linear spectral analysis given in Section 4. However, it is important
to test these properties in the case of highly nonlinear waves propagating over long dis-
tances. This can be achieved using again the closed form solitary wave solution of the
original Serre equations. Similar tests have been reported in references [175, 177, 181]
for moderately nonlinear solitary waves. For instance, Figure 2.11 shows computed
results for the propagation of a solitary wave of relative amplitude a/hy = 0.6 over 50
equivalent wavelengths using C, = 1 and p = 0.1. A perfect agreement between the
analytical and numerical solution is noticed. It is remarkable how this result confirms
the analysis given in previous section where it was shown that these set of numerical
parameters may produce stable non-damping solutions for all physical wavelengths.
In addition, when decreasing the number of nodal points per wavelength some phase
speed and amplitude errors can be noticed. Nevertheless, even for p = 0.2 the agree-
ment with the analytical solution is almost perfect. Although an objective comparison
with previously published models used to solve equivalent set of equations cannot be
performed, we recall that a similar grid resolution (~ 75 elements per wavelength but
with C; ~ 0.5) was used in [181] on the base of a Taylor-Galerkin finite element model
and some phase speed errors were already noticed when propagating a moderately non-
linear (a/hy = 0.3) solitary wave over a shorter distance (~ 25 wavelengths). A similar
trend was also reported in references [175] and [177].

Finally, when increasing the p-value further to reach 0.5 (~ 29 nodal points per
wave lenght), bigger discrepancies show up. Nevertheless, the relative error in phase

speed over this long distance appears to be less than 2 %.
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Figure 2.11: Strongly nonlinear solitary wave propagating over 50 equivalent wavelengths where
afhg = 0.6, L =14.7m, T = 3.7 s. Exact solution (—) and numerical computations performed with
C-=1.0,p=0.1(——), p=0.2 (), and p= 0.5 (—-—). a) Overview of the whole domain and initial
and final locations of the solitary wave. b) Close inspection of numerical results.

2.5.2 Nonlinear stability

The way nonlinearity affects the stability of the proposed scheme is investigated now
performing numerical experiments where we estimate the maximum Courant num-
ber for which a propagating solitary wave remains stable. Computations are carried
out over three equivalent wavelengths for different relative amplitudes a/hy and for
monotonically increasing Courant numbers until numerical instability shows up. The
influence of the correction dispersion term is also investigated because it was analyti-
cally demonstrated in Section 4 that this term may produce some destabilizing effects
in the system (see inequality (2.83)). Therefore, three different a-values are inves-
tigated, namely, a = 1/15, @ = 1/30 and o = 0. It is important to recall that it

is expected that when o = 0 important numerical (and mathematical) properties of
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Figure 2.12: Stability limits estimated numerically using p = 0.1 for increasing nonlinear solitary
waves and different values for the dispersion correction parameter : (=) a = 1/15, (— =) a = 1/30,
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the system may change as it was illustrated in Figure 2.3 where a totally different
behaviour was noticed for this a-value. Numerical estimation of the stability limit
in terms of the Courant number is given in Figure 2.12. Theoretical values obtained
from linear analysis is also included in the figure (when a/hy — 0) for @« = 1/15 and
a = 1/30. The limiting Courant number predicted by linear theory when o = 0 and
p = 0.1 is roughly C, = 16. Such a high value was not recovered numerically proba-
bly because the stability analysis performed in Section 4 may only be valid for finite
values of « as discussed before. Nonetheless, for the two finite values of « investigated
here, numerical experiments confirm in a satisfactory way the linear stability analysis
as depicted in Figure 2.12. Moreover, when the dispersion correction term is switched
off the stability region is considerably increased as it was expected from the numerical
analysis of the scheme. It is also noticed that for finite a-values, nonlinearity does affect

the stability of the scheme because the maximum stable Courant number is reduced.

64



Nevertheless, numerical experiments show that the RK4 compact finite volume scheme
remains stable, even for extremely nonlinear waves, as long as the Courant number is
kept below a value of 1.9 when o < 1/15. Undoubtedly, this result constitutes a major
improvement in stability when compared to previously published numerical solvers for
Boussinesg-type equations.

It was noticed that for the finite a-values investigated, numerical instability was
mainly triggered because the resulting matrix of equation (2.47) appeared to be ill-
conditioned in the presence of high nonlinearity. On the contrary, when dispersion
correction terms were set to zero, numerical instability appeared to be mainly due to
intrinsic properties associated to the 4th order Runge-Kutta time stepping, and this
may partially explain why the region of stability was only slightly affected by changes
in a/hg when o = 0. We believe that this misleading dependence on the chosen « value
must be further investigated on a mathematical basis because it was demonstrated that
the dispersion correction strategy used here may lead to an important reduction of the
stability region. Moreover, it was rather surprising to confirm numerically that the
stability limit may reach such high Courant numbers when the dispersion correction

term was switched off.

2.6 Conclusions

A novel approach to numerically handle a set of fully nonlinear and weakly disper-
sive Boussinesq-type equations was presented and deeply investigated using numerical
analysis. The chosen set of extended Serre equations could be written in a weak
quasi-conservative form which makes the use of finite volume methods very attractive.
Indeed, recently developed compact strategies for cell-face reconstruction in the frame-
work of finite volume methods were borrowed from CFD and adapted to this particular
set of PDE. High order accuracy was achieved in spectral space and numerically es-
timated discretization errors confirmed that the newly developed scheme is fully 4th
order in space and time while computational efforts were kept at a very reasonable
level. The latter constitutes an important feature of the present scheme because ex-
tensions in two horizontal dimensions (2D-H), where relatively large scale problems (~
km) are to be discretized, may be achieved at affordable computational costs. In fact,
the use of the present compact approach allowed us to reduce CPU time by more than
three times when compared to our previous explicit 4th order finite volume model (see
reference [39] also reprinted in Appendix C). Moreover, we believe that the particular

choice of this compact finite volume method will allow us to extend the model in 2D-H
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staightforwardly taking advantage of developments already available in several space
dimensions and unstructured grids (e.g., [93, 142]).

On the other hand, the use of linear spectral analysis provides important informa-
tion concerning the performance of the newly developed scheme. For instance, we have
good reasons to believe that the widely used strategy of discretizing convective and dis-
persive terms using mized order finite difference formulae may lead to phase and group
velocity errors which are difficult to control. This drawback can be specially critical for
computations dealing with extremely dispersive waves since a good description of the
whole range of characteristic wavelengths will certainly impose the use of a very fine
grid resolution. Therefore, some recent theoretical improvements for Boussinesg-type
equations may be unpractical for real world applications. The latter has a strong anal-
ogy with some difficulties encountered in the field of CFD where, for direct numerical
simulations (DNS) of Navier-Stokes equations, the range of spatial lengths that a par-
ticular numerical scheme should be able to correctly represent is broadened towards
smaller scales for increasingly high Reynolds number (thus requiring further refining
of the grid size). This question has not really been tackled yet in the framework of
coastal engineering. However, if numerical modelling of nearshore hydrodynamics is to
be handled with help of Boussinesq-type equations, efficient, accurate and stable larger
scale models are to be developed.

Additionally, qualitative comparisons with previously published numerical schemes
used to solve equivalent set of equations were performed in Section 4 and 5. Linear
spectral analysis and some numerical experiments showed that the present RK4 com-
pact finite volume model possesses a wide stability region, good spectral resolution
and an excellent numerical behaviour even when dealing with high nonlinearities. For
instance, stability is only ensured in some of the previously published numerical strate-
gies used to solve equivalent set of equations for Courant numbers which should remain
below 0.5 (e.g., [69, 141, 181]). On the contrary, the present finite volume scheme has
shown to be unconditionally stable (i.e., for all wave numbers and spatial grid resolu-
tions) if Courant number is fixed to a value below 1.6, thus introducing fundamental
improvements over previous ones. Moreover, this limit could be moved further on if
grid resolution was improved and it was found in Section 5 that, even in the case of
the propagation of an extremely nonlinear solitary wave, solution remained stable as
far as C, < 1.9 for a grid resolution of p = 0.1. Indeed, it was found analytically in
Section 4 that the dispersion correction term as given in references [109, 110] introduces
some kind of numerical instability in the system. This undesirable situation was also
confirmed by numerical experiments.

Ongoing developments of the present model concern its extension into the surf
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zone by including extra breaking terms. In particular, the incorporation of a novel
approach for wave-breaking will be investigated in Chapter 5. Similarly, the numerical
treatment of appropriate boundary conditions and the validation of the model for wave
propagation over uneven bathymetries will be addressed in the next chapter.

Finally, it is also worth to point out that in more complex wave propagation prob-
lems (i.e., over uneven bottoms, periodic waves and added breaking effects), high-
frequency waves can arise as a consequence of nonlinear interaction. In this context,
the use of high-order filters to damp out spurious wave components is of common usage.
The spectral analysis performed here gives insight of how this can be achieved without

affecting the range of resolved physical wavelengths.
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Chapter 3

Validation of the Time Domain Wave

Propagation Model

3.1 Introduction

In the previous chapter, analytical properties of the proposed compact finite volume
scheme were investigated. In particular, linear stability, spectral resolution and non-
linear performance of the scheme were analyzed in the framework of wave propagation
over flat bottoms. In the present chapter, practical considerations intended to apply
model equations to realistic problems of wave propagation over uneven bathymetries are
considered. Experimental test cases will provide additional insight concerning model

performance when used to describe complex wave processes.

The set of mass and momentum conservation equations has already been presented
in Chapter 2. Here we only recall the weak quasi-conservative form that has been
discretized with a compact finite volume method. This particular fully nonlinear and

weakly dispersive set of Boussinesqg-type equations reads,

hy+ F, =0, (3.1)
1
g=(1+r)u— 3—h(h3uw)x — €Uy, (3.3)

where the different flux functions, source term and dependent variable are defined
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Figure 3.1: Definition sketch for wave propagation over unveven bathymetries. z = 7 is the free

surface elevation, z = ¢ is the bottom’s location (here £ has a negative value), and h = n — £ is the
instantaneous water depth.

respectively as,
F = hu, (3.4)

G=qu+gh+¢) — %uQ(l + &) + (&u — %huw)huw — €Ul + Utige + g(h + &) gl

(3.5)
S = 2086, [uus + g(h+ €)s),. (36)
r= (he + &) + ghte (3.7)

Here h is the water depth, u is the depth-averaged horizontal velocity of the fluid, z = &
is the vertical coordinate of the bottom, g is the gravitational acceleration, and « is an
adjustable parameter associated to the dispersion correction term as given for instance
in references [109, 110]. The latter provides an extension of this shallow water set to
deeper water wave propagation problems. The cartesian system of coordinates and a
sketch of the problem is presented in Figure 3.1.

In the previous chapter, details on the application of a compact finite volume scheme
to this set of equations have been given and thoroughly analyzed for wave propagation
over horizontal bottoms. For readers’ convenience the main features of the numerical
scheme are summarized here : i) reconstruction of cell-face values from calculated cell-
averaged ones is performed using a compact strategy developed in references [90, 93|;
ii) high order dispersive terms are discretized using compact finite difference formulae
[95]; iii) a four-stage Runge-Kutta method is used to integrate the discrete system in
time; iv) 4th order accuracy in both, space and time is achieved; and v) stable non-

damping solutions are obtained if the Courant number is taken to be less than 2.0
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when using a grid size Az = 0.1 hg (ho being a representative value for the still water
depth).

In the following, we will pursue the validation of the proposed model using both,
numerical tests and experimental measurements for wave propagation over uneven
bathymetries. The important question of conceiving and discretizing suitable bound-
ary conditions for this system of equations will also be addressed. We are specifically
interested in developing boundary conditions able to accurately describe several non-
linear wave procesess taking place in a nearshore context.

The present chapter is organized as follows : in section 3.2, dispersive properties
of the model are studied, while section 3.3 deals with the numerical implementation of
different types of boundary conditions. In section 3.4 a high order filtering technique
is discussed and applied to damp out non-physical wavelengths not resolved by the
model, and in section 3.5 a complete validation of the proposed scheme is presented

using both analytical and experimental examples.

3.2 Optimal value for the dispersion correction pa-

rameter

Improvements in dispersive characteristics embedded in the Boussinesq-type model can
be achieved by adjusting the a-parameter associated to the high order dispersion cor-
rection term. From an analytical point of view it was shown in reference |9] that a
Padé (2,2) approximation for the exact linear Stokes dispersion relation is obtained
when choosing o = % Therefore, this extended system of Serre equations can ade-
quately match the Stokes relation up to o = khy ~ 7, where k is a characteristic wave
number and hq is a typical water depth. Comparisons between dispersive characteris-
tics for the partial differential equations set (PDE) and theoretical Stokes phase speed
and group velocity are presented in Figure 3.2 for different values of «.

Similarly, a Stokes expansion analysis was performed by Barthélemy in the same
reference |9 to investigate nonlinear properties of this particular system and the latter
will not be repeated here. Nevertheless, bearing in mind that linear wave propagation
properties of the set of PDE will theoretically allow for the description of wavelengths
up to, say o, = khg = 3.0, one can try to find an optimum value for a by minimizing the
joint root mean square error (RMS) of phase and group velocity estimates. Therefore,
instead of choosing the a-value which produces the extact Padé (2,2) Stokes expansion,
we will tune this parameter in order to minimize phase and group velocity errors over

the dispersive range 0.0 < o < 3.0. The latter can be performed introducing the
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Figure 3.2: Comparisons between linear dispersion characteristics of the model and exact Stokes
relations for different values of @ : (=) a = 0; (—=) @ =1/10; (- - =) a =1/15; (--) @ = 1/20; (—a—)
a =1/25. a) Phase speeds. b) Group velocities.

following quadratic form for the joint error,

UmC _CoeSQd UmC -C oe52d
Err:\/fo (Con stokes) U+ o (Con g Stokes)” O (3.8)

Om 9 Om 2 3
fo CStokest fo CgStokest

where Cy, and Cgyores represent respectively linear phase speeds belonging to the PDE
system and to the Stokes theory, while Cyy, and Cjgiores are the associated group

velocities. They read,

Cth _ 1+ ao?
Co \/1 + (1/3+ @) o?’ (3:9)

Csiokes tanh o
=1/ 3.10
00 o) ’ ( )
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Figure 3.3: Optimal adjustement of dispersion correction parameter a over the range 0 < o < 3.0.
a) Joint RMS error for phase and group velocities as a function of a. b) Comparison between model
phase and group velocities and theoretical Stokes relations for the optimal value o = 0.053 : (—)
Cin/Cstokes, and (——) Cyqtn/Cy Stokes-

Cotn _ a(l/3+ a)o* +2a0? + 1
Co \/[(1/3 +a)o?+ 1 (1 + ao?)

Cly stokes _ tanho + o (1 — tanh® o) (3.12)
Co 2v/otanh o ’

(3.11)

with Cy = v/ghy.

Hence, the optimization process consists in minimizing the error function (3.8)
over 0 < o < 3. The associated error as a function of « is plotted in Figure 3.3-a).
It is crearly seen that the joint RMSE has an absolute minimum in this dispersive
range. The optimum value for « is 0.053 (=~ 1/19) which is smaller than the analytical
result given in reference [9]. In Figure 3.3-b) the phase and group velocities obtained
with this a-value are plotted and compared against the corresponding Stokes relations.

The agreement between the modelled dispersion relation and the theoretical one is
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fairly good over this o-range. Larger discrepancies exist for the group velocity but the
maximum error remains below 6 % for all the physical wavelengths that the model is
able to describe. Nevertheless, the error in group velocities starts to grow rapidly when
o > 2.3 showing that this property will be overestimated in this range of wavelengths.

Unless explicitly stated, all numerical examples that we will present in the following
sections will be conducted with the dispersion correction parameter fixed to the optimal

value determined here, i.e. a = 0.053.

3.3 Boundary conditions

It is worth emphasizing that boundary conditions (BCs) affect numerical properties
of the implemented scheme. Stability and accuracy of high order methods can be
dramatically reduced if boundary treatment is not performed carefully [30, 139]. For
hyperbolic systems it is generally acknowledged that the formal spatial accuracy of an
inner Nth-order scheme is preserved if the system is closed by discretizing BCs with
at least an (N-1)th-order numerical approximation (see for instance reference [76]).
In the present chapter no analytical investigation of the numerical treatment of BCs
is performed because of the complexity of the implemented high-order method. This
important property is studied using an heuristical approach based on several benchmark
tests. Our objective is to ensure that the discretized counterpart of boundary conditions
does not introduce numerical instability in the system and preserves at the same time
the spatial accuracy of the numerical scheme used in the inner region.

Numerical strategies intended to reproduce physical properties of the system of
equations at boundaries must closely follow the intrinsic mathematical nature of it.
Hence, we begin the analysis of BC’s by studying the set of PDE from a mathematical
standpoint. Writing Serre equations in characteristic directions provides useful infor-
mation for developing suitable BC’s for this set. We focus in BC’s able to reproduce
important physical processes in a nearshore context, namely, an open sea boundary
condition, a moving shoreline strategy for the swash zone and a wall-type boundary

condition.

3.3.1 Decomposition of Serre equations in characteristic direc-

tions

Serre equations, which are recovered from (3.1)-(3.3) when o = 0 and bottom varia-

tions are neglected, can be recasted into a first order system of equations introducing
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auxiliary variables following the lines given in reference [147], i.e.,

he + uhg + uzh =0, (3.13)

Uy + vty + ghy + %hxl“ + %hl“w =0, (3.14)
I' = wy + vwy, (3.15)

w = —huy, (3.16)

where w is the vertical velocity evaluated at the free surface, and I' is related to the
vertical acceleration of the fluid evaluated at the same location. Thus, all dispersive
terms associated to the free surface curvature are contained in I". This first order

partial differential set writes down in the following matrix form,

A®,+B®,+CP® =0 (3.17)
with,
h 1000 u h 0 0 000 O
2 1
& | A= 0100 B= (g+30) u 0 3h C= 000 O
w 0010 0 0 u O 000 -1
r 0000 0 h 0 0 001 0

We want to transform the preceding system into a simpler characteristic form
through multiplication by a suitable bounded vector. We specifically aim at writing
the system in the differential form,

fi-d®+X-C® =0, (3.18)

where we have multiplied equation (3.17) by the required transformation vector A and
the total derivative of @ in associated charateristic coordinates reads,

0 0

Consequently, it follows that the vector i which allows to reduce the system of partial
differential equations into an ordinary differential set must fulfill the following condi-
tions,

jfdt=X-A , jidt=X-B.

Thus, eliminating 7 from these expressions results in X - (A dz — Bdt) = 0, which

implies for the characteristic transformation that,

1
det (A dz — Bdt) = gh dt? (dz — udt)® = 0. (3.19)
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Hence, Serre equations possess two double characteristic directions expressed by,

dz dz
pra and = 00,00 (3.20)

showing that the system is not of strictly hyperbolic type (see also reference [51]). From
a mathematical standpoint, the latter means that it is not possible to find Riemann
invariants for this PDE set. Nevertheless, in order to write BC’s which would traduce
this hyperbolic-parabolic mathematical nature, it is useful to recast Serre equations in

the following quasi-hyperbolic form,

dR* 14 ., dz
- ___ - r 1 - = 21
ph 37 32 (h’T")  along = ++/gh, (3.21)
dR- 10 ., dz
——— (BT 1 —=u—4/ .22
dt 3h o (T) along o =u—/gh (3.22)

introducing positive and negative Riemann functions, R = u + 2y/gh and R~ =
u — 2v/gh. Thus vertical accelerations, which are neglected in the nonlinear shallow
water equations set (NSWE), are responsible for the loss of hyperbolicity in Boussinesq-
type equations by introducing an horizontal dependence in the characteristic plane
(z,t).

It is worth noting that from a physical point of view we can expect that time scales
associated to dispersive effects would be larger than the ones associated to nonlinear-
ities from intermediate to shallow waters. We may therefore assume that over short
distances/times, Riemann variables might be locally conserved along characteristics.
We will use this physical argument in what follows to develop suitable boundary con-

ditions for the finite volume resolution of the extended system of Serre equations.

3.3.2 Open sea boundary condition

We seek to apply our cross-shore Boussinesq model to describe water waves propagat-
ing over a beach, thus an absorbing/generating boundary condition is required at the
seaward boundary. We need to prescribe an incident wave field there allowing residual
reflected waves to leave the computational domain without causing spurious oscilla-
tions. The numerical strategy consists in separating incident and outgoing waves on
the base of the quasi-hyperbolic form derived in the previous subsection. This kind
of approach has been applied to Boussinesq-type equations in references [119, 120] fol-
lowing the lines given by Van Dongeren and Svendsen [170] for fairly long waves. We
will use a similar approach but without assuming that incident and outgoing waves are
of small amplitude (weakly nonlinear) as it is the case in the aforementioned works.

Instead, we neglect dispersive effects to estimate depth-averaged velocitiy and water
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Figure 3.4: Definition sketch of characteristic decomposition of incident and outgoing waves.

depth at the seaward boundary using characteristic equations. We hypothesize that, at
least locally, dispersive effects do not influence boundary values. This heuristical treat-
ment will be validated later by numerical tests. Therefore, assuming that 1/gh > u,
the left and right-going characteristic curves are expressed by equations (3.21)-(3.22)
where vertical acceleration is neglected.

Since a four stage Runge-Kutta time stepping is applied to integrate equations at
interior nodes, seaward values can be obtained taking into account that the numerical
solution is evaluated twice at ¢t + At/2 and twice at ¢t + At. Using definitions sketched
in Figure 3.4 we first integrate characteristic equations (3.21)-(3.22) from ¢ to ¢+ At/2,

R, — R} = O(c°At), (3.23)
v — Rp = O(c*At). (3.24)

Therefore, if left and right Riemann variables are known and time step At is small
enough, this system can be solved for depth-averaged velocity and water depth at the
boundary node A’. Thus, we need to estimate initial locations z; and xx from where
positive and negative characteristic curves reach the point A’ in a single time step of
length At/2 (see Figure 3.4).

For incoming characteristics we assume that the incident wave field propagates from

—oo (a fictitious domain) and into the seaward boundary with a constant wave form.
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Hence, if the surface elevation time series of incident waves is prescribed as the function

na(t), the associated right-going Riemann variable should be,

77A(t + At/?)
(t+ At/2) —&a

R =up +2v/ghy = \/g[na(t + At/2) — £4] o +2|, (3.25)

where we have used a long wave approximation to relate the flow velocity to the local
water depth, i.e., hu = (h + &) \/gh.

The estimation of the negative Riemann variable requires more effort since the
initial location, xg, of the outgoing characteristic is not known beforehand. A first
estimate for this location is obtained by integrating the left characteristic trajectory

(3.22) and thus solving the following nonlinear equation for zg,

Since depth-averaged velocities and water depths are known for every j-nodal point
at time ¢, a linear interpolation is used to compute associated values at location zg.
This implicit equation is easily solved implementing for example a standard Newton-

Raphson algorithm. The outgoing Riemann variable is estimated then as,
Ry = u(zg,t) — 2+y/gh(zg, 1), (3.27)

once g has been computed. Solving the system (3.23)-(3.24) yields the first estimate
for boundary values of h and u at ¢ + At/2,

1
1
hat = 1 (R} — Ry)" + O(c2At, At). (3.29)

Cell-face values of water depth can be readily computed for interior nodal points at
t + At/2 from the finite volume integration of continuity equation (3.1). However, nu-
merical resolution of the PDE system requires in addition the prescription of boundary
values for the dependent variable q. This variable traduces the parabolic nature of
the system and its value cannot be fixed without taking into account the horizontal
dependence in the (z,t) plane given by equation (3.3). Hence, numerical estimates for
depth-averaged velocity and water depth at the seaward boundary are not sufficient
to determine an appropriate boundary condition for the system (3.1)-(3.3). More-
over, the mathematical form of equation (3.3) imposes an implicit treatment for this
boundary condition because there is a coupling between ¢4 and internal j-values of

depth-averaged velocity as pointed out in Chapter 2. To cope with this additional
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constraint it is necessary to use equation (3.3) to link the boundary value of ¢ with
information coming from the interior domain and boundary values h4 and u4. The
finite volume integration of equation (3.3) over the cell Q4 = {z € [x;=_1, T;=0]} using

nodal definitions given in Chapter 2 yields,

1 T;=0 (1 +7'A) /'l'i_o
— do ~~——22 dz—
Az T ="y %:4“ o

Ti——1

1 T, a , [T

Tij=—1 Ti=—1

where z;—_1 = x4 — Ax/2 is a nodal point located outside the physical domain. Recall
from the previous chapter that cell-averaged values of the dependent variable ¢ are
estimated at interior nodes by integrating equations (3.1)-(3.2) in time but that the
reconstruction of cell-face values requires the prescription of g4. Thus, equation (3.30)
will provide an additional implicit algebraical relation that must be incorporated in
the system used to compute depth-averaged velocities and ¢ values at interior nodes.
Evaluation of variables at ghost nodes located outside the domain is achieved using

cubic piecewise extrapolation, i.e.,

P =40y — 60, +4Pj_g — Pj_3, (3.31)

q) -2 = 10 (I)A - 20 (bjzl + ]_5 (I)]'Zg - 4(I>j:3, (332)

Jj=
which provides 4th order accuracy [60]. Since velocity gradients in equation (3.30) are
estimated at 4th order with help of an explicit finite difference formula (see Chapter
2), both nodal values, u;—_; and u;—_,, must be extrapolated from computed data at
the interior domain. On the contrary, for the dependent variable, only ¢;—_; must be
extrapolated.

As outlined before, the boundary value of ¢ cannot be prescribed directly and
interior nodal values for depth-averaged velocity are estimated from ¢, thus an iter-
ative procedure must be considered. The latter can be performed straigthforwardly
because the deferred-correction approach implemented to estimate u; values from the

discretized counterpart of equation (3.3) is solved iteratively. Equation (3.30) is re-

casted as,
5 2 1
94 = 56%=1~ 73%=2 + %Qj::}‘f—
1+7a 27 h;?’:_ + h?: .
{ 13 ' 26422 ( ;l),hA C 42085 | pua+ FYG, (3.33)
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where,

old 1 h$=—1 2 old
Fjj:o == + OffA /U/j:72+

26Ax2 \ 3hy4
{ : —;6“ B 2623;2 (27@’25}1@:— hi—o + 280&;%) } ud® |+
{ 5 (h?”sxm?‘“ + 28@51) } ug+
@ <Z;:j + aﬁi) udld,  (3.34)

and ghost values are estimated using the cubic extrapolation expressed by relations
(3.31)-(3.32).
The strategy used to advance u and ¢ in time taking into account the boundary

condition for v and h is summarized as follows :

1. Reconstruct cell-face values g; from cell-averaged ones using the additional rela-

tion (3.33) and last computed u; values for interior nodes.

2. Using g; values estimated at the previous step, compute depth-averaged velocities
at interior nodes solving equation (3.3).

3. If a convergence criterion for the relative error between new and old values for
g4 and u; is not satisfied, then come back to 1. Otherwise, the iterative process

stops.

Errors are estimated using the same expression based on a L; norm given in Chaper
2. The relative tolerance is fixed at 7 = 10~ for all computations.

At the end of this process all cell-face values for variables h, v and ¢ are known
at t + At/2. Nevertheless, the Runge-Kutta scheme will produce a second estimate of
variables at the same time level. In this second stage, characteristic equation (3.22)
can be integrated with improved accuracy taking advantage of the previous guess. The

xg location is now computed using the following implicit equation,

Tp— T4+ % [u(xR, t) 4+ ug — /gh(zg, t) — \/ghAf} = O(A?), (3.35)

and the second estimation for boundary values reads,

1
g =5 (R} + Ry) + O(0’At, At?), (3.36)
1
ha = 16 (RL = Rp)” + O(0At, AF), (3:37)
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where Riemann variables are defined as before. Thus, at each intermediate time step of
the Runge-Kutta scheme, boundary values for water depth and depth-averaged velocity
are estimated with an error of O(c?At, At?). In the general case, the time step At will
be small enough and the error associated to dispersion would be small. Similarly, the
boundary value for ¢ and velocities at interior nodes are obtained following the same
iterative strategy expounded before. The solution is then advanced to the next half
step t + At using an analougous procedure starting from computed values at ¢ + At/2.

3.3.3 Vertical wall

At a vertical and impermeable wall, horizontal velocity must vanish. Again, the char-
acteristic decomposition of Serre equations provides a way to fix the value for the
variable h. Therefore, the numerical strategy to estimate boundary values for u, h and
q is equivalent to the one we used for the open sea condition. The only difference is
that the fictitious right-going Riemann variable, R}, must be chosen in order to ensure
that the horizontal velocity is zero at the corresponding boundary.

We write this particular boundary condition for a situation where the vertical wall
is located on a slopping bottom. Integration of characteristic equations provides now
the following relations,

At

Ry —Rf =—g(&), -+ O(o?At), (3.38)
_ - At
Ry —Rp=-9(&), 5 + O(c?At), (3.39)

where the associated bottom slope term is included as a source in the right hand side.

In order to impose a vanishing horizontal velocity at the wall we write,

At
R =2¢(&), - ~ B (3.40)
At 1, . 2
wy =—9&)a +3 (Rf + Ry) + O(c*At, At), (3.41)

and the water depth at the boundary A’ is estimated with the same expression as
before (equation (3.29)). Once boundary values of v and h are computed in that way,
the remaining variable ¢ is estimated at the seaward using the same procedure outlined
before. Therefore, it is possible to obtain improved accuracy in the second stage of the
Runge-Kutta time stepping.

3.3.4 Moving shoreline

An adequate representation of swash motion at the shoreline is very important since

infragravity waves are generated in nature by nonlinear interactions, breaking and by
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partial reflection produced in particular by the runup and run-down process that takes
place in the swash zone (e.g. |7, 113]). Several authors have developed numerical strate-
gies intended to reproduce the dynamic movement of the shoreline in the framework
of Boussinesq-type models. These schemes have been mainly applied using fixed grids
where the moving boundary problem is only solved in an approximated way. Although
it is generally acknowledged that this kind of stategy can sometimes produce loss of
mass and numerical instability (see for instance reference [8]) it has been widely used
in nearshore problems since the treatment of the moving shoreline is fundamentally
simplified. Some recent examples of such approaches range from ad-hoc or essentially
numerical approaches (e.g., [85, 107, 111]) to more sophisticated ones where a Riemann
wet-dry problem is explicitly solved [14].

In the present work, the simple extrapolation technique given by Lynett et al. [107]
has been adapted in our finite volume resolution. Lynett et al.’s [107] moving shoreline
technique is based on a linear extrapolation of free surface and velocity through the
wet-dry boundary. In the present finite volume scheme wet cells are included in the
computation of equations (3.1)-(3.2) if,

1
ae Jy hdz > hy, (3.42)

where 2; denotes a finite volume, Az is the grid size and hyy is a threshold value.
Cell averaged values for water depth A%c f hdx and cell averaged variable A%c f qdz are
linearly extrapolated through dry cells. Following Lynett et al. [107], a four-point filter
may be passed through the extrapolated region in order to avoid slope discontinuities.
Equations (3.1)-(3.2) are integrated in time and the location of the wet-dry interface
is determined once every half time step (At¢/2) in the Runge-Kutta time stepping.
Spatial derivatives are computed in the physical and extrapolated domain where five
extra dry nodal points are considered. Depth averaged velocity is finally computed
from equation (3.3) in the extended domain (wet + dry).

The numerical implementation of this moving shoreline will be validated in next
section where particular care must be paid to the issue of mass conservation. The
linear extrapolation at the shoreline locally reduce the accuracy of the sheme to 2nd

order as pointed out in reference [107].

3.3.5 Compact differencing at boundary nodes

Boundary estimates for first and second order spatial derivatives appearing in flux
functions (3.4)-(3.5) are performed using compact approximations which preserve 4th

order accuracy for first derivatives and third order for second derivatives. The resulting
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matrix for the whole domain will be tri-diagonal even when non-periodic boundaries

are considered. Matching conditions at left boundary read [95],

1 17 3 3 1
((I)m)A +3 ((I)ac)jzl = A—.’L‘ <_E(I)A + i(bj:l + §q>j:2 - E(I)j_?)) ; (343)
(Bz0) g + 11 (Bue)joy = 5 (1304 = 27®joy + 15055 — jy) (3.44)

where ®; is a generic function evaluated at node j and A represents the left boundary
(see Chapter 2 for nodal definitions). Similarly, matching conditions at right boundary
can be easily derived.

3.4 Spatial filtering

For complex wave propagation problems over uneven bathymetries dispersion and non-
linearity may interact to produce higher harmonics. These shorter waves may even-
tually step beyond the range of physical validity of model equations and a high order
filtering technique is often considered to damp them out. This is also justified since
numerical schemes used to discretize PDEs are not able to properly describe all wave-
lengths as it was shown for our finite volume method in Chapter 2.

Regarding the latter, the spectral analysis of the numerical scheme performed in
the previous chapter provides an important theoretical background to improve the per-
formance of the method. Indeed, since the implemented Runge-Kutta finite volume
scheme is based on centered in space approximations it was shown that there is almost
no damping of different wave modes when appropiate discretization parameters are
used. However, not all wavelengths are properly described by the numerical method
and examples of dispersion relation preserving (DRP) regions were given in Chapter
2. From a practical point of view this means that high frequency waves may introduce
destabilizing effects as numerical integration advances in time. These short waves can
arise as a consequence of nonlinear interaction or even be introduced by approximated
boundary conditions which do not match PDEs exactly. One effective way to elimi-
nate non-physical high frequecies is to use high order filtering techniques [173]. This
approach is of widespread usage in numerical resolutions of wave-type equations (e.g.,
[55, 65, 95]) and has also been used in the context of Boussinesq-type modelling (e.g.,
[69, 85, 120]).

Consequently, our main concern here is to damp out frequecies that cannot be
resolved by the numerical scheme in order to eliminate non-physical wavelengths. Since

spectral analysis provides reliable information on numerical properties of the finite
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Figure 3.5: Initial free surface configuration (—) for the numerical test, free surface profile after 3
seconds (——) and free surface at t = 500 s (— - —).

volume scheme, an appropriate high order filter can be chosen. Hence we implement
in the model the 8th-order implicit filter given in reference [65], which can be applied
to cell-averaged variables,

4
= = = ap (= ~

af<I>,~,1 + P, + qu)i_H = z_% > <(I)i+n + (I)z—n) , (345)
where © denotes filtered values, oy is a free parameter (—0.5 < oy < 0.5) and right
hand side coefficients read,

93 + 70c; 7+ 18ay —7+14af 1—2ay -1+ 20
:77a1:7’a2:7’a3:7,a4:7.
128 16 32 16 128

When a; = 0.5 there are no damped frequencies and as «y is reduced a wider range

Qo

of frequencies is partially filtered as shown in reference [65]. The filter can be applied
once every Ny Runge-Kutta time steps in order to eliminate high frequencies when
computations are carried out for long times. When high order filtering is required, a
fixed value of ay = 0.4 can be used thus ensuring that only unresolved frequencies are
suppressed.

Even if from a theoretical point of view the chosen high order filter should not act
on well resolved wavelengths, it is important to assess if the numerical representation
of wave kinematics and energy are affected. Indeed, the use of a filter to damp out
high frequencies is delicate since it removes energy from the system. It is paramount
then to evaluate the associated energy dissipation rate. This issue will be investigated
with help of the following numerical example.

Consider a periodic domain with horizontal bottom where a motionless Gaussian

hump located at its center is prescribed as initial free surface condition (see Figure 3.5).
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Figure 3.6: Power density spectra for the free surface time serie evaluated at o = 10 m. a) Without
using the eight order filter, b) applying the filter once every 100 time steps (ay = 0.4), and ¢) when
using the filter once every time step (ay = 0.4).

The computational domain has a length of 20 m, and the still water depth is fixed at
ho = 1 m. The initial condition reads,

h(z,t = 0) = Hyexp [—QLSQ(x - m?} — £, (3.46)
u(z,t =0) =0, (3.47)

where Hj is the height of the perturbated free surface, z( is its location and s is a
shape coefficient which sets its initial spatial length. We want to run the model over
a long time (say ~ 10000 x At) under circumstances where nonlinear interaction may
generate higher harmonics. For instance, using Hy/ho = 1.2 and s = 0.3 m ensures that
nonlinearities are relatively important and that dispersion will also have an influence.
From this initial situation we compute wave evolution in the periodic domain fixing
Az = 0.05 m and At = 0.024 s, which corresponds to a Courant number C, = 1.5,
and during 500 s (~ 20.000 x At). A spatial snapshot of the initial perturbation, the
free surface position few seconds after and at the end of the computation are presented
in Figure 3.5. It is seen that at early times there are several different wavelengths
interacting with each other and that wave amplitudes are not small (a/hy ~ 0.3).
During the computation, nonlinearities, dispersion and wave-wave interaction should
favour the redistribution of energy at different wavenumbers and at ¢ = 500 s different
wavelengths are visible. Thus, this numerical example may be used to illustrate how
filtering may affect computations.

We perform comparisons of power density spectra estimated from free surface time
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Figure 3.7: Time evolution of mass and energy in the computational domain when the high order
filter is applied once per time step (ay = 0.4). a) Relative error on mass, and b) relative error on
total energy (initial mass and energy are taken as references).

series evaluated at x = 10 m, i.e. at the center of the periodic domain, and results
are presented in Figure 3.6. It is seen that there are no noticeable differences in the
spectral distribution of energy when no filter is applied and when it is used once every
100 time steps or even once every time step. It is important to point out that for this
particular example, fairly short waves have been generated since the spectral signature
shows that some energy has been transferred to frequencies ranging between 0.6 — 1.0
Hz. Using the associated linear phase speed to compute wavelengths, these frequencies
roughly correspond to hy/L ~ 0.2 — 0.3. Such ratios are close to the theoretical deep
water limit given by hy/L ~ 0.5 thus proving that the present numerical example may
be useful to test the filtering technique when used in practical applications.

Another important feature that can be tested is how the total mass and energy con-
tained in the periodic domain is affected by the application of the high order filter. In
theory, those quantities must be conserved over the whole computation and differences
that may arise should be attributed to the numerical method used to integrate PDEs
or to the filtering technique. In order to compute the total energy evolution contained
in the computational domain, we use theoretical information on horizontal and vertical
velocity profiles already presented in Chapter 2. Taking now the correction dispersion
parameter to be a = 0 it is straightforward to show then that the total kinetic and
potential energies can be approximated as follows,

1 1
EF(t) = / §ph (v® + h*u?) dz + O(0*) =~ §prZ h (u® + h*u2) |;, (3.48)

zl jeJ
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E;(t) = / %pgnde ~ %pgAx anz-, (3.49)
o jeJ

where x; and x, correspond respectively to spatial coordinates of left and right domain
boundaries, and summation is carried out over the whole discrete domain where j is
a nodal index and J represents the set of discrete nodes. The total mass contained
in the domain can be computed in a similar way. Time evolution of mass and total
energy (EF + E;;F ) in the case where the high order filter is applied once per time step
is plotted in Figure 3.7. It is confirmed that the filter does not alter mass nor energy
since the relative errors on both quantities at the end of the computation are negligible
small being less than 0.2 % at ¢ = 500 s.

This numerical example demonstrates that the use of the implicit 8th-order filter
with oy = 0.4, as given in reference [65], does not significantly affect energy distribution
even when it is applied once per time step. Hence the filter is only acting on unresolved
wavelengths and may be useful to improve numerical stability if computations are

carried out for longer times.

3.5 Model validation

In the following subsections model capabilities will be evaluated by comparing model
predictions against several experimental and numerical benchmark tests. Different nu-
merical examples have been chosen in order to test in particular the physical validity
of the extended system of Serre equations and the adequacy of the numerical imple-

mentation of boundary conditions.

3.5.1 Swash motion and shoreline movement

The numerical implementation of the moving shoreline boundary condition is tested
using the Carrier and Greenspan [31] analytical solution for long wave propagation
over a planar beach. Dispersive terms are switched off since the analytical solution
was obtained for the dispersionless set of nonlinear shallow water equations. We test
the model using the same parameters as in references [85, 107, 111], i.e. an incident
sinusoidal wave with height H = 0.006 m and period 7" = 10 s propagating over a
beach of constant slope 1:25, where the depth in the horizontal part of the channel is
ho = 0.5 m.

The RK4 finite volume scheme theoretically allows for larger time steps when com-
pared to previously published numerical Boussinesq-type models, we thus perform the

computation using a Courant number of 1.5 (i.e. At/Axz\/ghy = 1.5) and a grid size
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Figure 3.8: Wave runup and run-down of a periodic wave. Comparison between Carrier and
Greenspan’s [31] analytical solution (—) and numerical (——) prediction using Az = 0.05 m and
At = 0.034 s. a) Vertical excursion at the shoreline. b) Spatial free surface profiles.

of Ax = 0.05 m. No spatial filtering is used in this particular case and compar-
isons between computed and analytical solutions are presented in Figure 3.8 where the
threshold value for wet cells is fixed at h;; = 10~% m. It can be seen that the agreement
between numerical and theoretical solution is very good even when using a time step
which is more than three times larger than the one used in results reported for the
validation of the original moving shoreline approach in reference [107]. In particular,
maximun and minimum wave runup and run-down are very well predicted. Addition-
ally, mass loss was almost negligible in this numerical example being less than 0.005 %
over 100 s of computation.

We conclude then that the moving shoreline boundary condition prosposed by
Lynett et al. [107] can be successfully adapted to our finite volume scheme since

numerical results compare favourably to the ones reported by those authors even if

88



n/ho

n/hO

n/ho

n/h0

n/ho

Figure 3.9: Spatial snapshots of free surface elevation for Synolakis [158] non-breaking solitary wave
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larger time steps are used. However it is important to go further in the validation and
test this approach in situations where dispersive terms are also included.

We consider for this purpose the runup and run-down of a non-breaking solitary
wave over a planar beach of 1:19.85 slope. We compare model results to laboratory
measurements made by Synolakis [158] for an incident solitary wave of relative ampli-
tude ag/hy = 0.04 which did not brake on runup. Numerical computation is performed
using a grid size Az = 0.03 m, C, = 1.0 and hyy; = 10~* m; the still water depth at
the horizontal part of the channel is fixed at hy = 0.3 m. A four point filter is passed
through the extrapolated region because the solitary wave breaks on run-down thus
producing some slope discontinuities in the computed free surface as shown in the last
panel of results reported in Figure 3.9. The use of a local filter there allows for the
computation to hold even when the free surface becomes nearly vertical at back swash.
Indeed the filter is acting as a breaking model, smoothing slope discontinuities. We
believe that incorporating an adequate breaking parameterization able to reproduce
this phenomenon is required. However, the filtering technique constitutes a simple way
to ensure stability and the associated mass loss was again negligible, being less than
0.005 % at the end of the computation.

The overall agreement between computed and measured free surface elevations is
good as depicted in Figure 3.9. Even though, some slight discrepancies are noticed and
this can be due to the lack of a friction term in the model. This phenomenon can be
important when water depth becomes very shallow and this is in particular the case in

the run-down stage.

3.5.2 Total reflection of a solitary wave at a wall

Validation of the wall boundary condition can be performed on the base of experimental
measurement reported by Walkley and Berzins [175]. In this experimental set-up, two
different tests where solitary waves propagate over a gentle slope of 1:50 collapsing
into a vertical wall were studied. The bathymetry for this problem is presented in
Figure 3.10, where following the numerical investigation performed in reference [175],
at time ¢ = 0 s computations are initialized with the solitary wave centered at x = 50
m. The vertical wall is located in our case at x = 0.0 m and measured time series of free
surface elevation are available at x = 2.25 m. The still water depth in the horizontal
part of the channel is hg = 0.7 m and incident solitary waves have a relative amplitude
of ag/ho = 0.10 and ag/ho = 0.174 respectively.

Numerical integration of equations is conducted using the wall boundary condition

at £ = 0.0 m, a grid size Az = 0.07 m and C, = 1.0 in both runs and no filter is ap-
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Figure 3.11: Comparison between measured (—) and computed (——) free surface elevation time
series at £ = 2.25 m; Az = 0.07 m and At = 0.0267 s. a) Incident wave amplitude : ag/ho = 0.10. b)
Incident wave amplitude : ag/hg = 0.174.

plied. Measured and computed free surface elevation time series are compared at the
section x = 2.25 m in Figure 3.11. Numerical results are similar than those reported in
reference [175], where the first peak represents the incident wave and the second one cor-
responds to the reflected wave. While the first peak is very well reproduced, the second
one is slightly overpredicted by the numerical model for both solitary waves. Never-
theless, this overprediction is significantly less important than results obtained with
the weakly nonlinear and weakly dispersive finite element Boussinesq code developed
in reference [175|. Indeed, for the incident wave of relative amplitude ay/hy = 0.10 the
maximum value of free surface elevation is roughly overpredicted by 3 % in the present
computation while Walkley and Berzins [175] reported an overprediction of 8 % for this
case. More importantly, for the second solitary wave of amplitude ag/hy = 0.174, our

model overpredicts the second peak by roughly 5 % while the weakly nonlinear code
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free surface at the end of the computation, b) numerically estimated first spatial derivative of the
bottom, and ¢) numerically estimated second spatial derivative of the bottom.

produced an error of nearly 38 %. Hence, error discrepancies must be attributed to
the weakly nonlinear hypothesis embedded in Boussinesq-type equations solved with
the finite element model. In our case, the slight discrepancies between measured and
computed secondary peaks may be reasonably attributed to the inviscid hypothesis
used to derive Boussinesg-type equations since there are no losses at the reflecting wall
as pointed out by Walkley and Berzins [175].

The present numerical test validates then the wall boundary condition developed
here and confirms the importance of including the so-called full nonlinearity in Boussi-

nesq-type equations.

3.5.3 Model robustness and open sea boundary condition

In this subsection the ability of the open sea boundary condition to evacuate differ-
ent wavelengths is tested. Additionally, important properties of the model are also
evaluated on the base of challenging numerical tests. Our aim is to investigate the
stability of the model when used to compute wave propagation phenomena over sharp

bathymetries producing highly discontinous bottom gradients.
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Figure 3.13: Computed results at ¢t = 7500 s using Az = 0.3 m and At = 0.371 s. a) Free surface,
z =1, b) depth-averaged velocity, u, and ¢) flow rate (=hu).

The first example is intended to explore the influence of the source term by running
the model at rest over a non-trivial bathymetry. Recall from the governing equations
that the source-like term appearing in the right hand side of (3.2) contains bottom
derivatives up to second order. This non-conservative term must be well-balanced in
order to ensure the stability and accuracy of the numerical scheme (see for instance ref-
erences 68, 73, 96, 171]). The chosen bathymetry for this first example was proposed in
the working group on dam break modelling [71] to test shallow water equation solvers.
The bed configuration is presented in Figure 3.12-a) and represents a very challenging
geometry intended to test conservative properties of discretized source terms in numer-
ical models. The channel length is 1500 m and the still water depth in the horizontal
part is taken to be hy = 15 m. In Figure 3.12-b) and ¢) first and second bottom spatial
derivatives are plotted as estimated from 4th order compact finite difference formulae
presented in Chapter 2. It is clearly seen that this non-trivial bathymetry produces
sharp gradients and consequently the numerical skillness of the discretized source term
may be studied from this example.

We perform a computation using periodic boundary conditions and without apply-
ing the filter. Numerical integration is carried out with Az = 3.0 m and At = 0.371 s

during 7500 s running the model at rest. It is worth noting that this time step corre-
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Figure 3.14: Bathymetric configuration with j-nodes denoted by dots. a) Bottom bathymetry, b)
numerically estimated first derivative, and ¢) numerically estimated second derivative.

sponds to a Courant number C;, = 1.5 in the present example and that computation
is thus carried out over more than 20000 time steps. These numerical values for space
and time grid resolution have been chosen because the RK4 finite volume model is
expected to be non-damping in this case (see Chapter 2). Free surface profile obtained
at ¢t = 7500 s is presented in Figure 3.13-a), while depth-averaged velocity and flow
rate at the same time coordinate are depicted in Figure 3.13-b) and c). From these
figures it is seen that, even if some small disturbances (~ 107 m) are visible at the
free surface, the flow velocity is negligible small over the whole domain at the end of
the computation. This result proves that the model is able to deal with steady state
conditions and that small free surface disturbances will not be amplified when running
the model at rest. Therefore, it appears that the centered in space strategy used to
discretize the source term does not introduce any numerical unbalance in fluxes since
no spurious behaviour has been noticed even when computations are carried out for

long times over this challenging benchmark test.

A second interesting test concerns the ability of the model to reach quiescent wa-
ter conditions from a perturbated initial situation. For that we use the bathymetric

configuration presented in Figure 3.14-a) where a steep triangular barrier with 2:1
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slope and height Ah = 0.4 m is located at the center of the domain whose still water
depth is Ay = 0.5 m in the horizontal part of the channel. At the left boundary, the
open sea boundary condition is implemented, while at the right boundary, a moving
shoreline condition is prescribed on a beach of constant 1:2 slope. A small grid size
of Az = 0.02 m is used for spatial discretization in order to ensure that each side of
the barrier is covered with at least ten finite volumes. Numerical estimates for spatial
derivatives of the bottom profile obtained with 4th order compact formulae can be seen
in Figure 3.14-b) and ¢). It is worth emphasizing that this geometric configuration con-
stitutes a very challenging test for our numerical scheme since high order derivatives
need to be estimated in order to integrate the system of PDEs.

Numerical skillness of the finite volume scheme can thus be further illustrated by
prescribing as initial condition a motionless Gaussian hump of water, centered at zy =
10.0 m, the same location where the top of the triangular barrier is located. We use
Hy = 0.05 m and s = 0.5 m for the initial condition expressed by relations (3.46)-
(3.47). Time stepping is performed with a Courant number C, = 1.5 and no filtering is
applied at the interior domain. The basic idea is to investigate whether the numerical
model is able or not to reach, from this initial situation, the stable equilibrium at rest.
This example may also provide some information about the efficacity of the open sea
boundary condition in evacuating waves from the computational domain.

Spatial free surface evolution at different times is presented in Figure 3.15 where it is
seen that the initial hump splits into two waves propagating in both directions. The left-
going wave travels into the open sea boundary condition and leaves the domain without
causing any spurious reflection. On the other hand, the right-going wave propagates
into the beach slope, running up and down and being reflected in the opposite direction.
Secondary small amplitude waves are generated by this process as can be readily seen
from Figure 3.15. Because in this case the amplitude of reflected waves is small enough,
the sharp barrier has only a minor influence on the shape of waves travelling back to
the open sea boundary. However, the important conclusion here is that no spurious
numerical noise is introduced by this sharp bottom. Furtheremore, the finite volume
scheme is able to successfully recover the still water surface equilibrium as depicted in
Figure 3.15.

The evolution of the total mass contained in the computational domain as a func-
tion of time is presented in Figure 3.16-a) non-dimensionalized by the total mass at
rest. It is demonstrated that the initial extra mass associated to the Gaussian hump
leaves the domain after 60 seconds where the still water condition is almost reached.
Hence, the open boundary condition allows for reflected waves to freely travel outside

the computational domain and only small residual perturbations are noticed in this
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example.

An additional computation has been conducted in this case passing the 8th-order
implicit filter (eq. (3.45)) over cell-averaged variables h and § once per time step and
with oy = 0.4. Results are almost identical to those presented before and are not
reported here. Nevertheless, in Figure 3.16-a) we have also plotted time series of total
mass contained in the domain when the filter was used. Because in this example no
spurious short wave noise was generated, mass evolution is almost the same in both
computations. It is clear then that the filter does not alter wave properties in this case

since no spurious wavelengths were present.

In order to further investigate the adequacy of the absorbing boundary condition,
an additional numerical test with a motionless Gaussian hump with Hy = 0.10 m and
s = 0.5 m as initial condition is considered. The geometrical configuration for this
example is sketched in Figure 3.17 where a step with height Ah = 0.4, width AL =5
m and side slopes of 1:10 is centered in the computational domain whose still water
depth is fixed at hy = 0.5 m in the horizontal part of the channel. At left and right

boundaries the open sea condition is applied in order to evacuate the extra volume of
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water associated to the Gaussian hump.

Numerical integration of equations is carried using Ax = 0.025 m and a Courant
number of 1.5. The 8th-order implicit filter is passed over cell-averaged variables once
per time step using ay = 0.4. Numerical computation is shown in Figure 3.17. In
this case, shorter waves arise as the resulting perturbations travel in both directions
and enter into the deep part of the channel. It is seen that different wavelengths are
adequately evacuated at left and right boundaries by the open sea condition, but some
small residual waves are radiated back into the computational domain as depicted in
Figure 3.17. This test shows that the absorbing boundary condition works very well
for long waves but that shorter ones are partially reflected. This situation is consistent
with the approximation made when invoking characteristic equations and can be fur-
ther improved by reducing the time step. Nevertheless, for practical purposes involving
wave propagation over beaches of gentle slopes, reflected waves generated by the bot-
tom bathymetry and the moving shoreline are expected to be of smaller amplitude and
longer period than incoming waves [7, 113] because the breaking process must dissi-
pate most of the wave energy. Hence, the present example is useful to illustrate the
limitations of the open sea boundary condition but in natural nearshore environments
this approach should be sufficient.

Time evolution of the total mass contained in the computational domain is shown
in Figure 3.16-b) and compared against results obtained without filtering cell-averaged
variables. The differences are mild and can be attributed to shorter waves that are
generated by the approximated boundary condition. It is worth to point out that mass
loss is negligible in both cases at the end of the computation. It can be concluded then
that the implicit 8th-order filter has a beneficial impact on the numerical integration
by suppressing short wave noise without changing the main feature of the propation
problem. Because the initial amplitude of the Gaussian hump is large, at the early stage
of the computation there is a larger volume of water leaving the domain (a negative
pulse). The still water depth is reached approximately after 50 s but slightly earlier

when the filter is used.

3.5.4 Regular waves propagating over a submerged bar

A very important test for wave propagation models was presented by Dingemans [50]
on the framework of MAST II G8-M project. In this work the performance of several
Boussinesg-type models was analyzed by comparing numerical predictions against ex-
perimental measurements of regular waves propagating over a submerged bar [13, 104].

The experimental set-up was conceived to investigate frequency dispersion character-
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Figure 3.18: Bottom bathymetry for tests reported in reference [50| and spatial location of wave
gauges (all distances in meters).

istics and nonlinear interaction of complex wave propagation phenomena and has be-
come an unavoidable and challenging benchmark test for any phase resolving numerical
model. Main difficulties arise in this experimental set-up because higher bounded har-
monics, which are generated by nonlinear interaction as waves shoal in the upstream
slope of the bar, are freely released as they encounter a sudden increase of water depth
downslope. Thus, numerical models, usually derived using long wave approximations,
are not able to correctly describe wave kinematics of shorter waves as shown in ref-
erence [50]. Both, nonlinear and dispersive properties embedded in model equations,
contribute to the successful respresentation of measured time series of free surface eleva-
tion as demonstrated by Gobbi and Kirby [69], thus making this test a very demanding

one.

Even though, in recent years research efforts have successfully lead to major im-
provements in linear dispersive characteristics and nonlinear properties of Boussinesq-
type equations (see for instance reference [108] for a review), the latter has been mainly
achieved by incorporating higher order terms which introduce numerical complexity.
An alternative way of improving model capabilities have been recently investigated
by several authors which have developed multi-layer approches for the derivation of
extended Boussinesq equations allowing for a better description of short wavelengths
without necessarily introducing very high order derivatives but at higher computa-

tional costs [105, 114]. Therefore, any extension of Boussinesq models to deal with
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highly nonlinear and extremely dispersive waves increases the required CPU time. On
the contrary, we aim at developing here an efficient numerical scheme able to describe
wave propagation phenomena over natural beaches and consequently nonlinearity has
been considered a more important property to enhace than dispersion. Nevertheless,
wave propagation over a submerged bar constitutes a demanding test which can be
used to evaluate in practice the theoretical limitations of the chosen set of Boussinesq
equations.

Having the latter in mind, we compare numerical predictions against non-breaking
experimental data available in references [13, 104] and summarized by Dingemans [50].
Two sets of regular waves propagating over a bar and carried out in a small wave-flume
are considered (case A and C from reference [50]). Free surface elevation was measured
at several wave gauges located before, above and after the bar. A sketch of the bottom
configuration and the location of wave gauges is depicted in Figure 3.18. The reader
is referred to Dingemans [50] and Gobbi and Kirby [69] for further information on the
experimental set-up.

The first test (case A) was run for periodic waves with incident amplitude ay = 0.01
m and period 7" = 2.02 s. The absorbing-generating condition is considered at the
left boundary in order to prescribe measured time series of free surface elevation at
the location x = 5.7 m, just before the toe of the bar. The remaining wave gauges
located in the shoaling region, above and behind the bar, are used to compare model
predictions against laboratory measurements. Equations are integrated using a grid
size Az = 0.04 m and a Courant number C, = 1.5 which corresponds to a At = 0.303 s.
The computational domain is made long enough in order to avoid any interference with
reflected waves that might be generated at the right boundary during the computation.
In Figure 3.19, numerical results are compared to measured time series at same time
windows taking care in synchronizing the input data because there was a mismatch
error for the wave gauge located at x = 5.7 m as pointed out in reference [69].

The model performs very well up to the gauge located at x = 15.7 m downslope
of the bar, while as expected from theoretical limitations of the present Boussinesq
set, some discrepancies show up as higher harmonics are released behind the bar.
Nevertheless, the agreement is still quite reasonable and is found to be comparable
to results reported by Gobbi and Kirby [69] using the fully nonlinear and weakly
dispersive model from Wei et al. [178]. However, it is worth emphasizing that in our
case, time integration was performed using a Courant number of 1.5 while numerical
results reported in reference [69] were conducted with a Courant number that remained
below 0.3 in order to ensure stability. Therefore, the present compact finite volume

scheme is more efficient than the finite difference scheme used to discretize the PDE
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Figure 3.19: Comparison of free surface elevation time series for test case A from Dingemans [50]
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Figure 3.20: Comparison of free surface elevation time series for test case C from Dingemans [50]
at several locations. ag = 0.0205 m, T = 1.01, Az = 0.04 m and At = 0.303 s. (—) : measured, (——)
computed.
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system in reference [69].

We consider next the experiment C reported by Dingemans [50], where incident
waves have an amplitude ag = 0.0205 m and period 7' = 1.01. This is a far more difficult
test for Boussinesq models since wave amplitude is twice the value prescribed before,
and incident wavelength is nearly 2/5 times smaller. As in the previous example, the
incident wave field is prescribed at left boundary using free surface time series measured
by the wave gauge located at = 5.7 m. The numerical model is run with Az = 0.04
m and At = 0.303 s, i.e. a Courant number of 1.5 and the computational domain
is again made long enough to avoid residual reflection. In this example, dispersion
parameter for incident waves is khy = 1.69, thus being more than half the theoretical
dispersive limit for the present Boussinesq-type equations (see section 2). The latter
means that higher harmonic decomposition that takes place after the bar will rapidly
generate wavelengths that are beyond the range of validity of the model. Consequently,
phase speed estimates for freely released short-length waves may not be accurately
reproduced.

Numerical results are reported and compared against experimental data at several
locations in Figure 3.20. On the shoal and above the bar crest up to gauge location
x = 13.5 m, computed free surface elevations show good agreement with measure-
ments. This result proves that the Boussinesq model is able to adequately reproduce
the nonlinear energy transfer, from the leading wave component to higher harmonics,
that takes place in this region. After waves pass over the bar, higher harmonics are
released as free waves thus propagating at different phase speeds. Discrepancies arise
then between computed and measured free surface because dispersive properties of the
Boussinesq model are not accurate enough for waves which khg > 7. In this experi-
ment, yet the second harmonic is well above this theoretical limit and numerical results
are similar to those reported by other authors using equivalent sets of fully nonlinear
and weakly dispersive Boussinesq-type equations (e.g. the one layer model in reference
[105] and Wei et al.’s [178] model in reference [69]). However, temporal and spatial
grid sizes used to integrate equations in the aforementioned Boussinesq models were

smaller than the ones used in the present example.

3.5.5 Nonlinear shoaling of solitary waves propagating over a
beach

In this subsection, nonlinear shoaling characteristics of the model are investigated
by comparing numerical results against laboratory measurements of solitary waves

propagating over planar beaches. This is an important check for nonlinear properties
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of the chosen set of Boussinesqg-type equations in the framework of nearshore wave
propagation because in natural beaches, waves running up gentle slopes behave in a
quasi independent manner thus showing close resemblances with solitary waves [148].
Moreover, an adequate prediction of the limiting amplitude of nearly breaking waves is
paramount in the context of morphodynamics since breaking location is often related
to sandbar formation.

Incident Wave Amplitude : ag/ho = 0.096

Probe location relative to the shoreline (m) | 2.430 | 2.215 | 1.960 | 1.740 | 1.502
Measured wave amplitude (a/||) 0.368 | 0.415 | 0.495 | 0.582 | 0.725
Computed wave amplitude (a/[¢]) 0.365 | 0.408 | 0.472 | 0.547 | 0.659
Relative error (%) -0.7 | -15 | -46 | -6.0 | 9.2

Incident Wave Amplitude : ag/ho = 0.298

Probe location relative to the shoreline (m) | 3.980 | 3.765 | 3.510 | 3.290 | 3.052
Measured wave amplitude (a/|¢|) 0.631 | 0.699 | 0.766 | 0.843 | 0.940
Computed wave amplitude (a/|£]) 0.649 | 0.702 | 0.773 | 0.854 | 0.943
Relative error (%) 2.7 0.3 0.9 1.3 04

Incident Wave Amplitude : ag/ho = 0.456

Probe location relative to the shoreline (m) | 4.910 | 4.695 | 4.440 | 4.220 | 3.982
Measured wave amplitude (a/||) 0.724 | 0.800 | 0.852 | 0.921 | 0.983
Computed wave amplitude (a/|£]) 0.746 | 0.789 | 0.852 | 0.907 | 0.962
Relative error (%) 3.0 -1.4 0.0 -1.5 | -2.1

Incident Wave Amplitude : ag/ho = 0.534

Probe location relative to the shoreline (m) | 5.180 | 4.965 | 4.710 | 4.490 | 4.252
Measured wave amplitude (a/||) 0.818 | 0.867 | 0.944 | 1.012 | 1.067
Computed wave amplitude (a/[¢]) 0.807 | 0.861 | 0.920 | 0.986 | 1.063
Relative error (%) -1.3 | 0.7 | -25 | 2.6 | -04

Table 3.1: Location of wave gauges for solitary waves shoaling on a planar beach with slope 1:30
and measured and computed wave amplitudes.

Experiments were conducted in the LEGI’s wave-flume (36 m) at Grenoble with
two different beach slope configurations of 1:30 and 1:60. In the first case, the still
water depth was fixed at hy = 0.25 m in the horizontal part of the channel, while in

the second configuration, the still water depth was hg = 0.18 m [74]. Four solitary
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waves were generated for each bathymetry using a piston wavemaker and following the
experimental procedure given by Guizien and Barthélemy [75]|. Free surface displace-
ments were measured at several wave gauges located just before breaking using resistive
probes. Measurement locations and relative wave amplitudes for the experiments are
summarized in Table 3.1 for the beach slope of 1:30 and in Table 3.2 for the planar
beach with slope 1:60.

Incident Wave Amplitude : ag/ho = 0.091

Probe location relative to the shoreline (m) | 4.500 | 4.285 | 4.030 | 3.810 | 3.572
Measured wave amplitude (a/||) 0.272 | 0.297 | 0.321 | 0.356 | 0.400
Computed wave amplitude (a/|£]) 0.275 | 0.295 | 0.324 | 0.352 | 0.392
Relative error (%) 0.8 -0.6 1.0 -1.0 | -2.2

Incident Wave Amplitude : ag/ho = 0.286

Probe location relative to the shoreline (m) | 5.450 | 5.235 | 4.980 | 4.760 | 4.522
Measured wave amplitude (a/|¢|) 0.715 | 0.783 | 0.832 | 0.917 | 1.007
Computed wave amplitude (a/|£]) 0.724 | 0.773 | 0.847 | 0.909 | 0.993
Relative error (%) 1.3 -1.4 1.9 -09 | -14

Incident Wave Amplitude : ag/ho = 0.479

Probe location relative to the shoreline (m) | 7.950 | 7.735 | 7.480 | 7.260 | 7.022
Measured wave amplitude (a/||) 0.722 | 0.770 | 0.809 | 0.858 | 0.914
Computed wave amplitude (a/|£]) 0.722 | 0.748 | 0.789 | 0.828 | 0.871
Relative error (%) 0.0 -28 | 25 | -3.5 | -4.7

Incident Wave Amplitude : ag/ho = 0.558

Probe location relative to the shoreline (m) | 9.150 | 8.935 | 8.680 | 8.460 | 8.222
Measured wave amplitude (a/||) 0.681 | 0.721 | 0.758 | 0.798 | 0.851
Computed wave amplitude (a/[¢]) 0.678 | 0.701 | 0.728 | 0.758 | 0.793
Relative error (%) -04 | -28 | -39 | -5.0 | 6.8

Table 3.2: Location of wave gauges for solitary waves shoaling on a planar beach with slope 1:60
and measured and computed wave amplitudes.

Four solitary wave amplitudes were studied in order to investigate the performance
of the Boussinesq model when used to describe the shoaling of waves with different
lengths. Indeed, the smaller the solitary wave amplitude, the longer the equivalent

wavelength. Since an adequate numerical representation of linear and nonlinear shoal-
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ing of propagating waves would traduce good dipersive properties of the model, this is
an important test which can illustrate the physical relevance of the extended system
of Serre equations in real world applications.

The model is initialized using Serre’s solitary wave solution [136] with the same
measured incident amplitude. For both beach configurations, computations are carried
out with a grid size Axz/hy = 0.1 and a Courant number C, = 1.0. The adequacy of the
numerically generated solitary wave is checked using measurements from an additional
resistive probe located in the horizontal part of the flume. Similarly, this time serie is

used to synchronize remaining probes located in the shoaling region.
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Figure 3.21: Time series of free surface elevation for solitary waves shoaling on a planar beach of
slope 1:30 (where t* =t/g/hg). (—) Measured values, and (——) computed using Az = 0.025 m and
At =0.0160 s.

Comparisons of free surface elevations between measured and computed waves are
presented in Figure 3.21 and Figure 3.22 for the slope 1:30 and 1:60 respectively. Overall
agreement, between computed and measured wave amplitudes and shapes is found to
be adequate for the different cases investigated. Larger amplitude errors occur for the
incident solitary wave ag/hy = 0.096 for the beach slope of 1:30, and for ag/ho = 0.558
in the 1:60 slope thus showing the important influence of the bottom bathymetry in
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Figure 3.22: Time series of free surface elevation for solitary waves shoaling on a planar beach of
slope 1:60 (where t* = t+/g/ho). (—) Measured values, and (——) computed using Az = 0.018 m and
At =0.0135 s.

model performance. Nevertheless, the error is never larger than 10 % as shown in
Tables 3.1-3.2 and the Serre model is doing actually a pretty good job in predicting
nonlinear shoaling even for relative amplitudes as high as a/|¢| ~ 1.0 and for both beach
slopes. This is an extremely nonlinear situation where waves are nearly breaking. We
recall that the breaking criterion for horizontal bottoms based on solitary wave theory
by Munk [118], predicts a limiting amplitude of a/|£| ~ 0.78. The latter confirms then
that the present experimental test is a very challenging one.

3.6 Conclusions

The numerical implementation of boundary conditions suited to describe water wave
propagation problems over a beach has been studied in the present chapter. Bound-
ary conditions intended to reproduce an absorbing/generating seaward boundary, the
shoreline movement in the swash zone and an impermeable vertical wall located on

a slopping bottom, were investigated with help of a quasi-hyperbolic decomposition
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of Serre equations in characteristic directions. Assuming that dispersive effects act
at larger time scales than nonlinear ones, but without using a weakly nonlinear hy-
pothesis, we were able to explicitly write open sea and wall boundary conditions for
the particular form of extended Serre equations that was numerically solved using a
4th order compact finite volume scheme in Chapter 2. Similarly, the numerical strat-
egy for shoreline movement which consists in a linear extrapolation for fictitious dry
nodes through the wet-dry interface proposed by Lynett et al. [107] was successfully
adapted to our numerical scheme. Even though numerical approximations used to
close the system of equations at boundary nodes may reduce the formal accuracy of
the scheme, several benchmark tests demonstrated that accurate predictions of mod-
elled water wave processes could be obtained without affect the stability of the high
order finite volume method. Indeed, numerical examples chosen to validate the dif-
ferent implemented boundary conditions were conducted with large time steps using
Courant numbers ranging between 1.0 and 1.5. Numerical computations performed
with those high Courant numbers compare favourably with results reported in former
investigations using much smaller time steps (e.g. [69, 107, 175]). In addition, mass
loss in all reported numerical tests was negligible small.

On the other hand, the numerical value for the dispersion correction parameter, «,
was chosen in order to minimize a joint root mean square error for phase speed and
group velocity estimates over the dispersive range resolved by the extended system of
Serre equations (i.e. 0 < khg < 7). Experimental tests for regular waves propagating
over a bar reported by Dingemans [50] were used to check nonlinear and dispersive
properties of the Boussinesq-type model. Numerical results confirmed several theoret-
ical limitations of the chosen set of partial differential equations regarding the physical
range of wavelengths that the model is able to accurately describe. Indeed, the nonlin-
ear performance in the upstream part of the bar was very good thus showing that the
extended set of Serre equations succeeds in describing the higher harmonics generation
process occuring in the shoaling region. However, freely released shorter length waves
propagating after the bar were not accurately captured but computed results appeared
to be in agreement with those reported in references [69, 105, 175] using equivalent
sets of Boussinesg-type equations. Nevertheless, it is important to emphasize that
the numerical integration of equations was perfomed for Dingemans [50] benchmark
tests using larger time steps (a Courant number of 1.5). It is thus confirmed that the
high order finite volume scheme is far more efficient than previously published finite
difference or finite elements Boussinesq-type models even for realistic applications.

Nonlinear performance of the extended system of Serre equations was further inves-

tigated with help of experimental solitary waves propagating over a slopping bottom.
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Comparisons with numerical results previously reported by Walkley and Berzins [175]
for total reflection and collapsing of a highly nonlinear soliton on a vertical wall clearly
confirmed the importance of including the so-called full nonlinearity in Boussinesq-type
equations. Moreover, sereral experimental measurements of solitary waves propagating
over two different beach slopes up to nearly breaking conditions, indicated that Serre
equations can accurately predict nonlinear shoaling evolution and the associated limit-
ing wave amplitudes. The relative error between predicted and computed amplitudes
was never larger than 10 % in all test cases. This important result suggests that this
particular set of Boussinesq-type equations may be used to describe propagation of
nearly breaking or breaking waves if an appropriate breaking model is considered.
Finally, a practical an efficient way of suppressing spurious short-wave noise that
could arise as a consequence of nonlinear interaction or mismatches between discretized
boundary conditions and PDEs was presented. The high order implicit filtering tech-
nique developed in reference [65] was implemented and numerical examples demon-
strated that the latter may be used to improve model stability in practical applications
without affecting the spectral resolution of physical wavelengths. Similarly, challenging
numerical tests performed on rapidly varying bathymetries were considered in order to
check the ability of the numerical model to maintain quiescent waters or even recover a
still water equilibrium from a perturbated initial situation. Those applications clearly
demonstrated that the finite volume scheme is conservative and that the numerical

treatment of source terms is well-balanced.
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Chapter 4

A Phase Averaged Breaking-Wave
Model : Revisiting Svendsen’s Roller
Concept

4.1 Introduction

One of the key features of wave propagation in nearshore environments is related to
the highly complex breaking process which is typically induced by bathymetric changes
felt by waves running up natural beaches. Despite of that, no general theory has been
found to explain and describe all stages of wave breaking since detailed information
on vorticity and free surface generated turbulence is still sparse. This topic has been
the subject of active experimental and theoretical research over many years and will
certainly continue to capture researchers attention in the future. Some recent works
dealing with wave breaking can be found in references [26, 28, 29, 42, 54, 72, 117, 146,
157].

As discussed in references [67, 126, natural beaches offer very often propitious
conditions for breakers of spilling type to develop. In such a case, the wave crest
becomes unstable and a foamy mixture of air and water starts to spill down the front
part of the wave. While at early stages of this process small scale instabilities associated
to capillaries seem to serve as initial source of vorticity [54, 100, 101], the topology
of fully developed breakers is far more complicated. Indeed, even in a quasi-steady
spilling breaker, the flow exhibits complex patterns of vortical motion where several
scales may interact with each other. Experimental investigations have shown that
coherent structures coexist with highly intermittent turbulent events, and that flow

separation, which is triggered by sharp distorsions in the free surface near the toe of
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the breaker, leads to a larger scale turbulent layer of mixing type [98, 157]. The source of
vorticity for this turbulent structure is presumably associated to the sudden convective
decelaration of flow velocity near the free surface which produces a flow separation.
In addition, self-excited instabilities may also be observed in this region (e.g. [45,
116]). Consequently, the mathematical modelling of wave breaking must be tackled
with pragmatism, combining the available empirical knowledge with simplificatory or
idealized assumptions to describe the main features of flow motion.

Another type of breaking which often develops in nature is the plunging one. The
wave crest, curls over, collapsing into the sea surface shorewards, causing violent splash.
This sudden redistribution of mass and momentum occurs over a short distance, tipi-
cally smaller than a wave length. Immediately after, waves reorganize themselves into
a quasi-periodic bore-like state similar to a spilling breaker. The distance over which
this rapid reorganization of the breaker takes place has been termed the transition
zone [155]. Consequently, both types of breakers can be thought to behave as a quasi-
periodic bore, except for this short transitional regime.

Even though a more detailed knowledge of the physical processes involved in wave
breaking phenomenon is still required, some useful macroscopical information is avail-
able. Indeed, for practical purposes, wave-averaged models have been used to describe
the main features of surf zone hydrodynamics in larger scale problems with relative
success (e.g. |2, 168, 169|). In such approaches, the breaking process is parameterized
by adopting the classical bore model (e.g. [94, 149, 155]) which provides an esti-
mate of the amount of energy that need to be extracted from the mean flow. Several
semi-empirical wave-averaged breaking models have been developed in this framework
following in essence the classical shallow water shock theory [152, 179]. Those breaking
parameterizations have been derived and calibrated both, for regular and random wave
fields, and rely on strong assumptions such as the so-called saturated spilling breaker,
and important linear simplifications to describe wave motion. The saturated surf zone
hypothesis consists in assuming that the wave height is a linear function of the local
water depth, while linear wave theory is invoked to get integral propeties of propa-
gating waves. A breaking model for random wave forcing was proposed by Battjes
and Janssen [11] while few years later, Thornton and Guza [161] presented a nearly
equivalent approach.

Even though breaking parameterizations are generally obtained thanks to the useful
physical analogy which presumably exists between surf zone waves and hydraulic jumps,
Bonneton [17, 18, 21| shows, from a theoretical standpoint, that it is not necessary to
introduce any simplifying assumption in the nonlinear shallow water equations (NSWE)

in order to correctly predict periodic broken wave dynamics in the inner surf zone of a
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gently slopping beach. The only constraint is that suitable numerical strategies must
be considered to ensure that shock conditions are fulfilled.

Nevertheless, an additional practical drawback remains in both, wave-averaged and
time domain approaches. This drawback is related to the important issue of mean surf
zone currents organization in cross-shore and long-shore directions. The spatial distri-
bution of wave-averaged currents is governed by complex processes associated to the
breaking wave forcing and the reader is referred to references [10, 127, 156] for compre-
hesive reviews on nearshore hydrodynamics. The aforementioned drawback results in
particular in an incorrect prediction of the spatial location of maximum intensities of
cross-shore and longshore currents when classical wave theories are invoked. Further-
emore, comparisons between measured laboratory surf zone velocity profiles and pre-
dicted ones using NSWE indicate that the latter tends to underpredict the maximum
depth-averaged return current just below the breaker [18]. A very similar situation
occurs in phase-averaged models when no extra mass and momentum breaking roller
contributions are included in hydrodynamic equations [47, 154].

Additionally, a successful prediction of mid to long term beach profile evolution
requires proper estimation of mean currents in the nearshore zone. For instance, the
position and motion of breaking sand bars are often related to the location of the
maximum value of the return current (undertow) [66, 131]. Unfortunately, as outlined
in the previous paragraph, the use of standard wave theories does not provide an
adequate undertow estimate neither on its maximum intensity, nor on the location for
this peak.

Based on visual observations and shallow water theory, Svendsen [154] was able to
show that the breaking roller contribution in continuity and momentum conservation
equations is far from being negligible in the surf zone. Using the experimental data
on breaking waves behind an hydrofoil obtained by Duncan [53], he related the cross-
sectional roller area to the local wave height and improved the estimation of undertow
intensity in the inner surf zone. Nevertheless, his original approach cannot reproduce
the transition zone that exists between the breaking point and the location where the
turbulent bore is fully developed. It is evident from many laboratory or field measure-
ments that such a transition zone is always present and is responsible for the landward
shift, relative to the breaking point, of set-up and maximum cross-shore and longshore
currents (e.g. [23, 35]). Nonetheless, the pioneering contribution of Svendsen provided
a useful theoretical background to build more realistic roller equations. Indeed, most
of the breaking roller models developed over the last 15 years rely in essence on the
same conceptual approach first introduced by him.

A practical improvement for the estimation of integral wave properties was proposed
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by Roelvink and Stive [131] who hypothesized that a lag between turbulence production
by the breaking process and dissipation must be included in order to reproduce the
observed shift in set-up and maximum mean return current. One year later, Nairn
et al. [121] showed the theoretical equivalence between the k-equation model written
in reference [131] and an energy balance equation for the turbulent bore embracing
the simple Svendsen’s roller concept. The main advantage of the energy-based roller
model compared to the turbulent closure is that roller’s contribution can be included
in continuity and momentum equations in a straightforward way. For that reason, in
recent years the energy balance equation for the roller has been included in several
phase-averaged hydrodynamic models used to describe mean currents in the nearshore
zone (e.g. [46, 130, 168]).

Even though it is generally acknowledged that the inclusion of a roller equation
does improve the overall representation of mean cross-shore and longshore currents,
the adequacy of Svendsen’s roller concept and associated underlying assumptions have
not been really validated by experimental data. Accurate laboratory measurements
of roller properties are very difficult to obtain and calibration of model parameters
must be done using indirect measurements (e.g. [47, 176]). The main drawback of
this approach concerns the fact that it is rather difficult to establish whether the wave
theory used to describe the organized motion or the roller model itself are adequate
or not. Bearing the latter in mind, it is possible to understand why two different
roller equations, which differ by a two factor in one of their terms, can be found in
the literature : roller models proposed by Stive and De Vriend [150] (S-DV94 in the
following), and by Nairn et al. [121] but verified and calibrated later by Dally and
Brown [47] (D-B95 hereafter). Surprisingly, the same value for the roller parameter,
which is associated to the front slope of the breaker, is commonly used to run both
(e.g. [47, 130]).

The main objective of the present chapter is to investigate the physical adequacy
of Svendsen’s roller concept and practical simplifications that are needed to derive the
governing equation for cross-sectional roller area evolution. This question is studied
first by comparing model predictions against detailed experimental data on steady
hydraulic jumps in Froude similarity with surf zone waves reported by Svendsen et al.
[157]. A second and important question that we aim at investigating concerns existing
discrepancies between S-DV94 and D-B95 models. For that, we derive a roller equation
from a simple energy balance taking care in pointing out differences with previously
published models. Additionally, optimal model parameters are obtained by performing
inverse modelling using accurate undertow measurements conducted by Cox [41]. In

order to focus on the roller concept itself, we minimize errors in the estimation of
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Figure 4.1: Definition sketch for the breaking roller following Svendsen [154]. a) Variables, b)
Assumed velocity distribution.

integral wave properties using detailed time domain data reported by Bonneton [18] for
this experimental set-up computed using the shock-capturing NSWE solver developed
by Vincent et al. [174].

4.2 Conceptual model for energetic exchanges in the

roller region

Following Svendsen [154] we assume a simplified velocity profile as sketched in Fig-
ure 4.1-b), where the breaking roller is simply carried by the waves at the propagating
celerity c. The layer where the organized or potential wave motion takes place has a
thickness h — e/2, while the local thickness of the roller region equals e. Here we define
a characteristic water depth h = n — &, where z = 7 is the mean location of the free
surface and z = £ is the vertical coordinate of the bottom. The lower edge of the roller
is assumed to be located at z = n— e/2. The z-axis coincides with the still water level
(positive shorewards), and the z-coordinate is positive upwards. We also introduce
local coordinates X, Z for the reference frame moving with the wave and having as
origin the point of coordinates, relative to cartesian axes, (xo, z0) = (z¢,d + &), where
d = (he + hy) is the average water depth between the crest and the trough levels,
he and hy. Similarly, z. represents the z-location of the wave crest (see Figure 4.1-a).

Therefore, in this moving frame of reference, the mean local position of the free surface
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7 =n' reads,

n':hc—d—XtanCD:(%—%tan@)d,forOﬁXglr, (4.1)

where ® is the mean breaker angle, v = H/d is the breaker index with H = h, — h;
being the local wave height, and [, is the horizontal roller length.

The roller concept is probably the simplest representation that can be imagined for
the highly complex turbulent motion observed in a quasi-steady breaker. The many
assumptions and simplifications that are required to write the model are undoubtedly
too coarse to obtain accurate flow information from it. Nevertheless, the latter has
certainly improved the state of the art of coastal engineering providing some useful
scaling relations. The vertical profile depicted in Figure 4.1-b), although extremely
rudimentary, has been partially supported by some recent experimental investigations
(e.g. [34, 72]), being also compatible with the turbulent mixing layer analogy which
has been postulated by several authors. Before going further, it is worth discussing the
physical meaning of the lower edge of the roller region which, at first glance, should
coincide with the location where the jump in horizontal velocity takes place.

Following Svendsen’s definition, the hypothetical line which separates the turbu-
lent region from the organized flow must belong to a dividing streamline since the
roller is imagined as a recirculating eddy somehow isolated from the flow underneath.
However, the assumed vertical profile implicitely introduces a physical interpretation
for this curve which should rather belong to the location where maximum turbulent
shear stresses develop [134]. This discrepancy is mostly academic since theoretical
backgrounds supporting the roller concept itself are debatable. However, for the rest
of this chapter it might be useful to keep this discussion in mind.

In order to write an energy equation for the idealized two phase flow including,
on the one hand, the roller, and on the other hand, the organized or mean flow, we
adopt a simplified model for energetic exchanges suggested by Duncan [53] and Nairn
et al. [121]. It consists in assuming that the energy dissipated from the mean flow
acts as the source of energy which enhances the development of the turbulent bore.
In a second stage, turbulent shear stresses may dissipate part of this energy at the
interface, which can in turn feed smaller scale vortical motion underneath before being
totally dissipated by viscous forces. Of course, in the present context, this process
must be triggered externally by some breaking criterion since the mean flow is usually
described using potential theory. Anyway, this simple model for energetic exchanges is
compatible with fundamental principles of fluid mechanics and in particular with the
Kolmogorov energy cascade concept which serves as a basis to build more sophisticated

turbulence models [160]. This idea is illustrated schematically in Figure 4.2.
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Figure 4.2: Conceptual model for energetic exchanges between organized (mean) flow and turbulent
bore : energy cascade analogy.

Using now basic principles of fluid mechanics and assumptions outlined before, we
can write, in the fixed frame of reference, the energy balance equation for the layer

where the roller is defined as,

[Mis)

O [ paes 2 [y =D, - D
= — 4.2
8t/e o /,,_ (Bt pleldz = Do = Dr 42

where F = %,0,.02 + prgz represents the total specific energy, p is the pressure, D,
and D, are respectively the total energy dissipated by breaking from organized wave
motion (source term) and the amount of energy dissipated from the roller by shearing
stresses (sink term). Besides, p, is the average mass density in the bore region, g is
the downward gravitational acceleration and ¢ is the time variable. Consistent with
the simplified velocity profile and the long wave approximation, vertical accelerations
are neglected and an hydrostatic pressure distribution assumed in the roller region
[47, 49, 57, 150]. Nonetheless, Eq. (4.2) is not closed and other approximations must
be introduced in order to solve it; we specifically need information about D,, and D,
terms. In the following subsections, we will use the shallow water approximation to
relate the depth-averaged fluid velocity u to the local position of the surface elevation
considering the particular case of bore propagation over a flat bottom thus assuming

that the breaker is quasi-steady.
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Figure 4.3: Static equilibrium of forces acting over an infinitesimal section of the roller. a) Sketch
of the roller region, b) Infinitesimal cross-sectional surface.

4.2.1 Energy dissipated from the roller

An order of magnitude estimate for the amount of energy dissipated from the roller
region can be obtained by looking at the work done by shear stresses on the underlying
flow [53]. For the infinitesimal cross-sectional roller area depicted in Figure 4.3-b),
the static equilibrium of forces acting on the control volume and projected on local

orthogonal axes (0, s,n) yields,

s: (P —Py)cos®+ Wsin® — Tcos(® — @) — Fsin(® — &) =
n: (P —Py)sin® — Wecos® — Tsin(® — &) + Fcos(® — &) =

where P, Py and F represent respectively pressure forces acting on left, right and lower
faces of the control volume, W is the weight of the infinitesimal volume, and T is the
total shear stress. Similarly, ®; is the local slope of the curve defining the location of
the lower edge of the roller.

Solving equations (4.3)-(4.4) for T and F allows us to write,

T = (P1 — PQ) COS(Dl + WSiIlcbl,
F = —(P; — Py)sin ®; + W cos ®4,

while, according to definitions given before, in the moving frame of reference (O, X, Z)

the following geometrical relations should hold,

dn/ er
p=—""-=_"7T 4.5
tan X L (4.5)
dn' 1 de 1 de
S T N S il 4.
tan ®; % T oax% tan ® + 5TX (4.6)
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Where e, is the total roller height (see Figure 4.3-a)). Invoking now the hydrostatic
assumption, we are able to write the net horizontal pressure force acting on the volume

and the resulting body force as,

. de 9
(P1—Py) = —Prged—XAX +O[(AX)7],

W = p,geAX + O[(AX)?.

Therefore, an estimate for the turbulent shear stress projected on the axis (o', s) is
readily obtained,

cos ®
s ~ T -
T, cos( 1) A%
d
= —p,gecos P cos P, cos(P — D) [d—; — tan @1] ) (4.7)

Now with help of definition (4.6), using trigonometric relations and a Taylor series

de

7> 1t is possible to show that,

expansion of the following function about

2 (2 ~+ sin ® cos @f—;)
4 (1 + tan ®42) 4 (L)?
de

1
= cos’®d (1 — §sin¢cos©ﬁ) + 0

cos @ cos @, cos(® — &;) =

de \”

dX '
Hence, the shear stress component along the straight line Z = ', which coincides with
axis (0', s), reads,

1 de

Ts = —prge | 5o s1n<I>cos<I>] +0

2 3

tan @j—;,tanq) <;—;> , (;—;) ] . (4.8)

Although, it is rather difficult to say something a prior: about the order of mag-
nitude of j—;, the assumed geometrical configuration for variable definitions given
in Figure 4.1-a) implies relation (4.6). Similarly, tan ®; should be of the order of
tan ® except at both extremities of the breaker where the gradient of the local roller
thickness, e, can be large. Nevertheless, experimental measurements for roller shape
conducted by Svendsen et al. [157] for several weak hydraulic jumps, indicate that
€maz/lr ~ 0.15 — 0.22 which corresponds roughly to an angle of 10°. Duncan [53] also
measured similar mean breaker angle values for quasi-steady spilling breaking produced
by a towed hydrofoil. Thus, it seems reasonable to postulate that ;—; ~ tan .

Equation (4.8) contains second order terms which are neglected in the formula
proposed by Deigaard and Fredsge [49]. For instance, assuming that ®; ~ & < 1 in
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equation (4.7) produces the expression given by those authors, i.e.,

de

Ts = —prge [d—X — tan <I>:| . (4.9)

However, relation (4.8) is consistent with the one written by Duncan [53| and Dally
and Brown [47]. The latter can be easily verified by integrating the shear stress over
the total roller length. By doing so, the total shear required to balance the weight of
the roller reads,

ly
Th = /0 T cf)LsX(P = prgAsin ®, (4.10)
where the cross-sectional area of the roller, A, has been introduced.

In the moving frame of reference, the depth-averaged fluid velocity of the underly-
ing organized flow reads U = u — ¢. According to Duncan [53], the amount of energy
dissipated from the bore region® can be thought to be equal to the work done by tur-
bulent shear stresses acting on the flow underneath. Hence, the total energy dissipated

at the interface between the roller and the organized motion should be,
D, = —Urscos® = —(u — ¢)1,5 cos . (4.11)

It is important to note here that in previously published roller equations (e.g. |47,
49, 53, 150]) the flow velocity u was assumed to be negligible compared to the wave
celerity c. Even though this could be a reasonable approximation for the deep water
breakers studied by Duncan [53|, there is some evidence indicating it is not the case
in shallow waters. Indeed, using the long wave approximation it can be shown that
v may reach a value of nearly 20 % of the phase speed in the inner surf zone and be
even higher near the breaking point. This is also sustained by surf zone laboratory
measurements (e.g. [41]).

4.2.2 Total energy dissipated from mean flow : the closure

problem

Solving equation (4.2) can provide valuable information about roller geometry but it
requires an estimate for the total amount of turbulent kinetic energy available to drive
vortical motions. If we follow the energy cascade concept, the term D,, in that equation,
which represents the total energy dissipated from the mean flow, can be viewed as the

source of energy for large and small scale turbulent motion. In that sense, the right

Lwhich can be viewed as residual turbulent kinetic energy still available to drive smaller scale
turbulence.
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Figure 4.4: Definition sketch for a propagating bore.

hand side of equation (4.2) represents the energy available to drive the roller, which can
be thought as the largest recognizable vortex in the breaking wave. Even though from
a theoretical point of view a turbulent closure should be introduced at this point, the
use of the shock theory in the framework of NSWE will allow us to obtain important
information about the total energy dissipated in breaking waves.

Energy dissipation estimates deduced from the shallow water shock theory, or alter-
natively, the hydraulic jump analogy, has proven to accurately represent wave height
evolution in the inner surf zone in both, wave-averaged (e.g. [11, 48, 94]) and time
domain approaches (e.g. [18, 81, 91, 174]). Shock conditions thus presumably provide
an adequate mathematical representation for the overall breaking process at a macro-
scopical scale. Using notations introduced in Figure 4.4, the energy dissipated across
a shock can be written as [17, 152,

b Pug Qo(hg — hn)®

D, = D,dX = — ,
0 4 hth

(4.12)

where h; and hy represent respectively the water depth before and behind the shock,
@y = h Uy = hylUs is the volume flux of water accross the discontinuity, while U; and
U, are flow velocities before and behind the shock in the frame of reference moving with
the propagating bore. Here, Dy, denotes the total energy dissipated from the organized
flow by breaking.

On the other hand, by replacing the shear stress estimate given in equation (4.8)

into (4.11) and discarding terms of O(tan® @), we are able to write,

D 2
L U (ae _ e sin ®cos ® | cos P. (4.13)
prgc ¢ \dX

It is worth pointing out that if we assume u < ¢, then U/c ~ —1, and equation (4.13)

is thus easily integrated over the total roller length, [.. The total amount of energy
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dissipated by shear stresses in this case reads,

lr
D, = D, dX
0 cos ¢

= prgcAsin ® cos P, (4.14)

which is again consistent with analogous expressions given by Duncan [53] and by
D-B95, but differs from the one obtained by S-DV94. On the other hand, if one
postulates that there is an equilibrium between production and dissipation of kinetic
energy inside the roller region, left hand side of the energy equation (4.2) should be
zero and consequently D, = Dy. In such a case, equating (4.12) with (4.14) produces
the following expression for the cross-sectional roller area,

A —_ _ SO Qb(h2 - h1)3
4sin®cos® chihy

(4.15)

where ¢ = p,/pr is the density ratio between water and the air/water mixture be-
longing to the roller region. Using in addition a weak hydraulic jump assumption
(ie. d = %(hl + hg) ~ /hihs), and @, = —dc which follows from the shallow water

approximation, we obtain,

281 2

A~ G oo a ! (4.16)

with v = H/d and H = hy — hy. This is exactly the expression first proposed by
Engelund [57] except for the cos? ® factor appearing at the denominator because second
order terms are retained. It is important to note that when taking ¢ = 1.0, v = 0.6 and
® = 10°, this expression produces A/H? ~ 0.9 which is in agreement with Duncan’s
[53] experimental findings.

Despite the fact that relation (4.15) seems to provide a proper estimate for the order
of magnitude of the roller area, the simplifying hypothesis u < ¢ is neither supported
by experimental findings nor by shallow water theory. As pointed out previously, in
the surf zone, and specially near the breaking point, the flow velocity may not be small
when compared to wave celerity. Indeed, the ratio u/c has been used as a breaking
criterion to activate extra terms in Boussinesq-type equations (e.g. [25, 120]). Thus,
it could be interesting to derive an expression for the energy dissipated from the roller
without using this assumption. However this task requires much more effort since
nonlinear terms should be wave-averaged.

In order to be able to spatially integrate equation (4.13) retaining 2nd order terms

we use the shallow water approximation,

Qy=—dc~hU, (4.17)
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where the local water depth will be estimated, invoking definition (4.1), as h = (1 +

7= % tan ®) d. We can thus simplify equation (4.13) using a Taylor series expansion
about tan ® and then integrate the resulting expression over the roller length by parts

to obtain (see Appendix B),

lr

D — / D, dX
0 cos @
Prgc

(1+3)

o ("
Asin@cos@—L/ e2dX
d(1+2)Jo

de
O ( tan® ®, tan? ®—
+ (an , tan dX)’

(4.18)

where to be consistent, second order terms have been retained. Evaluation of the
second integral in the right hand side requires the prescription of a functional form for
the local roller thickness. This will be done using experimental findings in the next

section.

4.3 Empirical verification of the roller concept

In the previous section we have derived, in the frame of reference moving with the
breaker, the different energy dissipation terms that will allow us to write an ordinary
differential equation governing cross-sectional roller area evolution in the surf zone.
According to experimental measurements reported by Duncan [53], it appears that
usual assumptions invoked to write roller models provide good order of magnitude
estimates for wave-averaged geometrical properties of the breaking roller. In the present
section we plan to go further in the verification of the roller concept and the role that
second order terms may play.

Apart from scaling arguments outlined in the previous section, the basic hypothesis
embedded in roller models have not been verified in detail. This partially explains
the different formulations of roller equations that can be found in the literature. The
evident lack of experimental information on roller dynamics has been an important
obstacle to further validate this conceptual approach. For instance, Duncan’s [53]
experimental measurements on spilling breakers produced by a towed hydrofoil have
been for long time the only available data. Nevertheless, the experimental set-up
adopted in Duncan’s work, produces a spilling breaker which better represents deep
water breaking conditions since the depth of the water column does not play any role in
results reported in reference [53]. On the contrary, surf zone waves evolve over waters
of finite depth. The flow is thus confined in a shallow layer located between the free
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Figure 4.5: Mean free surface location (x) and estimated position of the dividing streamline (+)
after Svendsen et al. [157]. a) F,. = 1.378, b) F, = 1.464, ¢) F,. = 1.562.

surface and the bottom. Consequently, Duncan’s data set may not be that suitable to
test underlying roller assumptions in the framework of nearshore applications.

More recently, Svendsen et al. [157] were able to carry out several hydraulic jump
experiments where flow characteristics were measured with good accuracy. The exper-
imental set-up was conceived to produce hydraulic jumps with Froude numbers close
to the ones observed in surf zone waves. The three investigated hydraulic jumps thus
provide valuable experimental information which can be used to further validate roller
models.

4.3.1 Empirical knowledge on quasi-steady hydraulic jumps in

similarity with surf zone waves

Reliable experimental data for the flow inside hydraulic jumps is difficult to obtain
owing to technical difficulties related to velocity measurements that must be conducted
in the aerated turbulent front. Svendsen et al. [157] hydraulic jump experiments
constitute one of the few available examples where accurate and detailed flow velocities
are measured over the entire water column. Three complete data sets are available
for weak hydraulic jumps in Froude similarity with surf zone waves. In addition,

the authors pay particular attention in obtaining an accurate estimation of the roller
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Hydraulic jump  Froude Qs ho h1 ha d c he lr er P

No. number m?/s m m m m m/s m m m deg.
1 1.378 -0.0702 0.072 0.063 0.099 0.081 0.867 0.102 0.072 0.030 22.5
2 1.464 -0.0699 0.064 0.060 0.101 0.080 0.874 0.099 0.096 0.035 19.8
3 1.562 -0.0692  0.059 0.057 0.108 0.082 0.844 0.097 0.088 0.038 23.3

Table 4.1: Characteristic flow and roller properties for the three hydraulic jumps studied by Svendsen
et al. [157].

geometry and consequently, associated local roller thickness is available. Macroscopical
empirical information on roller shapes is used in this section to evaluate roller cross-
sectional area predictions produced by energy-based roller models. We concentrate in
particular on second order effects which are usually discarded.

In order to investigate whether or not the roller equation is able to reproduce exper-
imental data, measured locations of the mean free surface and the dividing streamline
are digitized from figures published in reference [157|. Since we are not interested in
detailed features of the flow in the aerated region, we only need to estimate charac-
teristic geometrical properties of the roller, i.e., the total height, total length, mean
breaker angle and associated cross-sectional area. In Figure 4.5 roller geometries for
the three hydraulic jumps investigated and obtained from digitized graphs are plotted
(see also [157]). In Svendsen et al.’s work, the lower edge of the roller is defined as a di-
viding streamline whose location is estimated using mass conservation considerations.
However, it is worth pointing out that experimental results indicate that this theo-
retical definition coincides over a large extent of the breaker with the location where
maximum turbulent shear stress occurs. It is only in the downstream end of the roller,
close to the location where the dividing streamline re-attach the free surface, that both
theoretical curves diverge.

In Table 4.1, relevant flow and roller properties are summarized. Even though
not all the data needed to compute those values are available from Sevendsen et al.’s
paper, additional information was provided by Shubhra Misra from the University of

Delaware?. For instance, equivalent streamflow per unit width is estimated as,

Q

Q= B-2)

from the spatially-averaged overall streamflow reported in reference [157|. Here, ¢ is

the wall boundary layer displacement thickness estimated by Svendsen et al. [157]

2personal communication.
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to be respectively 4.3, 5.4 and 5.5 mm for hydraulic jumps 1,2 and 3 in Table 4.1
and B = 30.48 cm is the width of the flume. Similarly, e, and [, are obtained from
raw data on mean free surface, where no interpolation has been performed between
the measuring sections. This means that the toe of the roller is located at z = 0 in
Figure 4.5, according to Svendsen et al. [157], and the position of its downstream edge
is assumed to be at the first measuring section where both, the dividing streamline
and the mean free surface, coincide. The error associated to this approximation should
not influence very much the estimation of overall roller properties. In addition, the
water depth at the top of the roller is estimated as h. = hy + e, in Table 4.1. Finally,
the equivalent phase speed, ¢, is computed using relation (4.17), which follows from
shallow water theory, and using d = (hy + hy).

One interesting result presented in Table 4.1 concerns the estimated values of mean
breaker angle. Those values are almost two times higher than the ones measured by
Duncan [53] on spilling breakers produced by a towed hydrofoil. As discussed before,
Duncan’s breakers are more representative of deep water breaking, and fundamental
differences may exist between the latter and surf zones waves. It is then believed that
the shallowness of the medium where breakers develop may produce an additional con-
vective flow acceleration which should partially explain this important change in mean
front slope. Furthermore, Yeh and Mok [183] reported even higher values for the mean
breaker angle of turbulent bores propagating on an horizontal flume, roughly ranging
from 25° to 30°. Similarly, Govender et al. [72] found, from video measurements, that
the mean front slope of laboratory surf zone waves evolved between nearly 12° and 30°
for spilling breakers, and from 16° to values as high as 40° in the plunging case. There-
fore, it seems that one of the important differences between deep and shallow water
breakers concerns the equilibrium value that the front slope may reach. Consequently,
measured values obtained under shallow water conditions are in contradiction with the
simplifying assumption of small breaker angle usually invoked to derive roller models
(e.g. [49, 150]).

The knowledge of breaker angle evolution in surf zone waves is of practical im-
portance since wave-averaged and phase-resolving breaking models usually require the
prescription of a value for the latter (e.g. [47, 133, 150]). Unfortunately, no useful
theory has been found yet to explain and predict the front slope variations of breaking

waves.
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Figure 4.6: Non-dimensional roller thickness estimated from (4.19) using p = 0.78 for the three
hydraulic jumps investigated in Svendsen et al. [157].

4.3.2 Analysis of model capabilities in a shallow water context

According to the previous discussion it seems reasonable to postulate that second
order effects on mean breaker angle should be included in roller equation. However,
the integral appearing in the right hand side of (4.18) cannot be reduced to a simple
expression without assuming a functional form for the local roller thickness. Veeramony
and Svendsen [172] proposed an empirical relation, based on Svendsen et al.’s [157]
measurements on weak hydraulic jumps, able to provide an estimate for the local roller
shape. Indeed, Svendsen et al.’s experimental data indicate that a reasonable similarity
for the local roller thickness exists between the three quasi-steady hydraulic jumps. In
the present context, and for the moving frame of reference sketched in Figure 4.4, this

expression takes the following form,

e 0] (GO MG

where p is an empirical non-dimensional parameter. A least-square error analysis using
Svendsen et al.’s [157] measurements was performed in reference [172], where the opti-
mal value p = 0.78 was obtained. The numerical adjustment of this empirical curve is
given in Figure 4.6.

In order to evaluate the total energy dissipated from the roller given by equation
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(4.18), it is convenient to re-write the previous expression for the roller thickness in a

more general form,

e(X) = —K exp (zﬁ - 1> [(% - 1) + (% - 1)2] : (4.20)

where the new (dimensional) parameter must be K = (3exp(—1) — 1)7*A/l, in or-
der to satisfy the additional integral condition A = for edX, or alternatively, K =
phg\/m for hydraulic jumps investigated in [157]. According to this, the integral
in the right hand side of equation (4.18) can be estimated as,

Ly 2 _ _
/ X = o & with oy = L 7P(=2) . (4.21)
0 Ly 4[3exp(—1) — 1)]

We are now able to integrate the left hand side of energy equation 4.2. For this we
need to write this equation in the moving frame of reference (O, X, Z) for a flat bottom
assuming that the spilling breaker is in quasi-steady equilibrium. Thus, the following

relations must hold,

9 __ d
ot = Cax
o0 _d
oxr dX'’

u(z,t) =U(X,t) +c.

Using again the hydrostatic pressure distribution assumption, p = p,g(n + ¢/2 — 2),
and vertically integrating over the roller thickness, equation (4.2) finally yields,
de?

1
§p7~gcd—X = Dw — D,,«, (422)

showing that locally there is no equilibrium between production and dissipation of
turbulent kinetic energy. The left hand side term in this equation is associated to
the work done by pressure forces. However, when energy equation (4.22) is spatially
integrated over the whole roller length, this term vanishes because roller thickness is
zero at outer bounds of the aerated region. Therefore, invoking definition (4.12) for the
turbulent kinetic energy source, relation (4.18) for shear stress dissipation, along with
the shallow water approximation given in equation (4.17) and the integral expression
(4.21), the roller equation reads,

gl H Al ¢(1+3)dH
(14+2)lcos>®H? |~ 4tan® hihy’

A
cos?d— |1 -y

- (4.23)
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The latter contains all second order terms which are usually neglected in roller equa-
tions.

Solving equation (4.23) for the cross-sectional area of the roller requires additional
knowledge on the roller length, /., and the prescription of model parameters, ® and ¢.
However, it would be interesting at this stage to evaluate whether second order terms
improve cross-sectional area computations or not. On this purpose we will compare
numerical predictions for cross-sectional roller area produced by four different models
against experimental data from Svendsen et al. [157]. We use a first order equation
including the hypothesis u < ¢ (R1), a second order version with u < ¢ (R2), a second
order version without any assumption on flow velocity but neglecting the quadratic
term in (4.23) (R3), and the full second order version expressed by equation (4.23)

(R4). For the reader’s convience the first three models are re-written below,

A @ dH

[l R1
H? 4tan ® h,lhg ( )’
A % dH

- R2
H? 4tan® cos2 ® hihs (R2),
A 1+21) dH

H? 4tan® cos? ® hihs

While for those three expressions model parameters can be easily isolated from mea-
sured quantities, the quadratic equation (4.23) cannot be reduced to a simple form.
Moreover, the latter has two roots for A and we are not able to tell a priori which
one should be retained. In order to evaluate the capabilities of each roller model, we
will assume that ¢ = 1.0, without a real justification for the moment, and compute
estimates for the cross-sectional roller area using measured flow and roller properties
summarized in Table 4.1. On the other hand, in order to be able to compare numerical
computations, an empirical estimate for the roller area is obtained by integration of
expression (4.19) using p = 0.78. This is an useful exercise which can tell us whether
second order terms, which are usually disregarded, should be considered or not and
main results are summarized in Table 4.2.

Although it is rather difficult to come to a final conclusion from results reported in
table 4.2, at first glance, it appears that second order terms do improve the estimation
of the cross-sectional roller area when compared to empirical findings from [157]. Com-
puted RMS error decreases firmly when models R2 and R3 are considered in comparison
with R1 which retains only first order terms. Additionally, results obtained assuming
that tan ® = 0.1 in R1 are also presented. This is a widely used approximation in wave-
averaged models and several authors have proposed this value for practical applications

(e.g. [47,121, 130, 132]). Nevertheless, estimates for roller area are catastrophic in this
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H ¥ Empirical R1" R1 R2 R3 R4! R42

(m) H/d A/H? A/H? A/H? A/H?> A/H®> A/H?> A/H?

F, = 1.372 0.036 0.4 0.56 117 0.28 033  0.40 3.37  0.46
F, = 1.464 0.041 0.51 0.61 136 038 043  0.54 3.53  0.63
F, = 1.562 0.051  0.62 0.41 171 040 047  0.62 144 108
RMSE (%) - - - 1753  39.2 323  29.6 452.5 733
RMSE" (%) - - - 116.7 438 353 211 489.4 123

Table 4.2: Comparison between empirical and computed cross-sectional roller area for the three
hydraulic jumps studied by Svendsen et al. [157]. R1" : model R1 using tan ® = 0.1; R4' : first root
for model R4; R42 : second root for model R4. RMSE : root mean square error considering the three
jumps; RMSE" : considering only the first two jumps.

case. The latter does not mean that previously reported hydrodynamical computations
are wrong, but it is a strong indication that modelling errors in both, description of in-
tegral wave properties and roller contribution, are deeply related. We believe that such
a small value for the front slope of the breaker has to be chosen in order to compensate
errors presumably due to the linear wave theory adopted in those models or because
of an intrinsical different behaviour of surf zone breakers where much higher values for
roller cross-sectional area arise. Despite of that, it is rather surprising to note that
using a nonlinear wave theory and inverse modelling on measured undertows, Dally
and Brown [47] concluded that tan ® ~ 0.1 was a reasonable value for the breaker’s

slope. The latter corresponds to a breaker angle of ® = 5.7°.

The analysis of results computed with help of model R4 is more subtle. From
Table 4.2 it seems to be rather obvious that only the second root of equation (4.23) is
physically meaningful. However, we are somehow puzzled by numerical results obtained
for the third hydraulic jump with the highest Froude number, since both roots appears
to be dangerously close. The latter is of course very frustating because it could indicate
that underlying assumptions used to obtain roller equation are not realistic or that
some kind of bifurcating mathematical behaviour could be expected in the model.
However, taking into account that several uncertainities still remain, in particular
on the value ¢ = p,/p,, and that additional reasonable experimental errors could
exist, the overall agreement obtained with help of the different versions of the roller
equation is satisfactory. Hence, there is some empirical evidence which seems to support
the roller concept itself and it would not be fair stating that underlying assumptions
are wrong. In addition, looking carefully at empirical results reported in Table 4.2

we notice that for the third hydraulic jump the value for A/H? shows an important
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decrease which doesn’t seem to agree with the physical intuition. Indeed, we could
expect that, since this hydraulic jump is the strongest among those investigated, the
aerated region should in turn be the largest. Besides, we recall that owing to a lack
of experimental information, the value for h; was extrapolated in Svendsen et al.’s
[157] work. Unfortunately, errors on the estimation for this water depth are strongly
amplified in roller equations because of the nonlinear dependence on this variable.

Owing to the previous discussion, we perform an additional RMS error estimate
without including the third hydraulic jump. Results are reported in the last row of
Table 4.1 where it is clearly noticed that second order terms have a beneficial impact
on computed cross-sectional roller areas since the RMS error is systematically reduced
as additional terms are taken into account. Indeed, comparisons with the first order
estimate produced by model R1, show that errors are reduced by 8.5 % when the
small angle hypothesis is disregarded, by nearly 23 % when the additional assumption
on flow velocities, u < ¢, is removed, and by 31.5 % if all second order effects are
included. Even though additional experimental data are definitely required, it seems
reasonable to think that model performance can be significantly improved by removing
the simplifying assumptions that are usually invoked to write roller models. Never-
theless it is worth emphasizing that more empirical information would be required to
further confirm that trend. We recall that there is also an uncertainity concerning
the density ratio, ¢, which was assumed to be equal to one. Several experimental
investigations indicate that the values for this parameter can range from 1.0 to 1.4 on
a spilling breaker [102], or reach slightly higher values in strong plunging events [72].
Nevertheless, Svendsen et al.’s [157] experimental set-up minimizes the entrainment
of air bubbles at the turbulent front in order to be able to conduct accurate velocity
measurements over the entire water column. Indeed, only for the strongest hydraulic
jump, with Froude number 1.562, a significant presence of air bubbles could be noticed.
Therefore, at least for the first two jumps, the assumption ¢ ~ 1.0 seems justified.

Whereas second order terms appears to play an important role in the present com-
putations, we cannot tell if this would be the case in real surf zone waves owing to the
intrinsic ¢-parameter uncertainity and important existing topological differences. This
is in particular the case for the question of including the quadratic term in equation
(4.23). Furthermore, in surf zone waves, the free surface can be highly curved and
the turbulence intensity more important thus leading to a violation of the hydrostatic
hypothesis. Nevertheless, the present exercise has been useful to evaluate the overall
validity of the roller concept.

An additional conclusion that must be highlighted concerns the total energy loss

from mean flow that shallow water shock theory provides. The good agreement between

131



Dividing streamline

Toe of the roller

Mixing Layer | — R

un

Figure 4.7: Definition sketch for flow separation at the toe of the breaker : Mixing layer model for
vorticity and turbulence spreading.

empirical and computed results that was noticed gives some confidence in the energy
estimation obtained from equation (4.12). Even though shallow water theory is not
able to make a detailed knowledge of the complex breaking process available, it provides

valuable information from a macroscopical point of view.

4.3.3 On the application of Cointe and Tulin’s [40] theory of

steady breakers in shallow waters

Wave-averaged roller models produce an estimate for the cross-sectional area of the
aerated region. However, for practical applications it might be necessary to know in
addition its relative localition over the carrying wave. This information is crucial for
the determination of the total horizontal or vertical extent of the roller region. This
issue will be investigated next.

Cointe and Tulin [40] introduced a theoretical approach for the description of the
dynamics of quasi-steady breakers experimentally investigated by Duncan [53]. They
assumed in essence that the roller region could be imagined as a stagnant eddy riding
on the front face of the breaking wave. In the present subsection we focus in particular
on the specific reasoning that allowed them to write a linear relationship between the
wave height and the vertical distance between the toe and the top of the roller. We
aim at investigating whether the proposed expression is applicable or not to shallow
water breakers studied in Svendsen et al. [157].

The analytical derivation of Cointe and Tulin’s relation begins by assuming that at
the toe of the roller a turbulent mixing layer originates. This is a reasonable conceptual
approach for the description of the flow in this region and has been supported by
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several experimental investigations (e.g. |98, 116, 157|). The incoming flow is suddenly
decelerated near the free surface as it approaches the toe of the breaker, where the
sharp curvature of the free surface enhaces the flow separation which seems to serve
as a source of vorticity according to experimental observations reported in [45, 116].
Hence, the topological behaviour of the flow has some resemblances with a plane flow
in a divergent. A Tollmien mixing layer [134, 164] was thus used by Cointe and Tulin
to model this situation.

We write the momentum equation on a streamline using local coordinates (o', s, n)
sketched in Figure 4.7 and assuming a quasi-steady state as,

a (v »p T 10T,
S (R PR 4.24
58<2+p+gz p) p on’ (4.24)

where p is the fluid density, v, is the flow velocity, 7ss; and 7, respectively represent the
normal and transverse turbulent shear stresses. Now following Svendsen et al. [157]
we define the streamline where the momentum equation (4.24) should be integrated,
as the lower edge of the roller region. The latter is thus defined as the average location
of a dividing streamline which separates this aerated region from the flow underneath.
Although, it is questionable whether this curve may be rigorously thought as a stream-
line or not since some transverse mass transfer must presumably take place accross it
[116].

Svendsen et al. [157] used accurate flow velocity measurements over the entire col-
umn of water to localize this fictitious curve. Moreover, maximum transverse turbulent
shear stresses occur exactly at the same location where the dividing streamline is de-
fined over most of the roller [157]. It is only near its downstream edge that significant
spreading of vorticity can be noticed, and that maximum shear stresses do not coincide
anymore with the theoretical streamline. The transverse gradient in shear stresses ap-
pearing in the right hand side of equation (4.24) can thus be reasonably assumed to be
negligible over the whole extent of the dividing streamline. This allows us to integrate

momentum equation between the toe and the top of the roller (see Figure 4.7),

2 c
2 p p 1y

where [f]$ = f. — f;, and indices ¢ and ¢ denote an evaluation of the function f at the
top and the toe of the roller respectively. In addition, the pressure at both outer edges
should be equal to the surrounding atmospheric pressure, and normal turbulent shear
stresses 75 can also be neglected there. Hence we obtain a simple Bernoulli equation,

U?‘C U?‘t

+g(hc_d):

+ g (ht — d). (4.26)

133



It is worth noting that the hydrostatic assumption has not been used so far, but only
some empirical findings regarding the turbulent shear stresses distribution reported
by Svendsen et al. [157]. Therefore, expression (4.26) seems to be less restrictive
than the roller concept itself. Moreover, as pointed out in [40], the constancy of the
total head evaluated on the dividing streamline represented by equation (4.25) has
also been supported by former experimental findings on turbulent flows with similar
characteristics [6].

On the other hand, invoking the Tollmien mixing layer model, the sudden decel-
eration in flow velocity at the toe of the roller may be represented by the following

expression [40],
vslt = B s, (4.27)

where (3 is a constant (8 < 1.0) that is to be determined experimentally, and v/~ is
the flow velocity at the free surface just upstream of the toe that can be estimated
from potential theory. Again, if viscous effects are neglected, a Bernoulli equation may
be written to relate vs|;— with the (uniform) flow velocity that should occur sufficiently
far upstream from this location. Whereas in the case of Duncan’s [53] experiments,
this velocity is the speed at which the foil is towed, for Svendsen et al.’s [157] quasi-
steady hydraulic jumps it is not so clear which reference value should be considered
for the estimation of vy|~. Nevertheless, for a turbulent bore propagating over a water
surface initially at rest and in the associated moving frame of reference, the velocity
upstream of the breaker would be exactly the speed at which the bore is running,
i.e., the celerity c. Hence, since reasonable analogies exist between propagating bores
and hydraulic jumps, we are able to write in the context of Svendsen et al.’s [157]

experiments,
V2|~ + 29 (hs — d) = &, (4.28)

where ¢ must be estimated using relation (4.17). Replacing expression (4.28) in (4.27)
provides the following relation which results from equation (4.26),
_2(1-F)ge  vil

gH,
= =1 7 7 " o (4.29)

where H, = 2(h, — d) and e, = (h. — h;) is the roller height. This is exactly the ex-
pression previously published in Cointe and Tulin’s [40] paper (eq. (4)), but explicitely
derived here in the framework of shallow water breakers. Moreover, according to ex-
perimental findings reported in [157], at the top of the roller, velocity vs|. appears to
be negligible thus confirming that the latter should correspond to a stagnation point

as suggested by Cointe and Tulin on the base of Duncan’s [53] measurements.
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Figure 4.8: Non-dimensional breaker height v/s non-dimensional roller height using Duncan [53]
and Svendsen et al. [157] experimental data.

In Figure 4.8, the non-dimensional breaker height, gH./c?, is plotted versus the
non-dimensional roller height, ge,/c?, for deep water breakers investigated by Duncan
[53] and for shallow water hydraulic jumps studied in reference [157| using measured
values reported in Table 4.1. It is seen that for the three hydraulic jumps the linear
relationship (4.29) gives a perfect match, where the velocity at the top of the roller has
been set to zero. In fact one may add an extra experimental point since the empirical
linear relationship pass through coordinates (0,1). A least square error adjustment on
Svendsen et al.’s [157] data provides 8 = 0.796 for equation (4.29). It is also evident
from this figure that differences exist between breaking waves investigated in [53] and
hydraulic jumps in Froude similarity with surf zone waves. Although, it is not clear if
a theoretical link can be establish between both. This important result suggests that
breakers generated by a towed hydrofoil are not necessarily extrapolable to surf zone
waves and consequently more experimental research is definitely required for shallow
water breaking.

Besides, it is worth pointing out that in relation (4.29) there is only a linear depen-
dence on measured values for hA; which is used to compute the mean water depth, d.
Therefore, experimental errors that should presumably exist in the estimation of this

variable are not dramatically amplified as it was the case in cross-sectional area com-
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putations performed above. This can partially explain why the third hydraulic jump,
with the highest Froude number, does not deviate from the theoretical curve. Similarly,
since the hydrostatic assumption was not invoked for the derivation of relation (4.29),
this expression may be thought to be more general than the roller equation.

On the other hand, if experimental results carried out in reference [157] might be
reasonably extrapolated to surf zone waves as it is assumed in several wave-breaking
models proposed in the framework of Boussinesq-type equations [25, 120, 172|, then
relation (4.29) may provide valuable additional information regarding the total vertical
length of the turbulent region, where most of the energy dissipation must take place.
In surf zone waves, the location of the top of the roller should coincide with the wave
crest, as it is the case for Duncan’s [53| breakers, and consequently the wave height,
H, must be equivalent to H, in equation (4.29). Therefore, Cointe and Tulin’s [40]
relation can be expressed in the following useful way (assuming ¢ ~ gd),

e_ (-1 (4.30)

H 21-p) =

which allows for a direct estimation of roller’s height in surf zone waves. For instance,

using the adjusted (-value from Svendsen et al. [157] hydraulic jumps, and v = 0.5, it
follows that e,/H ~ 0.86. Thus, according to this theoretical result, the roller region
would not reach the trough of the breaking wave in the inner surf zone. Conversely, for
~v ~ 0.8 which may correspond to an incipient breaking situation, this theory predicts
e,/H ~ 0.22, showing that the roller would be essentially localized in the upper part
of the breaker. In Figure 4.8 we have delimited a typical surf zone region where
0.3 < v < 0.8. Hydraulic jump data is well inside this region, whereas most of the
Duncan’s [53] measurements lie outside surf zone’s bounds.

Finally it is important to note that the newly adjusted S-value is higher than the one
obtained using Duncan’s [53] data, which means that the jump in velocity at the toe of
the roller in the shallow water case is less pronounced. This seems to be reasonable since
the shallowness of the water column may introduce additional convective acceleration

effects on the flow underneath. The latter is unimportant in deeper waters.

4.4 Wave-averaged cross-shore model for surf zone

roller evolution

In the previous section, the overall validity of the roller concept has been investigated
using experimental findings on shallow water breakers reported in reference [157]. It

appears that, from a macroscopic or wave-averaged point of view, model predictions

136



are improved if second order terms are retained. In the present section we derive a
wave-averaged roller equation which can be applied in coastal engineering practice.
The analytical development that we plan to present will also highlight some existing
discrepancies between previously published wave-averaged roller equations, namely S-
DV94 and D-B95 models. Finally, an inverse modelling approach based on Cox [41]
experimental measurements on a laboratory surf zone, will provide additional insight
on model performances and on the physical validity of the roller model.

4.4.1 Wave-averaging different terms

In the framework of phase-averaged models, a detailed knowledge of the local shape of
the roller is not required. Instead, only the total cross-sectional area and the spatial
evolution of it need to be described. Energy equation (4.2) is then averaged over a
characteristic time scale, usually the wave period, and simplifying assumptions are
introduced in order to integrate the equation. Modelling errors are then absorbed by
the different parameters resulting from the averaging process. The most important
is the mean breaker angle, ®, which sets the intensity of the shear force required to
balance roller weight. Similarly, the density ratio ¢ = p,/p, has to be prescribed
in order to obtain the spatial roller evolution from the energy equation. In practical
applications it is often assumed that the latter is close to unity and consequently all
uncertainities are absorbed by the remaining parameter (e.g. |47, 49, 53, 150]). In the
following we integrate energy equation (4.2) vertically, over the roller thickness, and
in the time domain, over a wave period for regular wave conditions. We assume that
bottom variations are mild in order to be able to apply some theoretical results reported
in the previous sections. The phase speed is thus assumed to be locally constant on a
wave-length scale, but not when the entire surf zone is considered.

The specific energy term in equation (4.2) can be splitted into kinetic and potential

contributions as follows,

E = Ey+BE, (4.31)
1

E, = 5/’1"02; (4.32)

B, = hes (433

where variables were already defined and the fixed coordinate system is sketched in
Figure 4.1-a). Since we are focussing on regular waves, the wave-averaged time deriva-
tive term in the left hand side of equation (4.2) is zero. On the contrary, the energy

flux term should be integrated in space and time. Vertical integration of different terms

137



results in,

n+35 1
KE = / cE,dz = =p,c’e, (4.34)
n—% 2
nt+g
PE = / cE,dz = prgcne, (4.35)
3
n+s 1
PF :/ cpdz = iprgce2, (4.36)
-3

where the hydrostatic assumption has been invoked to compute the pressure flux term,
PF. Previous expressions show that wave-averaging potential and pressure flux con-
tributions is not straightforward owing to nonlinear terms.
The wave-averaging process implies the application of the following operator,
1 [T

flx) = T/ (z,t") dt’,

with T = L/c being the wave period, and L is the associated wave-length. Since
bottom variations are mild, and propagating waves are monochromatic, this time-
averaged operator can be locally expressed in terms of a spatial-average over the wave
length, i.e.,

o 1 J)-I—L/Q

Flo) = & / F(a) da. (4.37)

L z—L/2

The roller is only defined, in the moving frame of reference (O, X, 7), for 0 < X <[,
thus wave-averaging roller energy fluxes appearing in the left hand side of equation
(4.2) produces,

2
——  pctA
E = 4,
4 (4.38)
g A
PE = (n. — anl, tan @) 27 (4.39)
. pgAA
PF = Z 4,
YT 1, (4.40)

where z = 7, is the vertical coordinate of the wave crest. In order to integrate nonlinear
terms, the linear form for the mean free surface location (n = 7. — X tan ®) and the
empirical local roller thickness function (definition (4.20)), have been invoked. While
the coefficient «; has already been introduced in expression (4.21), the second numerical

coefficient, oy, appearing in (4.39) reads,

3 — Sexp(~1)]

= Bexp(-1) - 1]
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It is worth pointing out that the factor in parenthesis in the potential energy flux (4.39)

is an estimate of the vertical coordinate of the roller’s centre of mass, z = Z,.
Similarly, spatial integration of the energy dissipation function associated to tur-

bulent shear stresses has been performed in the previous section. Therefore, the wave-

averaged shear stress energy dissipation (4.18) can be written as,

—r:sincbcosé 1 0 H i 2_gﬁ
(1+12) (1+2)lrcos?® H? | ¢?

In the previous section the contribution from the second term appeared to be non-
negligible for hydraulic jumps investigated in reference [157]. In surf zone applica-
tions the remaining parameter uncertainties may produce errors with a similar order.
Therefore, we will not consider quadratic terms in the following numerical applications

assuming that a; = 0. The wave-averaged roller energy equation can then be recasted

as follows,
d 297, \ —= 20——
e [(1 + 2 ) KE} +ﬂ75¢,§KE = D,, (4.41)
where,
c €r
z == (F)| 7
1 .
B, = 7(1 = %) , P =sin®cos® |,

and e,/H can be estimated using relation (4.30). This first order ordinary differential
equation can be easily integrated over the entire surf zone using a finite difference or a
finite volume scheme and taking A = 0 as boundary condition at the breaking point if
integral wave properties are known (see for instance reference [36]).

Roller equation (4.41) has been derived using the same basic hypothesis usually
embedded in previously published roller models. Main differences concern the correc-
tion for relative velocity U = u — ¢ and a reasonable estimate for the vertical location
of the roller and the associated potential energy flux. The latter has been systemati-
cally discarded or approximated in former roller equations. Before going any further,
it is important to point out how traditional roller models may be retrieved from this
extended ordinary differential equation.

Careful examination of equation (4.41) shows that S-DV94 roller model is recovered
when Z, = ¢?/(2g), 8, = 1.0 and s = tan ®. Since ¢* ~ gd we notice that the average
location of the roller’s centre of mass is roughly estimated as Z, ~ d/2 in this case.
Similarly, the vertical coordinate of the crest of the wave should be Z, ~ H/2, this

means that the ratio 7, /Z. ~ 1/7. However, since under normal conditions v should
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remain below 1.0 in the surf zone, it seems that S-DV94 model implicitly assumes
an unrealistic location of the roller’s centre of gravity. Rigorously speaking, the latter
would imply that the roller is somehow flying above the crest of the wave. Nevertheless,
Stive and De Vriend [150] argue that this contribution should rather belong to energetic
exchanges taking place between the roller and the organized flow owing to the temporal
evolution of the roller area (see the Appendix of the aforementioned reference).

On the other hand, D-B95 model implies Z, = 0.0, 8, = 1.0 and B¢ = sin ® cos ¢
in equation (4.41). Therefore, besides the second order correction in the breaker slope
which is included in the latter, the main difference between S-DV94 and D-B95 roller
models arises in the implicit treatment of the average location of the roller’s centre of
mass. Indeed, while S-DV94 assumes an unrealistical high location, D-B95 considers
that the roller is always centered at the still water depth. At first glance, none of the
implicitly assumed average positions for the roller are reasonable, nevertheless, in the
next subsection we will investigate what kind of practical consequences this may have.

It is important to recall that despite the theoretical discrepancies highlighted in the
previous paragraph, several authors have recommended to use S = 0.1 (or even lower
values) for the mean breaker slope parameter in S-DV94 and D-B95 roller equations
(e.g. [47, 130, 176]). The only plausible explanation for this paradox is that, since
the adjustment of parameter values makes use of some kind of inverse modelling on
undertow measurements, further approximations are required in order to estimate the
volume flux carried by waves (i.e. the Stokes drift). Hence, the optimal breaker slope is
chosen to minize modelling errors associated to the estimation of integral waves prop-
erties and to the roller model itself. In next subsection we will minimize integral wave
properties estimates by coupling the roller equation (4.41) to a time-domain numerical
solver for NSWE for the particular case of Cox [41] experimental measurements on

regular waves propagating on a planar beach.

4.4.2 Inverse modelling of breaker angles for Cox (1995) exper-

imental data

Detailed measurements of velocity profiles and free surface elevations were collected
in the wave flume (33 m) of the Ocean Engineering Laboratory at the University of
Delaware by Cox [41]. Experimental probes were located at six vertical lines in the
shoaling region and in the surf zone. Incident waves, which propagated up a rough
impermeable 1:35 constant slope, were generated using cnoidal theory, with height
Hy = 11.5 cm and period T' = 2.2 s. The still water depth in the horizontal part of the

flume was fixed at hy = 40 cm. Laser Doppler Velocimetry was deployed to measure
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velocity profiles in the water column below the trough level. Further details on the
experimental set-up can be found in references [41, 43, 44].

As it was briefly discussed in the previous subsection, inverse modelling of the
optimal value for the mean breaker slope can be performed using the wave-averaged
continuity equation. Using the definition sketch given in Figure 4.1-a) the latter reads,

Q=Qu+Qs+Qr, (4.42)

with definitions,

- n+te/2 T n—e/2 . nte/2
Q= / udz, Qu,= / udz, Q,= / udz, Q,= / udz, (4.43)
3 3 n

Nt —e/2

Here @ stems for the total wave-averaged volume flux over the entire water column,
Q. is the volume flux below the trough level located at z = 7, Q, is the Stokes drift
associated to wave asymmetries and @, is the volume contribution from the roller
region. For regular waves, and when a steady-state is reached, the total volume flux,
@ must vanish. This means that, in the surf zone the volume flux below the trough
level (undertow) must be compensated by the Stokes drift and the roller contribution.
Velocity measurements carried out by Cox [41] provide an estimation of the mean return
current or undertow. However, it was not possible to make reliable measurements in
the region above the trough since at times in each wave period there is no water.
Consequently, the Stokes drift shall be estimated using a wave theory and the roller’s
volume flux computed indirectly from equation (4.42).

Following Svendsen [154] and using a wave of constant form hypothesis in the

framework of shallow water theory, it can be shown that the Stokes drift takes the

form,
Q, = —c h{%) (4.44a)
H \* -7\’

where h; is the water depth below the trough level, By = (n — 77)2/H? is a wave-shape
parameter, and 7 — £ represents the wave-averaged water depth. The latter requires in
addition an estimation for the velocity at which the fronts are propagating. Bonneton
[19] has shown that a more accurate estimate of wave celerity can be obtained from a
one-way shallow water shock theory. Hence, the use of his expression may contribute to

reduce errors associated to the computation of this kinematic property in the present
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context. Local phase speed is thus evaluated as follows [19],

he (he +h
c=—2gM—& +2 ghtﬂ/gﬁt%, (4.45)

where h. represents the water depth below the crest level.

L1 L2 L3 L4 L5 L6
x — zp (cm) —240 0.0 120 240 360 480
¢ (cm) -27.97  -21.07  -17.67  -14.16  -10.76 -7.35
7 (cm) -0.37 -0.43 -0.11 0.22 0.75 1.15
7 — & (cm) 27.60 20.64 17.56 14.38 11.51 8.50
hy (cm) 24.02 17.48 14.79 11.86 9.15 6.55
he (cm) 37.24 34.58 27.50 20.10 16.23 11.60
H (cm) 13.22 17.10 12.71 8.14 7.08 5.05
v 0.48 0.83 0.72 0.57 0.62 0.59
Bo 0.0911  0.0552  0.0703  0.0914  0.0882  0.0858
(g;t;) -0.0185  -0.0292 -0.0295 -0.0269 -0.0308 -0.0295
Qu (cm?2/s) -85.19  -96.45  -148.07 -111.82 -68.49  -44.75
¢ (cm/s) (eq. (4.45)) 193.75  202.07 174.80  141.18 125.56  103.25
Qs (cm?2/s) (eq. (4.44a)) | 86.10 103.14  76.27 45.04 35.39 19.95
QL (cm?/s) (eq. (4.44b)) | 97.27  133.83  95.22 49.04 38.34 20.48
Q- (cm?/s) - - 71.80 66.78 33.10 24.80
Q! (cm?/s) - - 52.85 62.78 30.15 24.27
A/H? - - 0.98 2.22 1.45 2.14
A'/H? - - 0.72 2.08 1.32 2.09

Table 4.3: Measured properties for Cox [41] experiment and estimated Stokes drifts and roller
contributions computed as Q, = — (@ + @) (see also reference [43] for measured quantities).

In Table 4.3 Stokes drift is computed using both, the exact expression (4.44a) where
the term appearing in the right hand side is wave-averaged from measured time series
available for this experiment, and the approximated expression (4.44b), which is often
used in practical applications. It is worth pointing out that the exact shallow water
expression (4.44a) is giving a good estimation for the Stokes drift in the shoaling region
for sections L1 and L2. Indeed errors are very small, thus giving some confidence to
this formula and to the analytic estimate for wave celerity proposed by Bonneton [19].

On the other hand, the approximated expression (4.44b) seems to overpredict this
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contribution in the shoaling region and at the breaking point, but inner surf zone
values converge to the ones predicted by expression (4.44a). Unfortunately, it is not
possible to accurately determine which are the errors associated to the computation
of the Stokes drift, and this will be specially critical in the transition zone between
sections L2 and L4.

On the other hand, the cross-sectional roller area can be evaluated from Q, using the
expression A = ¢ @, T, which follows from the definition given in (4.43) and assuming
that the horizontal velocity in this region is constant and equal to the wave celerity. The
roller contribution is computed from the continuity equation (4.42) assuming @ = 0,
using measured undertow @, and invoking shallow water theory to estimate the Stokes
drift Q,. It is worth emphasizing that this is an indirect estimation for roller’s volume
flux and that errors associated to the Stokes drift cannot be properly identified. In
Table 4.3 it can be noticed that resulting estimates for A/H? (assuming ¢ = 1) in the
inner surf zone are rather high compared to the ones we obtained for Svendsen et al.’s
[157] hydraulic jumps but also those reported by Duncan [53|. Moreover, Govender et
al. [72] were able to estimate, in the surf zone, the aerated cross-sectional area from
video measurements and found that for their spilling breaking case, the ratio A/H? was
of the order of one, thus in some agreement with Duncan’s findings. Nevertheless, in
their plunging case, this ratio could reach values as high as three. For Cox’s experiment,
Table 4.3 shows that estimated volume contributions from waves and rollers are of the
same order of magnitude. It is important to mention that at the present experimental
state of art, it is very difficult to conduct accurate measurements in real surf zone rollers.
Since the question of mean current prediction is paramount for beach morphodynamics
and it is clear that the volume flux contribution from the aerated zone is non-negligible,
it is expected that novel experimental techniques could help to elucidate the puzzling
problem of breaking and roller dynamics. This settled we may pursue the inverse
modelling approach and compute optimum values for the remaining parameter, the
mean breaker slope.

Solving roller equation (4.41) requires the knowledge of integral wave properties in
the surf zone. These are given by running a NSWE shock-capturing solver developed
in reference [174]. Bonneton has applied this model to Cox [41]| experiment with good
agreement between computed and measured kinematic quantities (see results reported
in reference [18]). Therefore, this numerical tool provides accurate estimates for integral
wave properties needed to drive the roller equation (4.41). This coupling strategy
gives an opportunity to test the roller model itself by minimizing errors in estimated
kinematic wave properties.

Comparisons between measured integral quantities and numerically computed ones
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Figure 4.9: Comparison between measured and computed integral wave properties for Cox (1995)
laboratory measurements where x; is the breaking point coordinate. a) Wave height, b) wave set-up,
¢) breaker index, d) wave shape parameter, and e) wave-averaged energy dissipation in the surf zone.
(o) : Measured quantities; (—) : estimated from the numerical model [18].

are presented in Figure 4.9. The numerical model gives good estimates for wave height,
set-up, breaker index and wave shape parameter, By. In addition, the wave-averaged
rate of energy dissipation from the mean flow, D,,, has been computed from water depth
and velocity time series produced by the model. Those values serve to numerically
evaluate the shallow water energy equation and the associated local rate of energy
dissipation. It is seen in Figure 4.9-e) that wave-averaging this local rate provides a
reasonable representation which converges in the inner surf zone to the values predicted
by the bore analogy and by the semi-empirical expression proposed in reference [48|.
Moreover, a more plausible transition zone is predicted by the NSWE solver. Hence,
since by assuming ¢ = 1 the mean breaker angle is the only free parameter of the
roller model, we will use integral wave properties presented in Figure 4.9 to drive

equation (4.41). The measured undertow given in Table 4.3 will serve as target for the

144



optimization procedure taking @ = 0 in equation (4.42) and assuming that the Stokes
drift Q, may be computed from equation (4.44b) using results reported in Figure 4.9.
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Figure 4.10: Optimal breaker slopes, ®, from the inverse modelling approach on Cox [41] experi-
mental measurements. (o) : measured undertow flux; (—) : D-B95; (——) : S-DV94; (—-—) : Equation
(4.41). a) RMS error, b) undertow flux, and ¢) numerical factor multiplying the energy flux term.

The optimal value for breaker slope is determined by minimizing the RMSE between
the measured undertow and the one determined from continuity equation (4.42) using
the roller model to estimate volume flux contribution from the aerated region. The rate
of energy dissipation from the mean flow, is produced by the NSWE solver. Similarly,
remaining integral wave properties are computed from the time domain model while
phase speed, ¢, is estimated using relation (4.45). On the other hand, the total roller
height is evaluated from Cointe and Tulin’s [40] relation (4.30) using 5 = 0.796. The
optimization process for ® values is carried out for 1° < & < 40° using discrete steps
of 0.1°.

Optimal results for the inverse modelling technique applied to Cox [41]| experiment
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are presented in Figure 4.10. It is evident from computed undertows that at the
breaking point there is an intrinsical error associated to the Stokes drift estimate given
by expression (4.44b). Indeed, roller contribution at this location is by definition zero.
RMS errors on the mean return current are thus estimated considering only measured
values at sections L3, L4, L5 and L6. Figure 4.10-a) shows that in the present case only
D-B95 formulation is able to adequately capture the maximum undertow value occuring
at section L3 but the three versions of the roller equation, i.e. S-DV94, D-B95 and
(4.41), give reasonable estimates in the inner surf zone. However, the important feature
is that optimal mean breaker angles obtained from inverse modelling are different for
each model, being & = 7.2° for D-B95, & = 7.7° for S-DV94 and & = 9.9° for the
modified equation (4.41).

Measured undertow reported in [43] at section L3 appears to be very strong. In-
deed neither Musumeci et al. [119, 120] nor Briganti et al. [25] were able to adequately
predict velocity profiles under the breaker at this location using one of the most so-
phisticated available Boussinesq-type models. Their formulation includes roller effects
by introducing vorticity at the free surface which serves as source for an additional
vorticity conservation equation thus providing in theory more detailed information on
the breaking process. Nevertheless, model results at this location were rather poor, and
apparently those authors considered a velocity correction for longer period oscillations
that could arise in the experimental wave tank. Unfortunately, it is not possible to
establish whether this sloshing motion is of importance or not from the data that we
dispose and we have not introduced any correction term for the undertow in our compu-
tations. Moreover, roller’s volume flux is obtained assuming that it should compensate
underpredicted undertow values resulting from the application of shallow water the-
ory. It seems clear that this approach is not robust since the approximated expression
(4.44b) used to compute the Stokes drift may presumably not be that suitable in the
transition zone exactly where important differences arise between predictions produced
by the three investigated roller equations. It is worth noting that using linear theory
to compute the Stokes drift, i.e. taking By = 1/8 in expression (4.44b), will result in
an even larger overestimation of the mean return current near the breaking point.

The numerical factor in front of the energy flux term in equation (4.41) is plotted in
Figure 4.10-c) for the three investigated roller models. It is seen that the modified roller
equation which takes into account variations of the vertical position of the roller while
propagating, produces a factor which lies between values prescribed in S-DV94 and
D-B95 models. As previously discussed, from a strictly academic standpoint, neither
S-DV94, nor D-B95 formulation seem to be realistic concerning the particular treatment

of the potential energy contribution in equation (4.41). However, from a practical point
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Figure 4.11: Optimal breaker slopes, ®, from the inverse modelling approach on Cox [41] exper-
imental measurements using Dally et al. [48] expression for the rate of energy dissipation. Same

symbol definitions than Figure 4.10.

of view the latter has only a minor influence since model parameter must be chosen
to minimize Stokes drift errors rather than the ones belonging to the roller concept
itself. In any case, optimal breaker angles obtained with the present inverse modelling
technique are higher than the ones previously reported and much higher than the ones
obtained by Walstra et al. [176] using an analog inverse modelling. More importantly,
the RMSE on undertow computations is minimized for the modified roller equation
derived in this chapter when choosing a breaker angle which is in agreement with
empirical observations made by Duncan [53].

In order to illustrate how sensitive the inverse modelling approach for the breaker
front slope might be, we perform an additional optimization where only the local rate
of energy dissipation in the right hand side of equation (4.41) is computed differently.

We use now the semi-empirical expression proposed by Dally et al. [48] which agrees
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with the estimation from NSWE in the inner surf zone as depicted in Figure 4.9. As it
can be observed from results plotted in Figure 4.11, optimal breaking angle values are
higher than before, being of nearly ® = 9.4° for D-B94 and S-DV94, and & = 12.7°
when using the roller equation (4.41). It is worth noting from Figure 4.11-a), that S-
DV94 and the modified roller model give the best overall results in this case. It is also
interesting to highlight that, despite the two factor difference appearing in S-DV94
and D-B95 models, the optimal breaker angle is now the same for both. This may
partially explain the fact that the same numerical value for that parameter is currently
recommended to run both models (e.g. [47, 130]). In addition, this example shows
how incertainties in the input data may lead to very different conclusions®. This is
particularly critical in the transition zone where the modelling of breaking process is
obviously very inaccurate.

Concerning the density ratio, ¢ = p,/p,, it is important to note that since the
computation of the target roller volume flux has been performed on the base of the
continuity equation, the latter has no major influence in model performances. Indeed,
using a different density for the roller will modify the optimal roller area but not the
total amount of volume flux required to compensate the measured undertow. Similarly,
including quadratic terms in equation (4.41) did not improve the overall cross-sectional
area prediction but only the value for the optimal breaker angle thus being higher in
this case. It is worth emphasizing then that with the present experimental knowledge
on real surf zone beakers, it is not possible to clearly state whether the roller model is
physically sounded or not, and specially concerning the transition zone. However, it is
important to recall that the hydraulic jumps investigated in [157] showed significantly
smaller values for the ratio A/H? than the ones reported in Table 4.3 for Cox [41]
experiment. Therefore, the fact that smaller breaker front slopes must be used in
this particular case to reproduce the measured undertow is not surprising. This may
partially explain why such small values (~ 6°) are needed in practical applications
and illustrates in addition the important intrinsic differences that may exist between
hydraulic jumps and breaking waves.

It is also important to recall that in the present numerical application we have not
used the additional information that may be available from the momentum equation.
In wave-averaged models, the roller has also a momentum flux contribution (see for

instance reference [156]), which is in particular responsible for the landward shift of

3The reader should be aware that, even though the analytical development presented in reference
[37] and reproduced in Appendix D is identical from the one followed in the present section, inaccu-
racies in the estimation of numerical values for the undertow used to perform the inverse modelling

mistrust some of the conclusions given in this conference proceeding.
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the set-up near the breaking point. Momentum equation may thus be useful to further
evaluate roller models as was done for example by Walstra et al. [176].

Even though in the present section, the roller concept has been partially validated
with help of detailed hydraulic jump experiments, the question of its physical validity

for real surf zone waves remains unanswered.

4.5 Conclusions

In the present chapter the physical adequacy of the roller concept, first introduced by
Svendsen [154], was investigated. Model performance was studied in detail by com-
paring its numerical predictions against one of the few available accurate experimental
measurements on flow properties within this aerated region. For instance, underly-
ing roller assumptions seem to be justified thus providing reasonable estimates for the
mean volume of dead water, trapped between the principal flow underneath and the
free surface, for quasi-steady hydraulic jumps with Froude numbers in the range of
surf zone waves. The overall geometrical properties of this highly turbulent region,
originating at the toe of the roller as a consequence of flow separation, is predicted in a
satisfactory way when second order terms, which are usually disregarded, are included
in the roller equation. On the other hand, it is demonstrated that measured front
slopes for those weak hydraulic jumps are radically different from the ones reported in
spilling breakers produced by a towed hydrofoil by Duncan [53]. Even though it is not
clear if a reasonable link may be established between deep water breakers investigated
by Duncan [53] and shallow water hydraulic jumps reported in Svendsen et al. [157],
several intrinsic differences, at a macroscopic scale, have been identified.

One important result concerning the application of a Tollmien mixing layer model,
as suggested by Cointe and Tulin [40] for Duncan’s experiments, was presented in the
framework of weak hydraulic jumps in section 4.3.3. A preliminary check of the simple
linear relationship proposed in reference [40] between the vertical length of the roller
region and the total wave height, was performed using experimental measurements from
Svendsen et al. [157]. The agreement between theory and empirical data was found
to be excellent for the three shallow water hydraulic jumps investigated. Moreover,
this useful and simple relation appears to be more general than the roller model itself
since neither the hydrostatic pressure assumption, nor the simplified conceptual model
of an isolated recirculating vortex were invoked for its derivation. Moreover, main
hypothesis embedded in Cointe and Tulin’s expression were satisfactorily confirmed by

empirical findings concerning the spatial turbulent shear stress distribution reported in
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Svendsen et al. [157]. Nevertheless, the empirical parameter accounting for the sudden
flow decelaration at the toe of the breaker had to be fixed at a different value than the
one obtained for Duncan’s experiments on deep water-like breakers. It is believed that
the shallowness of the water column produces an additional convective acceleration
on the flow underneath and consequently the jump in velocity at the toe has to be
less pronounced. Certainly, more similar hydraulic jump experimental data would be
required in order to properly confirm this result.

Unfortunately, our attempt to further evaluate the validity of the roller model for
surf zone waves was less convincing. This is mainly due to the critical lack of accurate
velocity measurements over the entire water column for breakers running up a beach.
To cope with this drawback, the volume flux contribution associated to the aerated
region must be estimated indirectly using measured undertow and a water wave theory
invoked to compute the Stokes drift. Even though waves’ volume flux contribution
was estimated with help of a nonlinear shallow water theory (which should be the
most suitable for surf zone waves), it was noticed that Stokes drift was overestimated
near the breaking point. This was in particular the case for Cox [41]| experiment on
cnoidal waves breaking on a beach of constant slope. Moreover, measured undertow
appears to be unusually high in this experiment, resulting in roller cross-sectional area
estimates which are in more agreement with plunging events than the ones we would
have expected from a spilling-like breaking. It is not clear whether these unexpected
high values could be attributed to the invoked wave theory, experimental errors, a sec-
ondary longer period current or a stronger intensity of the spilling breakers investigated
by Cox [41]. Consequently, it has not been possible to come to a final conclusion re-
garding underlying roller model assumptions in the framework of real surf zone waves.
Nevertheless, a complete derivation of the roller evolution equation allowed us to high-
light several theoretical discrepancies between Stive and De Vriend [150] and Dally
and Brown [47] models. Indeed, radically different implicit hypothesis concerning the
potential energy flux are embedded in both approaches. While Dally and Brown [47]
totally neglect the latter, Stive and De Vriend [150] presumaly assume an unrealisti-
cally high value for the relative position of the roller above the carrying wave. However,
for practical applications, potential energy contribution appears to be of minor impor-
tance owing to the critical uncertainties which remain. It is thus emphasized that
experimental investigations where flow velocities could be accurately measured over
the entire water column in surf zone waves are needed to further validate or improve
roller approaches.

Finally, it is worth noting that nonlinear shallow water theory provides an accurate

description for surf zone wave kinematics and the overall energy dissipated by breaking
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but mean current estimates are very disappointing. The latter is certainly due to the
unresolved turbulent scale which is predominant at the front face of the breaker. In
this context, the inclusion of a time-domain roller model would help to improve the
overall representation of mean return current without necessarily having to heavily
increase the complexity of computations. In the next chapter, we will try to further
develop the conceptual approach investigated here by introducing local mass transfer
and convective acceleration effects in the continuity equation in the framework of surf

zone modelling using Boussinesq-type equations.
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Chapter 5

An Alternative Approach for

Wave-Breaking in Time Domain

5.1 Introduction

In Chapter 2, we developed a novel high order finite volume scheme which provides an
accurate and efficient way to integrate a particular set of fully nonlinear and weakly dis-
persive Boussinesqg-type equations. This set is able to describe nonlinear wave processes
in waters of intermediate depth, up to a value of khg ~ 7, where « is a characteristic
wave number and hg is a representative water depth. Additionally, in Chapter 3, non-
linear performances of the model were evaluated using experimental data on solitary
waves shoaling over gentle slopes. It is shown that, nonlinear properties embedded
in this particular Boussinesq set, allows for a very good prediction of wave height
values even near the breaking point where nonlinearities may be of the order of one
(a/hy ~ 1.0 with a the wave amplitude). These results constitute an encouragement
to extend the model to describe surf zone hydrodynamics. Indeed, since limiting wave
amplitudes in the shoaling region could be predicted with good accuracy, it is expected
that if a proper breaking criterion is adopted, not only the breaking point location but
also the associated maximum wave height would be adequately captured.

Another issue that will be briefly investigated concerns the spatial distribution of
mean return currents predicted by the model. In the previous chapter, important the-
oretical limitations related to classical approaches used to describe wave kinematics in
the surf zone were clearly confirmed. Presumably, the essential assumption of irrota-
tionality an a lack of turbulence description in nonlinear shallow water equations are
responsible for an important underprediction of velocity intensities below the breaker.

In theory, the latter might be only improved by fully removing these simplificatory as-
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sumptions. This was partially demonstrated in a family of Boussinesq models solving
in addition a vorticity conservation equation where the breaking process is enhaced by
a vorticity source prescribed at the free surface using experimental findings on weak
hydraulic jumps |25, 120, 172]. However, even if model performances were strongly im-
proved and a reasonable agreement between measured and predicted velocity profiles
was found for Cox [41] experiment, from a numerical and practical point of view the re-
sulting extra CPU effort makes those approaches rather expensive, and their extension
into two horizontal dimensions appears to be very challenging. On the contrary, since
the use of the roller concept in wave-averaged nearshore models constitutes a simple
an efficient way to overcome drawbacks of current estimations, we could expect that
a time domain-like version of it would improve, at least at a wave-averaged scale, un-
dertow predictions produced by Boussinesq-type or nonlinear shallow water equations
solvers.

Over the last 15 years, much research effort carried out worldwide have produced
important practical improvements for Boussinesqg-type equations. The question of in-
corporating wave breaking effects into these kind of potential-like models was addressed
very early, but it was not until the 1990s that several attempts to parameterize this
phenomenon could be performed with relative success [27, 84, 133, 184]. Generally
speaking, the different wave breaking approaches consider the inclusion of an extra
term in the momentum equation in order to dissipate energy when wave breaking is
likely to occur. Those additional ad-hoc terms can be thought as a force acting on
the front face of the breaker. Their practical implementation requires at least : i) an
explicit breaking criterion to activate extra terms, and ii) some energetic considerations
in order to relate model parameters to the energy dissipated in surf zone waves. In
addition, they must ensure mass and momentum conservation and preserve nonlinear
wave properties such as asymmetry and skewness.

One of the earliest attempts to incorporate breaking effects was independently pro-
posed by Zelt [184] and Karambas and Koutitas [84] using an eddy viscosity analogy
to write an extra term in the momentum equation. Model performance for periodic
waves was only investigated in reference [84], since Zelt [184| applied his breaking pa-
rameterization to solitary waves. However, Karambas and Koutitas [84] formulation
is not momentum preserving and set-up prediction in the inner surf zone was very
poor whereas wave height decay was reasonably computed. The latter illustrates the
importance of ensuring that breaking terms only introduce a momentum deficit locally
without affecting its overall surf zone budget. Only recently, Kennedy et al. [85] were
able, embracing the eddy viscosity analogy developed in reference [184], to adequately

reproduce wave height decay and set-up for regular waves breaking on planar beaches.
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In parallel, a different approach was followed by Brocchini et al. [27] and Schéffer
et al. [133]. Their breaking wave models were explicitly written using Svendsen’s
[154] roller concept where extra terms could be linked to local roller thickness and the
mean front slope of the breaker. Even though, this approach stems on very different
hypothesis and ideas, the overall effect in momentum equation is strictly equivalent to
breaking models based on the eddy viscosity analogy, namely a local momentum deficit
at the front of the breaker. The roller approach was further developed by Madsen
et al. [111] and even applied to irregular wave propagation problems in references
[12, 112, 124]. In addition, the roller concept also provided some theoretical background
for the development of Boussinesq models with vorticity mentioned above |25, 120, 172|.

Even though the current state of the art concernig breaking wave parameterizations
in the framework of Boussinesq models allows for a reasonable qualitative agreement
between experimental observations and numerical computations, the important lack of
a comprehensive knowledge on free surface vorticity generated and turbulence dynamics
has an important consequence on model capabilities. For instance each breaking model
has to be built using many hypothesis and simplifications which very often cannot be
properly validated on empirical basis. Consequently, extra terms are derived more from
ad-hoc considerations than real physical arguments. Moreover, the numerous resulting
parameters need to be tuned using experimental measurements and it is not possible to
ensure that one particular optimal set could adequately reproduce breaking conditions
different from the ones used for calibration.

On the one hand, roller-based breaking models are attractive because they have
a more straightforward physical basis, but their numerical implementation is rather
complicated and at least four different parameters must be tuned. On the other hand,
embracing the eddy viscosity analogy results in a somehow simpler model but no di-
rect physical meaning can be attributed to the associated scaling coefficients. In ad-
dition, results reported by Kennedy et al. [85] using an improved version of Zelt’s
[184] approach show a systematic overprediction of wave height in the inner surf zone.
Unfortunately it has not been clearly elucidated whether modelling errors belong to
the breaking parameterization or to the particular Boussinesq set of equations used to
describe wave motion. Without a doubt, the lack of physical knowledge of breaking
phenomena makes the task very difficult since no universal scaling laws have been
found. In this context, none of the aforementioned breaking approaches have shown a
clear superiority over the others.

In the present chapter, we develop a novel wave breaking parameterization based on
theoretical and experimental findings which applies in principle only to quasi-steady

spilling breakers. The new formulation stems from simple energetic principles and
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can be viewed as an extension of the eddy viscosity analogy used by Zelt [184] and
Kennedy et al. [85]. Local convective acceleration effects, which have been illustrated
in the previous chapter, are taken into account by an extra diffusivity term in the
mass conservation equation. Indeed, since the flow in the upper part of the breaker
is suddenly decelarated (in the moving frame of reference), mass conservation implies
a local acceleration in the flow underneath. Alternatively, this extra mass diffusivity
term may be thought to enhace local mass transfer at the front face of the breaker,
from the crest to the trough. This is in agreement with empirical observations and
aims at traducing some potential energy loss.

In the present chapter, we investigate if Kennedy et al. [85] parameterization is able
to adequately reproduce nonlinear surf zone wave properties when implemented in our
particular finite volume Boussinesq model. However, it will be demonstrated that the
latter is not able to properly reproduce, at the same time, wave height in the inner
surf zone and the characteristic saw-tooth profile. This important practical limitation

constitutes the main motivation for developing the alternative approach presented next.

5.2 Preliminary remarks

Boussinesg-type equations consitute an essentially inviscid set, hence breaking induced
effects must be introduced in an external or ad-hoc manner. In particular, a breaking
criterion must be adopted to activate extra terms, and wave crests need to be followed
since a wave-by-wave approach must be considered. In addition, model parameters
must be scaled to ensure that the overall externally induced energy dissipation is in

agreement, with the rate of energy dissipated in surf zone waves.

5.2.1 Breaking criterion

There are multiple ways of deciding whether a given wave should break or not. For
instance, it is possible to use physically sound arguments, or rather adopt an empir-
ical approach. Among the different breaking criterions that have been employed in
Boussinesg-type models we should cite the critical front slope introduced by Schéffer
et al. [133], a velocity gradient limit proposed by Zelt [184] and applied to solitary
waves, or a similar approach used by Kennedy et al. [85] where the critical spatial
velocity gradient is written instead in terms of the time derivative of the free surface
with help of continuity equation. Alternatively, a threshold value for the ratio u./c,
where u, is the velocity at the wave crest and c is the local wave celerity, has been

applied by Musumeci [119], while very recently a breaking criterion based on a relative
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trough Froude number (RTFN) was proposed and verified in references [123, 166, 167|.
The two last criteria, i.e., using a relative crest speed or an equivalent Froude number
seem to rely on better physical backgrounds.

It has also been recognized that an additional criterion is necessary in order to
decide if breaking should stop. Breaker slope, time derivative free surface and RTFN
criterions do include and explicit treatment for this situation. Moreover, it can be
shown that the approach proposed in reference [85] is almost equivalent to the limiting
breaker angle written in [133]. Indeed, the latter reads,

t—1
O =, + (P; — Dy) exp [—( T 0) 10g(2)] , for t > 1, (5.1)
b

where ®; and ®; correspond respectively to breaker angles at incipient breaking and in
quasi-equilibrium (bore-like) state, ¢, is the time at which the wave started to break,
and T} is a characteristic transitional time scale. On the other hand, Kennedy et al.
[85] criterion on free surface time derivative takes the following form,

", if t—t,>T,

8,577* =
ni 4 G (= nP), it 0<t—1,<T,

(5.2)

where 77,5]) and nt(F) correspond respectively to the limiting value for time derivative
breaking and a saturated value where waves stop breaking. Using a progressive wave

of constant form hypothesis, we write,

on  On
o5 oy = 0, (5.3)

which shows that the free surface time derivative can be related, at first order, to the

% ~ —tan®. In Kennedy et al.’s [85] work,

incipient breaking occurs when n,gl) = 0.654/g|&|, where z = & is the local vertical

mean front slope of the breaker since

coordinate of the bottom (see Figure 5.1). Hence, the latter is roughly equivalent
to a breaker slope ®; = 33°. Similarly, the saturated free surface time derivative
nt(F) = 0.15@ should correspond to a terminal angle ®; = 8.5°.

The RTFN criteria is based on the following equivalent Froude number [123, 167],

Cerest — Utrough
FT’t — et Tough

: (5.4)

Ctrough

with cerest and cyrougn being respectively the phase speed at the crest and the trough
of the considered wave, and uyougp is the flow velocity at the trough. On the base of
theoretical and experimental data, those authors have proposed the critical value for
breaking initiation Frgl) = 1.47, while it should be fixed at FrgF) = 1.15 - 1.2 for
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Figure 5.1: Definition sketch for a breaking wave and definition of related variables.

breaking termination. It is emphasized in reference [123]| that the limiting values are
not very sensitive to the type of breaking for the experimental cases investigated.

It is important to point out that no matter what breaking criterion is employed, the
threshold value for breaking initiation will be strongly dependent on the particular set
of Boussinesq-type equations used to describe wave motion. For instance, if a weakly
nonlinear model is considered, the incipient breaker angle in Schéffer et al. [133] had
to be fixed at ®; = 20°, which is a much lower value than the one used in Kennedy et

al. [85] fully nonlinear model.

5.2.2 Energetic considerations

The Boussinesq set of equations that we will use to describe wave motion is an extension
of the so-called Serre equations to uneven bathymetries [136] incorporating in addition
a Padé (2,2) dispersion correction [9]. This set of equations, which was introduced
in Chapter 2, is actually fully nonlinear in the sense that it retains all terms up to
O(0?) by considering that O(e) ~ 1 (where 0 = khy and € = a/hy are respectively
the dispersive and nonlinear parameters). By incorporating wave breaking terms, this
particular Boussinesq set of equations can be written in the following generic form,
oh 0
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ou 10u? oh 1

where h is the water depth, u is the depth-averaged horizontal velocity, Dy and Dy,
represent the extra breaking terms, 'y contains dispersive Boussinesq-type terms, and
g is the gravitational acceleration. Here variables z and ¢ denote space and time
coordinates (see Figure 5.1). Multipying now equation (5.5) by gh + su?, equation
(5.6) by hu and summing up leads to,

% Bh (gh + u2)] + % [hu (gh + %UQ):| = —% + O(0?), (5.7)
where —Ay, = p(gh+ %uQ)Dh + pu Dy, is defined as the local rate of energy dissipation
by breaking. In fact, the first term in the left-hand side of equation (5.7) corresponds
to the time variation of local energy density per unit surface and mass, while the second
term stands for the spatial gradient of energy flux in the z-direction. Thus equation
(5.7) is nothing more than the energy equation associated to the generic Boussinesq
set (5.5)-(5.6). It can be shown that if breaking terms are zero, energy is conserved
even when dispersion is considered. A similar analysis was given in reference [88] on a
linearized set of equations.

It is worth pointing out that when a Boussinesq set of equations is written in (h, u)-
variables the roller-based breaking parameterization given in [133] may contain both
extra terms, Dy, and Dy, (see for instance reference [144]). On the other hand, when
the eddy viscosity analogy [85, 184| is used only the breaking-induced momentum term,
Dy, is included.

Even though the incorporation of a breaking term in the continuity equation may
seem unphysical since the depth-averaging process produces (in the framework of poten-
tial theory) an exact expression, it was shown in Chapter 4 that additional convective
acceleration effects should be included in wave-averaged equations in order to prop-
erly compute the undertow. It is then believed that at some stage, the irrotational
assumption or the lack of a turbulence model imply a loss of information which may
be responsible for the important underprediction of mean currents that was noticed in
the previous chapter. Furtheremore, very recently Liu and Orfila [99] and Simarro et
al. [143] have shown that, at first order, laminar bottom boundary layer effects can
be represented by a convolution integral in the continuity equation of a Boussinesq
model. Even though the influence of the free surface generated turbulent mixing layer
on the underlying flow is far more complicated than the problem investigated in the
aforementioned references, it can be reasonably expected that an additional term in

the mass conservation equation may introduce first order mixing or shear layer effects.
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Alternatively, incorporating a mass diffusivity term in the continuity equation may
mathematically traduce the local mass transfer that takes place at the front face of the
breaker. Most of the energy dissipated in breaking waves comes from potential energy
loss triggered by free surface instabilities which can be easily observed in nature as the
avalanching of a foamy mixture of air and water. Since Boussinesg-type equations are
not able to represent multivariated free surfaces, this extra term is intended to mimic
the physical phenomenon described above. A theoretical explanation of an analog
situation which occurs in the framework of shallow water shock theory can be found
in reference [21].

Finally, recall from Chapter 4 that nonlinear shallow water shock theory provides a
very good estimate for wave-averaged energy dissipated from the mean flow by break-
ing. In the moving frame of reference (O, X, Z) of the propagating breaker (see Fig-
ure 5.1), the total dissipated energy can thus be evaluated as [17, 155],

/ ﬁdX ~ 19073 d?, (5.8)
shock P 4
where d = %(hc + hy) (he and h; being respectively the associated trough and crest
water depths), v = H/d (with H = h. — h; being the wave height) and ¢ is the local
celerity of the breaking wave.

5.3 Eddy viscosity analogy for wave-breaking (Kennedy
et al. [85] model)

A widely used breaking wave parameterization for Boussinesq-type equations was pro-
posed by Kennedy et al. [85]. This model has been implemented in FUNWAVE |[89],
a fully nonlinear Boussinesq model developed at the University of Delaware. Breaking
dissipation is introduced with help of an extra term in the momentum equation. Hence,
when looking at the generic Boussinesq system expressed in equations (5.5)-(5.6), extra
terms read [85],

Dy =0, (5.9)
0 ( Ohu

with the eddy viscosity coefficient given by,

v =B hom. (5.11)

160



0.1 Free surface

Figure 5.2: Definition sketch for Ting and Kirby’s [162] spilling breaking experiment Lo = 3.74
m, %‘01 = 0.156 and khy = 0.672 (computed results using forced parameters in Kennedy et al. [85]
breaking model). Vertical lines correspond to locations of wave gauges in meters.

Here, 0y is the time derivative of the free surface, d, is a mixing length coefficient, and
B is a parameter conceived to activate breaking terms avoiding an impulsive behaviour.

It is written as,

1a if 8t77 > 2 (915’]’]*
B={ g —1, if 9" < dm <20m" (5.12)
0, it 9m < o

where the threshold value for breaking initiation, d;n*, is given by relation (5.2), and
the transitional time scale was fixed at T, = 54/|¢|/g in reference [85].

We have implemented this model in the finite volume scheme used to integrate the
fully nonlinear and weakly dispersive Boussinesq set given in Chapter 2. The numerical
implementation is straightforward since breaking terms are essentially conservative. We
evaluate model performances with regular wave measurements available in references
[162, 163] where two type of breaking were studied, namely a spilling and a plunging
case. We will focus on reported results for spilling breakers, where cnoidal waves with
incident height Hy = 0.127 m and period T' = 2.0 seconds propagate towards a planar
beach of slope 1:35. The still water level was fixed at Ay = 0.4 m in the horizontal part
of the flume. Phase-averaged time series of free surface elevation are available at 21
locations, before and after breaking. This data set thus provides enough information
to test Boussinesq wave propagation models and breaking parameterizations. A sketch

of the spatial configuration of the bottom bathymetry and the location of several wave
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Figure 5.3: Numerical performance of Kennedy et al. [85] model implemented in the extended
system of Serre equations for Ting and Kirby’s [162] experiment. a) (A) : measured crest level 7, —7;
(o) : measured wave-averaged free surface 77; (V) : measured trough level 1, — 7. Computed properties
are plotted in plain lines. b) Temporal evolution of the water volume contained in the numerical
domain.

gauges is presented in Figure 5.2. Further details on the experimental set-up can be
found in papers from Ting and Kirby [162, 163].

In this example, the default value for breaking initiation, 5/ = 0.65@ had
to be lowered to n! = 0.524/¢g|¢] in order to correctly predict the breaking point.
In a recent contribution, Lynett [106] was also forced to change some default values
when implementing Kennedy et al. [85] parameterization in a two layer fully nonlinear
Boussinesq model. Indeed he fixed the initiation threshold at ! = 0.5\/gh where,
instead of writing the model in terms of the still water depth, he used the total water
depth, h. This value is in close agreement with the one we obtained with help of
numerical experiments. Moreover, Lynett [106] also reported a comparative analysis
for several different breaking criterions and found that a value |%\ = 0.6 = 0.02 for
the front slope provides good agreement for the location of the breaking point. This
value corresponds to ®, = 31° £+ 1.1° and is close to the critical slope of ®, = 30° we
used in reference [38] (reprinted in Appendix E). It is then believed that Kennedy et
al. [85] had to fix the breaking initiation criteria at such a high value because Wei
et al.’s [178] Boussinesq set produced a systematic overshoaling due to an incorrect
amplification of higher bounded harmonics. This problem is also present in a one layer

Boussinesq model as discussed by Lynett [106]. Regarding nonlinear properties, the
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extended system of Serre equations presented in Chapter 2 is thus presumably closer
to the two layer model proposed in reference [105] than to the fully nonlinear model
implemented in FUNWAVE. We will come back to this question later in this chapter.

In Figure 5.3-a) we show a comparison between computed and measured wave-
averaged free surface location, crest and trough levels using default parameter values
for Kennedy et al. [85] model except for the value for breaking initiation as discussed
before. Additionally, in Figure 5.3-b) the temporal evolution of the water volume
contained in the computational domain is depicted. Computations are performed using
as left boundary condition, measured wave-averaged time series of free surface elevation
at the first wave gauge located at a distance of 14.8 m from the still shoreline. At right
boundary, a moving shoreline condition is applied. It can be seen that a steady state
equilibrium is reached after almost 60 seconds, i.e. 30 wave periods. This also confirms
that the open sea boundary condition is performing correctly by evacuating reflected
waves since no longer wave oscillation or sloshing occurs in the numerical wave tank.
On the other hand, it is important to point out from Figure 5.3-a) that Ting and
Kirby’s [162] set-up starts very early, indeed well before the location of the breaking
point. Of course, this result cannot be reproduced by the model and might be due to
some local disturbance influencing the transition zone in the physical wave flume or to
experimental errors.

The performance of the Boussinesq model in the shoaling region is very good, and
only a small amplitude underestimation is noticed near the breaking point at z ~ 8.0
m. The latter is in agreement with results previously reported in Chapter 3 where
nonlinear performances were tested against experimental solitary waves shoaling on a
beach. Indeed, the relative error in wave height prediction at the breaking point is less
than 9 % in the present computation (see also Figure 5.4). It is worth pointing out
that, whereas Wei et al. [178] Boussinesq model overshoals, the extended Serre model
slightly undershoals in the vicinity of the breaking point.

Computed and measured time series of free surface elevations are plotted in Fig-
ure 5.4 at two locations before breaking and four locations in the surf zone (see Fig-
ure 5.2 for gauge placements). It is important to point out that the available temporal
free surface elevation corresponds to phase-averaged values over several wave periods
and unfortunately those records are not synchronized. This means that in the present
application we are only able to investigate model performance in terms of predicted
wave profiles but not in terms of phase speed accuracy.

Figure 5.4 shows an excellent agreement between computed and measured time
series in the shoaling region but important discrepancies arise inside the surf zone.

Kennedy et al.’s [85] breaking wave parameterization over estimates wave height in the
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Figure 5.4: Computed and measured phase-averaged time series of free surface elevation for Ting
and Kirby’s [162] experiment at several wave gauges using Kennedy et al. [85] parameterization. (—)
: measured ; (——) computed.

inner surf zone as previously noted by those authors (see also Figure 5.3). Free surface
elevation time series reported in Figure 5.4 show in addition that whereas wave height
is heavily over predicted in the inner surf zone, left-right wave asymmetry is reasonably
reproduced and wave’s front slope is preserved except perhaps in the transition zone.

For this particular experiment, free surface elevation time series are available at 21
locations, it is thus possible to objectively compute an error index for predicted wave
profiles over the whole domain. Following Kennedy et al. [85] we introduce left-right

asymmetry as,

As = &’;3’_(’7—@‘2@2 (5.13)
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Figure 5.5: Comparison between measured (e) and computed (—) wave properties for Ting and
Kirby’s [162] experiment using Kennedy et al. [85] parameterization. a) Wave height, b) Wave
asymmetry, and ¢) Wave skewness.

where (-) is the mean operator and H is the Hilbert transform. Similarly, crest-trough

asymmetry or wave skewness is defined as,

=\3

Sk = % (5.14)

Computed and measured wave properties, as estimated from free surface time series,
are reported in Figure 5.5. It is noticed that asymmetry decreases steadily from the
shoaling region to the surf zone where a characteristic saw-tooth wave profile is ob-
tained. In the surf zone, the numerical model gives an adequate asymmetry gradient
but absolute values appear to be vertically shifted. This difference may be mostly at-
tributed to the overestimation of wave height since the front slope of computed waves

is reasonably reproduced (see Figure 5.4).
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Figure 5.6: Numerical performance of Kennedy et al. [85] model with modified parameters for Ting
and Kirby’s [162] experiment. Same caption as Figure 5.2.

In Figure 5.5, computed skewness is also compared against the measured one. It
is clear from this plot that predicted wave skewness diverges from the one estimated
experimentally in the surf zone. Indeed, this property is closely related to wave height
and observed errors can be explained by the important overestimation of wave height
produced by the model. In this example, the RMS errors in wave height, asymmetry
and skewness are respectively 17 %, 40 % and 38 %. The average numerical error can
be estimated as the arithmetic mean of the these three quantities, which gives 32 % in
this case.

Very recently, Lynett [106] was able to improve wave height estimations using
Kennedy et al. [85] breaking model by changing the default values for some parameters.
In particular, he fixed the mixing length coefficient at d, = 10 instead of J, = 1.2 as
recommended in the original formulation. In our case, it was not possible to reach such
a high value for that parameter because important spurious oscillations were triggered
behind breaking waves causing numerical instability. Nevertheless, we could perform
a new computation using d, = 5.5 and results are reported in Figures 5.6, 5.7 and 5.8.
In Figure 5.6 it is seen that the overall agreement between computed and measured
wave height is improved, having now an RMS error of roughly 9 %. However, forcing
the breaking model with this high §, value results in a total loss of wave left-right
asymmetry as shown in wave profiles presented in Figure 5.7. This result suggests that
the equivalent force that we need to apply on the front face of the breaker in order to

introduce the correct energy dissipation rate might be unrealistically strong.
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Figure 5.7: Computed and measured phase-averaged time series of free surface elevation for Ting and
Kirby’s [162] experiment at several wave gauges using modified Kennedy et al. [85] parameterization.
(=) : measured ; (——) computed.

Even though, Lynett [106] did not show any comparison for free surface elevation
time series, there is some evidence indicating that he could not reach the typical saw-
tooth wave profile in the inner surf zone and horizontal asymmetry was equally lost
in his case. The spatial free surface snapshot that he did show clearly indicates that
wave shape in the inner surf zone is not of asymmetric type. Indeed his plot is very
similar to the one we present in Figure 5.2, which was obtained using modified model
parameters. Obviously, this is an important drawback of Kennedy et al. [85] breaking
parameterization since Boussinesg-type models are conceived to provide time domain
information and the extra associated CPU effort will be only justified if additional
information is made available when compared to wave-averaged models. Moreover,
wave shape properties, and in particular horizontal asymmetry, play an important role
in nearshore sediment transport processes as demonstrated by Drake and Calantoni

[62] and Hsu and Hanes [79]. A comparison between numerical and experimental time
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Figure 5.8: Comparison between measured (e) and computed (—) wave properties for Ting and
Kirby’s [162] experiment using modified Kennedy et al. [85] parameterization. a) Wave height, b)
Wave asymmetry, and c) Wave skewness.

domain wave properties is presented in Figure 5.8 where it can be seen that predicted
wave height and skewness could be improved by changing the value for the mixing
length coefficient but that asymmetry is much worser than in the previous computation.
Estimated RMS errors for wave asymmetry and skewness in this case are respectively
64 % and 17 % while the average error for H, As and Sk is found to be 30 %, hence

not very different from the one obtained using default parameter values.

The implementation of Kennedy et al. [85] breaking parameterization in our finite
volume Boussinesq model has confirmed that wave height is heavily overestimated in
the inner surf zone when using default parameter values. However, forcing model pa-
rameters in order to fit computed wave heights with measured ones results in a total

loss of left-right wave asymmetry. Unfortunately, the latter would make Boussinesq
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phase-resolving approaches useless for surf zone applications. It is worth emphasizing
that asymmetry is a key property for a successful sediment transport prediction, spe-
cially for breaking and nearly breaking waves. Indeed, it appears that onshore sandbar
migration, which usually occurs under mild wave conditions, might be adequately pre-
dicted only if fluid acceleration effects produced by wave asymmetry are taken into
account in sediment transport modules [78, 151].

From these particular numerical examples, it is then concluded that it is not possible
for Kennedy et al. [85] breaking model to simultaneously provide reliable predictions
on wave height and skewness, and on the other hand, horizontal asymmetry. Therefore,
an alternative way to introduce breaking-induced effects is required if phase-resolving
sediment transport modules are to be coupled with Boussinesq-type equations in the

framework of beach morphodynamics.

5.4 A new approach for time-domain breaking

In the present section we develop a new wave-breaking model for Boussinesq-type
equations using wave-averaged information previously investigated in Chapter 4. In
particular, shallow water shock theory and the roller concept will provide the theoretical

background for developing a novel breaking approach.

5.4.1 Functional form of breaking terms and scaling arguments

Some scaling information for wave-breaking terms can be obtained if we use the long
wave approximation and the assumption of a gently slopping beach. These simplifi-
cations will allow us to use some important results presented in the previous chapter
valid for quasi-steady breakers or bores.

Invoking shallow water shock theory a useful relation was found for the overall en-
ergy dissipated accross the shock in surf zone waves. This expression was written in the
moving frame of reference (O, X, Z) of the propagating bore of Figure 5.1 in equation
(5.8). Whereas in shock theory, the dissipation is concentrated on the discontinuity
(i.e. over an infinitesimal horizontal distance), for real surf zone waves dissipation takes
place over a finite distance, /,. Hence, numerical solutions obtained using shock cap-
turing numerical solvers have an important dependence on the spatial grid resolution,
Az, because the discrete length of the discontinuity is governed by that parameter.
Consequently, in the limit Az — 0, [, must tend to zero as well. Nevertheless, real
breakers never show vertical fronts so Az must be tuned in order to correctly reproduce

wave asymmetry.
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Even though some important and useful results concerning the application of shock
capturing methods to breaking waves in the inner surf zone have been reported (e.g.
[91, 174]), successful application of these methods implicitly requires some information
on the finite length /.. Owing to this unpractical dependence on the grid resolution,
we prefer to follow a different approach which incorporates an explicit estimation for
this horizontal distance.

Combining the energy equation (5.7) with the theoretical result given by expression
(5.8) we obtain, in the moving frame of reference, the following integral scaling relation
for breaking terms,

br 1 1
—/ [(gh+ 5(U+c)2)Dh+ (U +¢) Dpy| dX ~ ch*y?’d2, (5.15)
0

where [, represents now the horizontal distance over which extra terms are applied and
U = u—cis the depth-averaged velocity in the moving frame of reference. In the rest of
this section we will assume that breaking terms are of diffusive type following the model
proposed by Zelt [184] but incorporating an extra term in the continuity equation. As
discussed before, this extra contribution can be related to the underlying flow cross-
sectional area reduction associated to the presence of a breaking roller, or alternatively

to a local mass transfer that may take place at the front face of the breaker.

Breaking terms are thus written in the frame of reference of the propagating wave

as,
d dh
Dh = d—X (Vhd—X> y (516)
D = -2 (oL [h(U + )] (5.17)
hu — dx hudX ’ :

where v, and vy, are diffusivity functions that need to be defined. Therefore, in
order to integrate equation (5.15) some additional information must be provided. We

specifically need an estimate for [, and the local functional forms for v, and vy,.

Since energy dissipation can be related to shearing stresses acting on the lower edge
of the roller region as shown in Chapter 4, we take [, to be the roller length. On the
other hand, experimental results on hydraulic jumps with Froude numbers close to
those encountered in inner surf zone waves reported by Svendsen et al. [157] indicate
that a similar spatial distribution for the local roller thickness and shear stresses at
the lower edge of the roller presumably exist. We will assume then that the spatial

distribution of mass and momentum diffusivity coefficients should follow the same kind
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of relation which is expressed as [172],

X X X ?
vp(X) = —Kpexp (l__l) [(l——l)+<l——1> ], for 0<X <., (5.18)

X X X 2

where Kj and K}, are slowly varying functions that will be scaled using the integral
form of energy equation (5.15). Previous relations provide a local spatial distribution
for diffusivity coefficients and it is important to note that this functional form ensures
overall mass and momentum conservation for breaking terms because v, = v, = 0 at
outer bounds of the region where extra terms are applied.

Similarly, roller length can be estimated from Cointe and Tulin’s theory of steady
breakers [40] but with the associated empirical parameter, 3, adjusted using shallow
water experiments in Chapter 4. It is useful to recast expression (4.30) in the following

form,
e _ L tan® B3?

d d  2(1-p?)

where the new value 8 = 0.796 has been used. Finally, in order to be able to integrate

(1—7)=~0.865(1—"), (5.20)

the left hand side of equation (5.15), we use the long wave approximation which states
that,
(U+c)h=c(h—d), (5.21)

and assume a simple linear form for the average wave’s front position where breaking

terms are applied, i.e. (see Figure 5.1),

X
h = (1+7/2—Etan<1>> d, for 0<X <. (5.22)

Hence, the final scaling provided by energy equation (5.15) introduces two parameters
which define local characteristics of surf zone waves, namely the breaker index, 7, and
the mean breaker slope, ®.

Exact integration of equation (5.15) using relations (5.16)-(5.22) is possible but it
results in a very long expression. Since our goal here is to establish scaling laws for
coefficients K and Kjp,, numerical integration is used to find the order of magnitude
of the different terms which are weakly dependent on ~. In consequence, we obtain,
67‘
d

where oy, and ay,, are constants of the order 1/10 in the inner surf zone where v ~ 0.5
(see Table 5.1).

1
(nKp + apuKpy) ¢ ( ) tan ® ~ 19 ey d?, (5.23)
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0 0.5 0.6 0.7 0.8
ap 0.098 0.109 0.115 0.118
Qp, 0111 0.089 0.074 0.062

Table 5.1: Numerical evaluation of coefficients o, and ay,, for typical surf zone values of the breaker
index 7.

At this stage, it is worth pointing out that if K;, = 0 the breaking model will be
close to the one developed by Zelt [184| and Kennedy et al. [85] but with several differ-
ences concerning the magnitude and the spatial location of the so-called eddy viscosity
function. In the previous section we confirmed that this breaking model overestimates
wave heights in the inner surf zone (see also [85]) and demonstrated that forcing default
parameter values in order to improve this behaviour was very disappointing since hori-
zontal wave asymmetry was completely lost. Moreover, serious stability problems arose
when increasing the numerical value of the mixing length coefficient. Those limitations
are probably due to the location/length over which the breaking term is applied and
constitute the main motivation for developing an alternative approach. Indeed, the
important result concerning the application of Cointe and Tulin’s [40] ideas to shallow
water breakers presented in Chapter 4 introduces an additional degree of freedom in
our breaking formulation since the extent and location where extra terms are applied
may be explicitly controlled. Similarly, the extra contribution in continuity equation
may have a positive impact in terms of numerical stability and mean return current
prediction.

In order to obtain information on K} and Kj, from equation (5.23), we need an
additional equation/assumption to close the system. Recall from Chapter 4 that an
extra roller contribution was required in the continuity equation in order to adequately
predict mean return current. Therefore, it is reasonably to postulate that an analogous
term would be needed in Boussinesq equations as well since nonlinear shallow water
theories do not provide the correct mass flux above the trough level. Therefore, in
the present context we may write the continuity equation for a quasi-steady breaker

propagating over a flat bottom as,
d
_ = .24

where e is the vertical distance related to the local thickness of the roller region whose
lower bound corresponds to an imaginary dividing streamline (see Figure 5.1). By
direct comparison of the latter and the continuity equation (5.5) written in the moving

frame of reference as well, the mass diffusivity coefficient in breaking term Dj, can be
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linked to the roller thickness as follows,

w==(x) () et=() s (529

The mass diffusivity term is conceived to produce a contraction in the free stream trans-

verse section where the underlying mean flow evolves. Consequently, a local convective
flow acceleration should take place below the breaker in agreement with macroscopical
effects of turbulent mixing layers discussed in Chapter 4.

The local roller thickness was estimated in the previous chapter using the same
functional form than diffusivity coefficients (5.18)-(5.19). Thus, it is straightforward
to show using relations (4.20) and (5.25) that,

AN ey !
Ky =0ncd with 5h~(@) (e—) . (5.26)

Using now the roller model as given in Chapter 4 and discarding second order terms,

the scaling for the roller cross-sectional area reads,

A 3
d?  4tan®’

(5.27)

Therefore, invoking in addition relations (5.20) and (5.22) the order of magnitude for
the mass diffusivity coefficient (5.26) appears to be,

,Y3
(1—7)

Furthermore, using the energy equation (5.23) assuming that oy, = ap, ~ 1/10, as it

S ~

tan ' ®. (5.28)

is roughly the case in the inner surf zone (see Table 5.1), and taking ¢ ~ +/gd, it is
possible to obtain the following estimate for the order of Kj,,

,.Y3
(1-7)

showing that both breaking terms are of the same order. Numerical coefficients which

K}m = 5hu Cd, with 5hu ~ tan_l @, (529)

follows from the integral equation (5.23) indicate that the momentum-induced con-
tribution should be bigger than the mass-induced one. Nevertheless, since we do
not have a precise knowledge of their relative weight we prefer to introduce a new
parameter Kk = 0p/0ny- Consequently, using again the energy equation (5.23) with
ap, = Qpy ~ 1/10 and relation (5.20) yields,

,.Y3

Khu = 5hu cd with 5hu ~ m

(14 k) 'tan ' ®. (5.30)
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The following relations will be used in numerical applications performed next to
compute each diffusivity function,

?
(1=7)
K}, = Kk dpy cd, (5.32)

Kpy = 6pucd, with 6py =

(1+k) "tan™"' @, (5.31)

where a4 is a parameter of order one, and 0 < xk < 1.0. Recall that the local spatial
distribution of diffusivity functions is computed using (5.18)-(5.19) where the horizontal
distance I, = e, tan ' ® will be estimated using relation (5.20).

Before going any further, it is worth noting that the scaling analysis we have per-
formed highlights the physical meaning of the different model parameters. This is not
a trivial task owing to the intrinsic difficulty of breaking phenomena and is why very
often ad-hoc breaking formulations cannot be easily related to physical quantities. The
roller analogy used by Schéffer et al. [133] is an exception to this rule since model pa-
rameters do have a straightforward interpretation. On the contrary, the mixing length
model developed by Kennedy et al. [85] does not stem from clear physical backgrounds
and consequently no scaling information is available for parameter values. Our break-
ing model lies somewhere in between the roller concept and the eddy viscosity analogy
and some scaling knowledge could be obtained invoking theoretical and empirical find-
ings on quasi-steady breakers. However, it is important to emphasize that all this
information would be valid, at best, in the inner surf zone where breaking waves may

be thought to be in quasi-equilibrium.

5.4.2 Parameter calibration

The new formulation for wave breaking depends on two main parameters related to
macroscopic geometrical properties of surf zone waves, namely the breaker index v and
the mean breaker slope ®. Nevertheless, we do not have a clear knowledge of how these
quantities may evolve inside the surf zone. In addition neither the relative weight of
continuity and momentum breaking terms, nor the numerical value for the order-one
parameter o, can be accurately determined beforehand. Indeed, all the available scaling
information was derived assuming a quasi-steady equilibrium and consequently, if valid,
it may be only applicable in the inner surf zone. Owing to those multiple limitations,
the calibration process must be tackled with pragmatism in order to keep the model
as simple as possible.

In the following subsections we introduce the heuristical procedure that will allow

us to determine optimal values for model parameters. Similarly, some aspects related
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to its practical implementation will be highlighted. There are two main parameters to
fix, the breaker slope ® and the breaker index 7, but two additional coefficients (a, and
k) must be calibrated using experimental data. Our main goal is to improve the time
domain representation of free surface elevations in the surf zone, in particular wave
height, asymmetry and skewness estimations. Again, we will use Ting and Kirby [162]
spilling breaking experiment to obtain parameter values which minimize the average
error for H, As, and Sk. However, mean water level measurements in Ting and Kirby’s
experiment appear to be inaccurate since it was noticed in Figure 5.3 that set-up begins
well before breaking. Unfortunately, numerical experiments have shown that model
prediction of set-up is sensitive to kK = 6 /dpy, i.€. the relative weight of both breaking
terms. Hence, an additional experimental data set is considered in order to investigate
the influence of this parameter. A similar spilling breaking test reported by Hansen
and Svendsen [77] is chosen for this purpose.

The heuristical calibration process is carried out using a grid size Az = L/100
and a Courant number C, = \/ghy At/Ax = 1.0, where hy is the still water depth in
the horizontal part of flumes where experiments are conducted, Ly is the wave-length
of incoming waves, Ax and At are respectively spatial and temporal grid resolutions.
In addition, the correction dispersion parameter is fixed at & = 1/15 thus producing a
Padé (2,2) approximation for the Stokes dispersion relation.

Adopted breaking criteria

Concerning the breaking criteria, the different approaches enumerated in Section 5.2.1
were implemented in the finite volume model and their breaking point predictions
analyzed. Details on this comparative study are not reported here but general conclu-
sions were similar to those given by Lynett [106] since a criterion based on the mean
wave’s front slope appeared to be the least sensitive when considering spilling breaking.
Hence, our numerical implementation of the breaking model utilizes this criteria to de-
cide when extra terms should be activated. In the moving frame of reference associated
to each individual wave, threshold breaking initiation and cessation reads,

d
Breaking starts if ‘d—;‘ > tan @y,
Breaking stops if | | < tan®
reaking stops i — an

where @, is the limiting breaker angle, and ®; is the saturated value for this parameter.
The front face slope is estimated from computed spatial derivatives of water depth and

bottom bathymetry, where the maximum local value of \;—;H over the spatial extent of
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the front face is considered as reference for each breaker.

Obviously, since the breaking parameterization is applied on a wave-by-wave basis, a
numerical algorithm must be developed in order to follow each wave crest. Furthermore,
breaking terms are applied on the front face over an extent [, starting at the wave
crest (see Figure 5.1). Diffusivity coefficients are spatially reconstructed using local
functional forms (5.18)-(5.19). Similarly, a transition zone may be included in the
model and consequently the breaking inception time should be stored. Analogous
approaches have been used in Schéffer et al. [133] and Kennedy et al. [85] breaking
models.

Relative weight of breaking terms

Hansen and Svendsen’s Test Case No. 051041 is used to investigate sensitivity of
predicted set-up when changing the numerical value of k. We are not interested yet on
phase-resolved features so we focus on wave-averaged properties. Wave conditions for
this test case are similar to Ting and Kirby’s spilling breaking experiment. It consisted
on second order Stokes waves with Hy ~ 0.036 m and 7" = 2.0 s generated off-shore
by a piston wave-maker where the still water depth was fixed at hy = 0.36 m. Regular
waves shoaled and breaked as they propagated up a planar beach of slope 1:34.26. We
perform preliminary computations for this case focusing on the influence that numerical
values of k = 0p,/dp, may have on the numerical estimation of integral wave properties.
Therefore, remaining parameters are chosen in order to fit at best the breaking point
location and wave height predictions in the surf zone.

Numerical computations are conducted using three different diffusivity ratios, name-
ly Kk = 0.0, Kk = 0.25 and k¥ = 1.0, where remaining parameters are frozen at fixed
values. Comparisons between numerical predictions of wave heights, set-up levels and
wave-averaged velocities are presented in Figure 5.9. It is seen that whereas changing
the value of k has almost no influence in set-up level in the transition zone just after
breaking, it is not so in the inner surf zone. Indeed, increasing the relative weight of
the mass diffusivity breaking term lowers the mean water level in the inner surf zone.
It is important to emphasize that wave height estimates are not significantly affected
by changes in k and that mass loss in the computational domain was negligible in
all numerical tests. This means that the breaking term in the continuity equation is
not introducing nor removing mass. Noticeable variations in set-up level may be thus
explained by the relatively low contribution of the momentum-induced breaking term
since surf zone mean water level is primarly induced by radiation stresses associated
to wave-driven effects (see for instance Mei [115] pp. 453-463).
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Figure 5.9: Sensibility of model results for Hansen and Svendsen [77] Test Case No. 051041 when
changing the ratio K = Kp/Kp,. (o) Experimental data and numerical computation using : (—)
k=0.0,(—) kK =0.25, and (— - —) k = 1.0. a) Wave height, b) Set-up level, ¢) Wave-average of
depth averaged velocity.

In Figure 5.9-c) time averages of depth-averaged velocity u are plotted. In agree-
ment with theoretical arguments developed before, the mass diffusivity term somehow
increases the magnitude of the velocity under the breaker and shifts the location of
its maximum shorewards. The effect on mean velocities is similar to the one produced
by the roller in wave-averaged models studied in Chapter 4. However, in the present
example computed velocities are not strictly equivalent to a mean return current since
we have not performed an integration of Boussinesq velocity profiles below the trough
level. Nevertheless, it is believed that some beneficial roller contributions are implic-
itly included in our breaking parameterization but this should be investigated in more

detail in the future.

From this particular test we conclude that the additional breaking term incorpo-

rated in the continuity equation may be useful to improve undertow computations in
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Boussinesg-type equations. Nevertheless, this term must be treated with caution be-
cause it has a non-negligible influence on set-up estimates in the inner surf zone. In
addition it is worth pointing out that whereas increasing the ratio x has an important
effect on velocity estimates in the transition zone, it is not the case in the inner surf
zone. Hence, it seems that a good compromise between computed set-up and mean
currents would require the use of variable values for x, being higher near the breaking
point and tending to zero in the inner surf zone. Results reported in Figure 5.9 also

indicate that the numerical value of k should never exceed 0.25 in the inner surf zone.

Parameter calibration using Ting and Kirby’s [162] laboratory surf zone

Our breaking-wave model requires the prescription of ®, v, x and the order-one pa-
rameter «p. The horizontal extent over which extra terms are applied is related to
the wave’s front slope and to the breaker index since [./d = 0.865(1 — v) tan™' ®. In
addition, wave celerity will be computed as ¢ = /gd using the arithmetic mean be-
tween crest and trough local depths as a definition for the mean water depth, d (see
Figure 5.1).

An important property of the new breaking formulation concerns the possibility to
explicitly define the length of the segment where diffusivity terms producing a local
mass transfer and a momentum deficit are applied. The latter can be achieved using
physical arguments developed by Cointe and Tulin [40] in the framework of deep water
breaking but verified for shallow water breakers in Chapter 4. Numerical experiments
have shown that the horizontal asymmetry of predicted surf zone waves is strongly
dependent on /.. It was noticed that a combination of too large values for this distance
and high magnitudes of eddy viscosity coefficients may produce important inaccuracies
in left-right asymmetry estimates as it was the case for Kennedy et al. [85] breaking
parameterization (see Figure 5.7). Conversely, [, has a lower bound given by the
grid size resolution Az and the minimum possible value for this distance is taken to be
[, = 2 Az in the model. Therefore, a compromise between a good representation of wave
asymmetry and practical aspects of numerical computations should be determined.

On the other hand, the relative weight of mass and momentum diffusivity terms
must be chosen carefully since it appears that set-up level is heavily lowered for x-
values greater than 0.25. However, the extra term added to the continuity equation
does improve the numerical stability of the scheme and presumably, mean current
estimates as well. Moreover, focusing all dissipation on a unique force-like term in
the momentum equation does not allow for a correct simultaneous description of wave

heights and horizontal wave asymmetries in surf zone waves as it was demonstrated
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for the eddy viscosity model of Kennedy et al. [85]. Therefore, incorporating a mass
diffusivity term intended to reproduce some mixing layer effects appears to be justified,
not only on a physical basis but also from a strictly numerical point of view.
Calibration of the different model parameters is not an easy task owing to the
great number of degrees of freedom and possible combinations for physical ranges
of parameter values. Empirical evidence indicates that the breaker index should be
bounded by 0.4 < v < 0.8 over most of the surf zone according to reference [3] but
may reach higher values in the swash zone (e.g. [129, 138]). In the particular case of
Ting and Kirby [162] spilling breaking experiment, v = H/d ranged from 0.8 near the
breaking point, down to a rather constant value of 0.5 in the inner surf zone. Similarly,
the mean front slope of the breaker, ®, should evolve from a high limiting value near
the breaking point to a lower one as the breaker reach a quasi-equilibrium state in the
inner surf zone |72, 133]. Unfortunately, there is no clear knowledge of what kind of
temporal evolution function those quantities should follow. Therefore, in order to keep
the breaking model at a reasonable level of complexity we will assume constant values
for coefficients d, and parameter k over the entire surf zone, allowing the ratio I./d
to vary. We adopt for this purpose the same functional form proposed by Schéffer et
al. [133] which reads in this particular case as (with the index notation introduced in

equation (5.1)),

i (5) (6) - (9) o [5] e

where the transitional time scale will be estimated using the expression proposed by

Kennedy et al. [85] because it allows for the application of the model in random wave

propagation problems. It is written as follows,

Ty = ky \/ga (5.34)

where ky is a constant value. It is worth emphasizing that this kind of temporal
evolution function is adopted in order to produce a transition zone. This choice is rather
arbitrary and other possibilities can be imagined. For instance, in reference [38] we used
instead a temporal variation of the breaker’s front slope producing an equivalent overall
effect (see Appendix E). However, since no reliable information is really available in
that region, the latter is introduced more from practical considerations than physically
sounded arguments. Similarly, we need to prescribe two limiting breakers angles, ®,
and ®;, which respectively serve as threshold references to start and stop breaking.
Remaining parameters will be calibrated in order to minimize the average error in

predicted wave properties.
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A large number of numerical experiments were conducted in order to determine the

optimal parameter set but we only report here the main conclusions that can be drawn

from this heuristical process :

1.

Incorporating a breaking term in continuity equation is beneficial to avoid non-
physical noise generation but using a ratio Kk = J5,/0p, greater than 0.25 may

significantly affect set-up estimation in the inner surf zone.

Two sets of optimal parameters were identified producing rather similar results
in terms of wave height and skewness but showing some differences in terms of
asymmetries. The first one corresponded to l,./d ~ 2 — 3 and dp,, ~ 4 — 5, while
the second one, which gave better asymmetry estimates, utilizes [, /d ~ 1 and
Opy ~ 12 — 20.

A combination of larger [,./d values with a strong magnitude for diffusivity coef-

ficients produces small spurious oscillations behind breakers.

A transitional region must be considered from the breaking point to the location
where the bore is fully developed in order to successfully capture surf zone wave

height evolution.

The limiting front slope for breaking initiation must be fixed such that &, ~
30° — 32° for spilling breakers or even reach 35° — 36° for strong plunging events.

. The threshold value for breaking termination has no influence for regular wave

propagation on beaches of constant slope as long as it is fixed at a value ®; < 10°.

The application of the 8th order compact implicit filter given in Chapter 3 with
oy = 0.4 improves the numerical performance of the scheme without significantly
removing energy from the system (see Chapter 3). In the following applications

the filter is used once per time step.

Results obtained with the first set of optimal parameters, namely [,/d ~ 2 — 3,

Opu ~ 4—5 and k = 0.25 were reported in reference [38] and can be found in Appendix

E. In this work diffusivity coefficient, d,, breaker index, v and the ratio x were frozen at

fixed values, while an evolving angle ® was assumed in order to reproduce a transitional

regime. It was shown in reference [38] that optimal model parameters could be related

to realistic properties of surf zone waves thus giving some confidence to the scaling

analysis presented before. However, whereas wave height and skewness were correctly

predicted, computed wave profiles for surf zone waves produced crests with a larger
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Free surface

Figure 5.10: Definition sketch for Ting and Kirby’s [162] spilling breaking experiment, Ly = 3.74
m, ‘,’L—g = 0.156 and kho = 0.672. (computed results using the proposed breaking model). Vertical lines

correspond to locations of wave gauges in meters.

width than measured ones. Hence, errors in horizontal wave asymmetry could not been
properly reduced but the breaker’s front slope was at least preserved.

On the other hand, concentrating breaking terms having much higher magnitudes
on a smaller horizontal distance near the top of the breaker results in better agreement
with measured surface elevation profiles. A good compromise between the numerical
performance of the scheme and predicted properties of surf zone waves in the case
of Ting and Kirby [162] spilling breaking is achieved fixing x ~ 0.15 — 0.20. Simi-
larly, an adequate description of wave height, skewness and horizontal asymmetry is
obtained using a constant value dp, ~ 13 — 15 for momentum diffusivity coefficient,
and consequently &, ~ 2 — 3. The transitional time scale parameter is taken to be
ki ~ 4 — 6 and the horizontal length over which breaking terms are applied is com-
puted using (%’“)Z ~ (.7 at the breaking point, and (%’)t ~ 1.2 in the inner surf zone.
Finally, threshold values for breaking inception and cessation are fixed at &, = 31° and
®; = 6.5° respectively.

It is important to note that the energy equation (5.23) implies in the inner surf

zone,

,Y3

(1-7)

with «, ~ 3.0, while relation (5.20) also reads,

(1+k) 'tan ' @,

5hu >~ Oy

Ly
- ~0.865 (1 —~)tan™" ®.

Therefore, optimal values for diffusivity coefficients and (%’“) , result from choosing a
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Figure 5.11: Numerical predictions for Ting and Kirby’s [162] experiment using the proposed break-
ing model. a) (A) : measured crest level 7. — 77; () : measured wave-averaged free surface 7; (V) :
measured trough level 7, — 7. Computed properties are plotted in plain lines. b) Temporal evolution
of the water volume contained in the numerical domain.

front slope angle ® ~ 11° and a breaker index v ~ 0.7 thus ranging beyond observed
quantities for these properties. It is also worth saying that numerical results were not
very sensitive to small changes in parameter values as long as they were kept in the
limits indicated above. However, in reference [38], similar predicted wave properties
were obtained using in the inner surf zone a breaker slope of ®, = 6.5° and a breaker

index v = 0.65 which produce larger I, /d and smaller local diffusivity intensities.

In the following, we will use dp, = 14.8, k = 0.16, (%)Z = 0.7, (%)t = 1.2 and
ki = 5.0. A spatial snapshot of computed free surface elevation is plotted in Figure 5.10
where it is clearly seen that the typical inner surf zone saw-tooth shape is well recovered
(see also Figure 5.2 for comparison with results obtained using Kennedy et al. [85]
breaking model). Wave-averaged properties produced by the model are reported in
Figure 5.11 and the agreement between measured and computed crest and trough
levels is almost perfect. Moreover, results concerning free surface profiles at different
sections are depicted in Figure 5.12 and compared to results presented in the previous
section, the achieved improvement is conclusive. Indeed, RMS error on wave height
predictions over the whole domain is nearly 6 %, 26 % for horizontal asymmetries
and roughly 10 % for the skewness coefficient. Hence, the average RMSE over these
three important quantities appears to be of roughly 14 %. Comparisons between these

measured and computed properties are reported in Figure 5.13. It is noticed that
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Figure 5.12: Computed and measured phase-averaged time series of free surface elevation for Ting
and Kirby’s [162] experiment at several wave gauges using the proposed breaking model. (—) : mea-
sured ; (——) computed.

most of the modelling errors take place in the vicinity of the breaking point. This is
more evident for the wave asymmetry coefficient since there are noticeable differences
between computed and measured asymmetries in the transition zone. Nevertheless, the
error is reduced in the inner surf zone thus proving that the proposed breaking model

allows for a correct representation of wave height and asymmetry in this region.

In order to test model sensitivity to grid resolution, we perform an additional com-
putation using Az = 0.05 m which corresponds to 75 nodal points per incident wave
length, i.e. a grid size 25 % coarser than the one used for calibration. Results are
presented in Figure 5.14 where it is seen that predicted wave properties are almost

unchaged compared to the ones estimated using a finer grid resolution. We recall that
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Figure 5.13: Comparison between measured (e) and computed (—) wave properties for Ting and
Kirby’s [162] experiment using the proposed breaking model. a) Wave height, b) Wave asymmetry,

and ¢) Wave skewness.

using relation (5.20) to define the extent where breaking terms are applied makes the
parameterization independent from the grid size. On the contrary and as previously
pointed out, shock-capturing numerical strategies may have a misleading dependence

on the grid resolution which can affect in particular horizontal asymmetry estimates.

Finally, it is worth noting that the chosen set of parameters is not unique in the
sense that similar results may be obtained using different numerical values for them.
Moreover, in the present example, no attempt have being made in order to optimize
model parameters in terms of velocity predictions. The latter would presumably require
the use of a variable function «, as discussed before, and a combination of larger I, /d

and smaller diffusivity coefficients to produce the desired effect.

In the following section the proposed breaking model and the chosen set of param-
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Figure 5.14: Sensitivity of results for Ting and Kirby’s [162] experiment when changing the spatial
grid size. Additional computation performed using a 25 % coarser grid resolution. Same captions as
Figure 5.13.

eters will be validated with help of several available experimental test cases for wave

propagation and breaking.

5.4.3 Model validation

In order to evaluate the ability of the new breaking model to predict surf zone wave
properties we perform numerical computations for several experimental test cases keep-
ing the same optimal set of parameter values obtained in the previous subsection. We
consider Cox’s regular wave experiment [41], five different tests on regular waves shoal-
ing and breaking on a planar beach conducted by Hansen and Svendsen [77], and a
solitary wave breaking on a beach investigated by Synolakis [158]. All the following

computations are carried out using a grid size Az = 0.1 hg and a Courant number
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Figure 5.15: Comparisons of model predictions and experimental data for Cox’s [41] spilling break-

ing, Lo = 4.19 m, 32 = 0.144 and kho = 0.600. (A) : measured crest level n. —7j; (o) : measured

wave-averaged free surface 7; (V) : measured trough level n; — 7. Computed properties are plotted in
plain lines.

C, = 1.0. Recall from Chapter 2 that this temporal and spatial grid resolution en-
sure that the numerical method is stable, non-damping and able to describe all physical
wave-lengths resolved by the extended system of Serre equations. Benchmark tests that
will be investigated next correspond to a wide range of wave-lengths thus resulting in
different breaker types.

Application to Cox’s [41] spilling breaking experimental test

Cox [41] conducted detailed measurements for cnoidal waves shoaling and breaking on
a planar beach of slope 1:35. This data set was already used in Chapter 4 and the
reader is refered to the corresponding section for further information on this particular
test case. Wave conditions are similar to Ting and Kirby’s [163| spilling breaking
case, except for a slightly longer period and a smaller incident wave amplitude. In
addition, phase-averaged time series of free surface elevations at six measuring sections
are available and correctly synchronized. It is then possible to use these experimental

data to investigate model performance in terms of phase speed estimates.
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Figure 5.16: Computed and measured phase-averaged time series of free surface elevation at several
wave gauges for Cox’s [41] experiment. (—) : measured ; (——) computed.

A comparison between predicted and measured set-up, crest and trough levels is
presented in Figure 5.15 where the theoretical cnoidal wave solution has been used
to prescribe the incident free surface time serie at the left boundary, and the moving
shoreline condition is implemented at the right boundary. Numerical results compare
very well with experimental data and an excellent nonlinear performance in the shoaling
region is noticed. Indeed, the breaking point location and the maximum wave height are
accurately predicted. Similarly, surf zone wave height evolution is fairly well reproduced
by the model. Nevertheless, close inspection of numerical results indicates that set-up
is slightly underestimated in the inner surf zone.

Associated phase-averaged free surface time series are reported in Figure 5.16 for
the six sections where measurements were conducted. The overall agreement between
measured and computed time series is good thus confirming that the breaking model

allows for a proper estimation of wave asymmetries and heights in the surf zone. How-
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Test Case | Wave Period (s) Wave Height (cm) € =ao/ho kho Breaker type
Al10112 1.02 6.7 0.093 1.580 Spilling
061071 1.68 6.7 0.093 0.791 Spilling
053074 2.02 6.6 0.092 0.641 Spilling
041041 2.53 3.9 0.054 0.501  Plunging-Spilling
031041 3.37 4.3 0.060 0.369 Plunging

Table 5.2: Experimental conditions for selected series of Hansen and Svendsen’s [77] regular wave
test cases.

ever, there is a small phase shift in section x = 4.8 m which may be attributed to the
slight underestimation of the mean water level noticed in Figure 5.15. Nevertheless,
free surface prediction is comparable to the one reported for the same experiment by
Briganti et al. [25] and Musumeci et al. |[120] using a much more complex Boussinesq

model where the irrotationality assumption was removed.

Model performance for Hansen and Svendsen’s [77] benchmark tests on

regular waves

Hansen and Svendsen’s [77| experiments on regular waves shoaling and breaking on
a planar beach of slope 1:34.26 have become a benchmark test for Boussinesq-type
equations and associated breaking parameterizations. For instance, Kennedy et al.
[85], Veeramony and Svendsen [172], Briganti et al. [25] and Musumeci et al. [120]
(among others) have used these data sets to validate time domain breaking models. In
addition, since a wide range of wave-lengths were investigated by Hansen and Svendsen,
the available experimental information provides a good opportunity to test nonlinear
shoaling characteristics of the extended system of Serre equations.

We have chosen five test cases following Kennedy et al. [85] validation procedure, for
wave conditions producing breaker types ranging from gentle spilling to strong plunging
events. Selected experimental series and their main characteristics are summarized in
Table 5.2. Regular wave test cases range from fairly short incident waves to rather
long ones. The associated dispersive coefficient for the shorter wave-length test is
khy = 1.58, thus almost one half of the theoretical limit of the extended system of
Serre equations. Consequently, Hansen and Svendsen’s [77] test series will provide an
additional insight over nonlinear shoaling characteristics of the Boussinesg-type wave
propagation model when used to describe different wave field conditions. Numerical

examples reported in the following are carried out using theoretical second order Stokes
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Figure 5.17: Comparisons of model predictions and experimental data for Hansen and Svendsen
[77] spilling breaking test No. A10112. (o) : measured data. Computed wave height and set-up are
plotted in plain lines.

waves as free surface time domain input at left boundary, while the moving shoreline

condition is prescribed at the right boundary.

Numerical results for spilling-like breakers are presented from Figure 5.17 to Fig-
ure 5.19. It is seen that the breaking point location is adequately predicted in all
cases using the same numerical values for model parameters as inferred from Ting and
Kirby’s [162] measurements. Similarly, the shoaling region is fairly well described by
the numerical model except in the vicinity of the breaking point where the limiting
wave amplitude is slightly underpredicted for test cases No. 061071 and 053074. This
trend was already noticed when calibrating the breaking model using Ting and Kirby’s
[162] experiment. Moreover, the numerical model also reproduces some nonlinear pro-
cesses associated to wave reflection which is presumably generated by swash oscillations
and bathymetric variations as can be readily noticed from the slight amplitude mod-

ulation appearing in wave height plots. This situation is also present in experimental
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Figure 5.18: Comparisons of model predictions and experimental data for Hansen and Svendsen
[77] spilling breaking test No. 061071. (o) : measured data. Computed wave height and set-up are
plotted in plain lines.

measurements so it is believed that boundary conditions are performing correctly in

describing the associated complex nearshore physics.

On the other hand, surf zone wave evolution is predicted in good agreement with
experimental data for all three spilling conditions. This is clearly observed in test cases
No. 053074 and No. 061071 which have longer surf zone extensions. In particular,
model performance in the inner surf zone is excellent since computed wave amplitudes
follow the measured values with great accuracy. There are only minor differences in the
transition zone which are mostly due to the initial underestimation of the maximum

wave height.

Set-up levels are also satisfactorily reproduced for all three cases and the spatial
lag between the breaking point location and the beginning of set-up is also recovered.
However, there are minor differences in the inner surf zone where set-up level is slightly

underestimated. As explained in the previous subsection, the agreement between mea-
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Figure 5.19: Comparisons of model predictions and experimental data for Hansen and Svendsen
[77] spilling breaking test No. 053074. (o) : measured data. Computed wave height and set-up are
plotted in plain lines.

sured and computed mean water levels could be further improved by reducing the ratio
Kk = 0p/0ny. Unfortunately, the mass diffusivity term is benificial in terms of numerical
stability and a compromise between physical and practical aspects had to be deter-
mined. This limitation may be overcomed if a variable value for x is implemented. Of
course, the latter needs to be studied carefully looking in addition to the influence that
this parameter may have on velocity profiles.

In summary, model performace for the spilling breaking cases investigated so far
appears to be very good since wave heights, set-up levels, breaking point locations and
transition zone spatial extensions are fairly well reproduced using the same parameter
values. It seems then justified to infer that physical arguments developed to derive
scaling relations for the new breaking parameterization are quite robust thus providing
accurate information for spilling-like breaking situations.

Comparisons between numerical computations and experimental measurements for
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Figure 5.20: Comparisons of model predictions and experimental data for Hansen and Svendsen
g

[77] plunging breaking test No. 041041. (o) : measured data. Computed wave height and set-up are
plotted in plain lines.

plunging breakers are reported in Figures 5.20 and 5.21. In both cases, the breaking
point location is predicted offshore the physical one but wave height evolution in the
inner surf zone is correctly estimated. However, computed set-up levels are badly
reproduced in the inner surf zone showing a noticeable underestimation. In these
particular experiments, reducing the relative weight of mass and momentum diffusivity
coefficients, x, did not improve set-up predictions. One plausible explanation for that is
related to secondary waves that are generated by nonlinear interaction in the shoaling
region. Indeed, prior to breaking there is a decomposition of the initial longer regular
Stokes wave in a two peaked-like wave as noticed in the spatial snapshot depicted in
Figure 5.22. This decomposition is triggered by the high steepening of the incident wave
and the associated intense nonlinear energy transfer into higher bounded harmonics
that takes place near breaking. Unfortunately, at the present stage of development,

the model is not able to introduce breaking effects in these secondary waves which
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Figure 5.21: Comparisons of model predictions and experimental data for Hansen and Svendsen
[77] plunging breaking test No. 031041. (o) : measured data. Computed wave height and set-up are
plotted in plain lines.

break further onshore as they propagate into the shoreline. It is evident that secondary
breaking waves are responsible for an additional radiation stresses contribution and the
associated increase in set-up level. Set-up underestimation may be partially due to this
particular situation and not to the presence of the additional mass diffusivity term in
the continuity equation.

Alternatively, measured and computed set-up discrepancies may be attributed to
an inaccurate estimation of wave height gradients in the transition zone as observed
in Figures 5.20 and 5.21. Indeed, in wave-averaged hydrodynamic equations, setup
evolution is governed by the spatial gradient of surf zone wave amplitudes (see for
instance reference [115]).

On the other hand, the noticeable offshore prediction of the breaking point location
may also be explained by the high nonlinear steepening of incident waves in the shoaling

region. Indeed, the front slope threshold value, ®, = 31°, was obtained for spilling-like
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Figure 5.22: Spatial snapshot showing a secondary peak generation before breaking for Hansen and
Svendsen’s [77] experimental plunging test case No. 031041.

breakers and it follows from the previous discussion that for plunging events not only
a higher limiting value for this property should be prescribed but also a shorter time
scale for the transitional regime. In order to confirm this hypothesis we conduct an
additional computation for test case No. 031041 using a threshold value of &, = 36°
for breaking initiation and ky = 1.0 in relation (5.34). Results are reported in Fig-
ure 5.23 where it is seen that the breaking point location and wave height evolution in
the transition zone are better predicted. Nevertheless, set-up level is almost insensitive
to this change in model parameters presumably because of the presence of unbroken
secondary waves. This numerical example also demonstrates that the chosen set of
Boussinesg-type equations possesses excellent nonlinear characteristics since the limit-

ing wave height and the corresponding shoaling behaviour are accurately reproduced.

Two final conclusions should be drawn from numerical computations presented in
the present section. The first one concerns the ability of the breaking model to re-
produce inner surf zone wave gradients even for plunging breakers and the fact that
model behaviour is rather insensitive to the chosen spatial grid resolution. The latter
is further sustained by results reported for Hansen and Svendsen’s [77] test cases since
a constant Ax = 0.1 hg was used in all computations and different wave lengths were
investigated. This means that the breaking parameterization succeeds in predicting
an accurate energy dissipation despite the fact that the number of nodal points per
wave lengths was not constant in the different computations. This important property
follows directly from Cointe and Tulin’s [40] relation verified in Chapter 4 and should
make the breaking model applicable in random wave propagation problems.

A second crucial feature is related to the particular extended set of Serre equations
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Figure 5.23: Comparisons of model predictions and experimental data for Hansen and Svendsen [77]
plunging breaking test No. 031041, using ®, = 36° and ki = 1.0. (o) : measured data. Computed
wave height and set-up are plotted in plain lines.

used to describe nearshore hydrodynamics. It is interesting to compare present nu-
merical results with those reported by Kennedy et al. [85] using the fully nonlinear
Boussinesq wave propagation model FUNWAVE [89, 178]. In reference [85], model
performances were also tested against Hansen and Svendsen’s 77| cases where Wei
et al.’s [178] equations produced an unphysical amplification of bounded higher har-
monics. Results reported by those authors showed a systematic overprediction of wave
heights in the shoaling region thus indicating that nonlinear properties of the chosen
Boussinesg-like set of equations are not accurate enough. This problem was more evi-
dent as wave lengths were decreased and a theoretical explanation for this unphysical
behaviour can be found in reference [106]. On the contrary, the Boussinesg-like set
derived in Chapter 2 and numerically handled using a finite volume scheme exhibits
an excellent nonlinear behaviour for all test cases, and only a small underprediction of

the maxium wave height (< 10 %) could be noticed in some cases. Similar conclusions
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were given in Chapter 3. Hence, nonlinear characteristics of the extended system of
Serre equations may be close to those achieved by Lynett and Liu [105]| using a far
more complex two layer Boussinesq model since present results compare favourably to

those reported in reference [106].

Application to Synolakis’ [158] solitary wave breaking on a beach

The last experimental test case that we consider in order to validate the numerical
model corresponds to a solitary wave propagating and breaking on a 1:20 constant
slope beach as studied by Synolakis [158]. This author reported time series of inicident
and reflected solitary waves with a wave gauge located near the toe of the slope. This
data was used to provide a common time origin for additional video measurements
conducted for runup and run down stages of non-breaking and breaking solitary waves.
Comparisons between predicted and measured spatial snapshots of propagating solitary
waves were already reported for a non-breaking case in Chapter 3. Here we focus
on a higher relative amplitude case which broke strongly on runup. This particular
experiment was also used by Zelt [184] to test his breaking parameterization and the
implemented Lagragian moving shoreline boundary condition.

The experimental case consists in a solitary wave with non-dimensional incident
amplitude ag/ho = 0.28 propagating over a beach of 1:20 slope. The still water depth is
fixed in the horizonal part of the wave flume at hg = 0.25 m for numerical computations
reported in the following. Similarly, a grid size of Az = 0.025 m and a Courant number
C, = 1.0 is considered. The wave gauge located 4.775 m (= 19.1 hy) from the still
shoreline is used to synchronize video measurements and numerical predictions. A
comparison between available data at this location and computed results is presented
in Figure 5.24.

The breaking model is driven with the same parameter values determined using
Ting and Kirby’s [162] experiment. It is worth noting that video measurements pro-
duced by Synolakis [158] allow for a detailed spatial comparison between experimental
data and computed results. On the contrary, previous test cases studied in this sec-
tion mostly concerned time-domain or wave-averaged properties so we have here an
opportunity to test additional properties of the model. In particular, the ability of the
implemented moving shoreline boundary condition to deal with strong breaking events
will be investigated.

A free surface time series comparison for numerical and experimental data are
depicted in Figure 5.24. Tt is seen that overall incident and reflected wave features are

adequately reproduced by the numerical model. Spatial snapshots of computed and
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Figure 5.24: Computed and measured incident and refected solitary wave for the breaking case with
ag/ho = 0.28 investigated by Synolakis [158]. Wave gauge located 4.775 m from the still shoreline and
t* = t\/g/ho is the non-dimensional time. (—) Measured time serie, and (——) predicted one using
the numerical model.

measured free surface profiles in runup and run-down stages are reported in Figure 5.25.
As pointed out in reference [184], incipient breaking takes place slightly before the
non-dimensional time ¢* = 20 is reached. Prior to that time, the numerical model
accurately predicts the solitary wave height and the nonlinear steepening of the incident
soliton. Furthermore, inception of breaking is also reasonably predicted by the model
even when using parameter values obtained from a spilling breaking case. Again,
embedded nonlinear characteristics of Serre equations provides very good agreement
with experimental measurements near the breaking location. It is worth noting that
results reported in reference [184| are slighlty less accurate in terms of spatial wave
shapes in the shoaling zone. More importantly, even though it appears that breaking
dissipation develops over a longer time in the numerical model since a double-peaked
feature shows up between t* = 21 and t* = 23, the overall agreement is quite good. Soon
after, the solitary wave reaches the shoreline and the moving boundary condition starts
acting. The runup stage is fairly well reproduced by the numerical model despite the
fact that no friction parameterization is included in the governing equations. The latter

is in contradiction with some of the conclusions given by Zelt [184] who attributed some
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noticeable inaccuracies produced by his Lagrangian finite element model to friction
effects. On the contrary, it is only in the run down phase that slight discrepancies
between experimental data and computed results can be observed in our case. Close
inspection of free surface evolution between panels ¢* = 45 and t* = 55 indicates that
the numerical model produces a thinner water tongue than the measured one. This
can be reasonably attributed to the lack of a friction term since it is well known that
friction effects are inversely proportional to water depths. Finally, it is observed in
the last panel of Figure 5.25 that a back swash breaking condition is reached and the
numerical model is able to accurately reproduce this demanding situation where free
surface slope is almost vertical. However, it is important to recall that the breaking
parameterization has not been conceived to handle this kind of breaking, thus an
incipient spurious numerical behaviour can be noticed in this last panel.

From this additional example, not only the ability of Serre equations to deal with
strong nonlinearities is satisfactorily confirmed, but also the physical and practical
adequacy of the moving shoreline boundary condition described in Chapter 3, is further

validated for breaking cases.

5.5 Conclusions

The present chapter has been devoted to investigate time domain breaking parameteri-
zations that may be used in the framework of Boussinesq-type equations. In particular,
Kennedy et al. |85] breaking model was implemented in our Boussinesqg-like finite vol-
ume scheme and it was clearly confirmed that the latter heavily overestimates wave
heights in the inner surf zone. Hence, numerical computations producing similar results
reported in reference [85] on the base of a different set of fully nonlinear Boussinesq
equations show that this drawback is intrinsically due to the breaking model. Unfortu-
nately, it was found in Section 3, that forcing Kennedy et al. [85] model with different
parameter values does not allow for a proper simultaneous prediction of wave heights
and the characteristic inner surf zone saw tooth profile.

Additionally, since horizontal wave asymmetry appears to be a key property for
sediment transport prediction in the framework of beach morphodynamics, an alterna-
tive wave breaking parameterization was developed. Invoking nonlinear shallow water
shock wave theory, energetic considerations and experimental findings on quasi-steady
hydraulic jumps investigated by Svendsen et al. [157], we were able to find scaling rela-
tions for a novel breaking wave model which incorporates both, mixing layer effects in

the continuity equation and associated breaking momentum deficits via the inclusion of
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extra mass and momentum diffusion terms. This alternative approach, which is written
as a function of the breaker index, v, and the mean front slope, ®, can be viewed as
an extension of the eddy viscosity analogy used by Zelt [184] and Kennedy et al. [85].
In particular, the extent over which breaking terms act follows from a simple relation
obtained by Cointe and Tulin [40] and calibrated under experimental conditions more
representative of inner surf zone waves in Chapter 4. It is worth emphasizing that this
relation introduces in the model an additional degree of freedom since the horizontal
distance where diffusivity functions are applied is explicitly controlled. Indeed, numeri-
cal implementation of this breaking wave parameterization into our fully nonlinear and
weakly dispersive Boussinesqg-type model successfully demonstrated that wave heights
and horizontal asymmetries could be better reproduced than when using Kennedy et
al. [85] approach. It was also verified that the model performance is rather insensitive
to the chosen grid size resolution.

From a numerical point of view, the incorporation of a mass diffusivity term in
the continuity equation appears to improve local stability of the scheme near the re-
gion where breaking terms are applied. In particular, short-wave noise or spurious
oscillations that could arise behind waves near the breaking point as a consequence
of the impulsive application of extra terms are suppressed when the relative weight
of the mass diffusion term is increased. Indeed, we were able to perform oscillation-
free computations using large time steps which corresponded to a Courant number of
1.0. Moreover, diffusivity terms bear some resemblances with NSWE shock capturing
solvers. Energy dissipation is accounted for in the latter by introducing viscosity-like
terms acting very locally where free surface slope gradients are the highest, i.e. near the
wave’s crest and trough (see for instance references [97, 165]). Those strategies produce
the desired energy dissipation through numerical diffusion acting on both, continuity
and momentum equations.

From a physical standpoint the mass diffusivity term somehow mimics the local
mass transfer that takes place by avalanching at the front face of the wave near the
breaking point. This effect is responsible in particular for an important loss of potential
energy in the transition zone.

On the other hand, it is really important to stress that the calibration process
performed on Ting and Kirby’s [162] spilling breaking experiment, allows us to end
up with a breaking model which can successfully reproduce several different spilling
breaking conditions using the same parameter values which remain in physical ranges.
It is then concluded that scaling arguments developed in Section 5 provide useful
relations which seem to be more general than other forms used in former breaking wave

parameterizations. Nevertheless, and in accordance to underlying hypothesis, breaking
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point location and the spatial length of the transition zone occuring in plunging-like
breakers could not be accurately reproduced using the same parameter set. This is
mostly due to the higher steepening that longer period waves can reach, thus requiring
a higher threshold value for the critical front slope. Similarly, in plunging events,
intense energy dissipation takes place over a shorter distance producing a more rapid
transitional behaviour. In spite of that, inner surf zone wave height gradients were
reasonably predicted by the model even for plunging breakers.

Additionally, we note that the proposed optimal set of model parameters is not
unique in the sense that similar surf zone wave properties predictions may be obtained
using different combinations for v and ®. It is believed that calibrating the model
using an additional constraint related to flow velocity computations may help to elu-
cidate what combination of parameter values would produce the best results. Indeed,
it was also demonstrated that the additional mass diffusivity term acts as a roller
since maximum mean current intensity is increased while its spatial location is shifted
shorewards.

Finally, the physical adequacy of the implemented moving shoreline boundary con-
dition was further validated using an experimental solitary wave breaking on a beach.
Computed evolution for wave propagation in runup and run-down stages appeared to
be in very good agreement with experimental measurements conducted by Synolakis
[158|. Indeed, only slight discrepancies could be noticed in the run-down phase which
may be reasonably explained by the lack of a friction term in the governing equations.
Similarly, the different test cases investigated clearly confirmed that the extended sys-
tem of Serre equations possesses excellent nonlinear characteristics since wave height
evolution in the shoaling region was accurately reproduced. Only a minor underpre-
diction, which was never larger than 10 %, could be noticed near the breaking point
in some cases. The latter suggests that nonlinear shoaling properties embedded in
this particular set are somehow closer to the two layer Boussinesq model developed by
Lynett and Liu [105] than to the fully nonlinear wave propagation module implemented
in FUNWAVE |89, 178|.
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Chapter 6

Conclusions et Perspectives

6.1 Principaux résultats

Le travail qui s’achéve avec ce chapitre a été principalement consacré au développement
d’un modéle numérique capable de décrire de maniére efficace et précise la plus part
des phénoménes physiques en rapport avec la propagation de la houle dans un envi-
ronnement, cotier. L’effort scientifique s’est concentré sur une approche opérationnelle
applicable en milieu naturel le long d’un profil de plage en incluant a la fois, la zone
de levée, le déferlement et la zone de swash. En effet, la démarche adoptée a permis
de valider convenablement 1’application du modéle hydrodynamique proposé dans un
contexte d’ingénierie cotiere.

La pertinence physique du systéme d’équations de Serre, ainsi que I’excellente per-
formance du nouveau schéma numérique en volumes finis basé sur les stratégies les plus
récentes de reconstruction d’interface et spécialement concu pour sa résolution, ont été
parfaitement demontrés. Il est important d’insister sur le fait que d’'un point de vue
strictement numérique, la nouvelle méthode est largement supérieure aux précédentes
approches couramment utilisées pour intégrer des modéles de Boussinesq équivalents.
Que ce soit par rapport a la résolution spectrale et la capacité a représenter efficace-
ment la cinématique des ondes théoriquement résolvables par le modéle, ou par rapport
a la limite de stabilité en terme de pas de temps, nous avons réussi a montrer que le
nouveau schéma permet d’obtenir des gains en temps de calcul assez importants. En
effet, tous les exemples d’application ou validation qui ont été présentés dans cette
thése ont été produits en utilisant des nombres de Courant supérieurs ou égaux a 1.0
alors que dans la plus part des cas, les méthodes aux éléments finis ou aux différences
finis utilisées pour résoudre des systémes de Boussinesq complétement non linéaires

permettent 'intégration des équations avec au mieux un nombre de Courant de 0.5.
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De la méme maniére, nous avons concu et validé des stratégies numériques adap-
tées au traitement des conditions aux limites capables de reproduire la dynamique
complexe des ondes de gravité se propageant sur une plage. En particulier, des tech-
niques d’absorption et génération des vagues au large, une représentation réaliste du
mouvement du trait de cote, ainsi que des conditions de réflection totale sur un mur
ont été correctement validées.

D’un autre coté, la capacité a représenter des situations fortement non linéaires,
théoriquement présente dans les équations de Serre, a été confirmée a 'aide de la
comparaison de résultats numériques avec des mesures expérimentales. De plus, nous
avons remarqué que les équations de Serre fournissent une trés bonne description de la
zone de levée pour une large gamme de houles incidentes, ne produisant qu’une faible
sous estimation de I'amplitude maximale prés du point de déferlement. Ce résultat
constitue une amélioration pratique par rapport au modéle de Boussinesq complétement
non linéaire inclus dans le code FUNWAVE [89] de I’Université de Delaware basé sur les
équations présentées dans la référence [178]. En effet, la performance numérique dans
la zone de levée de ce systéme d’équations semble étre trés sensible aux conditions
des houles incidentes, en sur estimant de maniére flagrante les amplitudes associées
lorsque les longueurs d’onde sont de plus en plus faibles (d’aprés les résultats publiés
dans la référence [85]). Cette situation suggére alors que le modéle de Boussinesq
fondamentalement basé dans les travaux de Serre [140] posséde des propriétés non
linéaires plus proches du modéle bi-couche de Boussinesq récemment développé par
Lynett et Liu [105] qu’aux équations présentes dans le code FUNWAVE. Tout comme
les équations de Serre, les prédictions numériques obtenues avec le modéle bi-couche et
présentées dans la référence [106] montrent que celui-ci fourni une excellente description
des amplitudes dans la zone de levée

Les propriétés dispersives du systéme d’équations de Serre sur fond variable origi-
nellement, obtenu par Seabra-Santos et al. [136] ont été améliorées a 1’aide des tech-
niques étudiées par Madsen et al. [109] et Madsen et Schiffer [110|. De cette maniére,
une extension du modéle vers des profondeurs plus importantes, ou alternativement,
vers la description d’ondes de longueur plus faible, a été accomplie. La comparaison des
prédictions numériques fournies par le modéle et les mesures expérimentales rassem-
blées par Dingemans [50] concernant la propagation de houles réguliéres sur une barre,
ont confirmé la limite théorique d’application des équations allant jusqu’a xkhg ~ 7,
avec Kk le nombre d’onde et hy une mesure caractéristique de la profondeur d’eau. Il
est important de noter que cette valeur est normalement considérée comme étant le
commencement du domaine de 1’eau profonde (e.g. [110]).

Une fois que le modéle numérique ait été validé, nous avons avancé dans le Chapitre
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4 vers des aspects théoriques et expérimentaux concernant le déferlement bathymétrique.
En particulier nous avons étudié la pertinance physiques des différentes hypothéses
ayant permis & Svendsen [154] de proposer un modéle conceptuel pour le rouleau de
déferlement. A I’aide des rares expériences en laboratoire disponibles sur 1’organisation
spatiale détaillée des vitesses sous des ondes déferlantes [157], nous avons pu vérifier
la validité de cette approche. Néanmoins, il s’est avéré que les grandeurs géométriques
intégrales de la zone de récirculation existante dans le cas de trois ressauts quasi-
stationnaires en similitude de Froude avec des vagues en zone de surf, ne pouvaient
étre correctement décrites par cette théorie qu’a condition d’inclure des effets de deux-
iéme ordre négligés par Dally et Brown [47] et Stive et De Vriend [150]. C’est ainsi
que l'estimation de I'aire du rouleau de déferlement a été sensiblement améliorée dans
les cas étudiés lorsque I’hypothése de faible angle d’inclinaison moyen de celui-ci a été
levée. De la méme maniére, le fait de rajouter une correction dans l’estimation de
I’énergie dissipée par les contraintes turbulentes a I'interface entre la zone de récircu-
lation et ’écoulement sous-jacent a permis de diminuer davantage les erreurs associées

a cette modélisation.

Par ailleurs, la démarche entamée afin de réécrire le modéle de rouleau nous a permis
d’approfondir 'interprétation physique des différents termes présents dans les équations
différentielles couramment utilisées pour améliorer les estimations des courants moyens
fournies par les modéles méso-échelles & phase moyennée. Les différences théoriques ex-
istantes entre les équations proposées par Stive et De Vriend [150], d’une part, et Dally
et Brown [47|, d’autre part, ont été élucidées. En effet, il est apparu que le coefficient
numérique dans le terme de flux d’énergie, qui différe d’un facteur de deux entre ces
modéles, est la conséquence de différentes hypothéses implicitement introduites en ce
qui concerne la contribution de I’énergie potentielle du rouleau passivement porté par
la vague déferlante. Cependant, cette indétermination théorique n’a pu étre surmontée
qu’a condition de fournir une information supplémentaire sur la localisation relative
de la zone de récirculation sur la vague. C’est & partir d’un résultat semi-empirique,
précédemment développé dans les travaux de Cointe et Tulin [40], que nous avons été en
mesure de préscrire une valeur numérique pour la distance verticale totale du rouleau
de déferlement. Nous avons ainsi pu placer celui-ci sur les vagues concernées. Il est
important d’insister sur le fait que la relation théorique obtenu par Cointe et Tulin
[40] permettant de relier cette distance avec la hauteur locale des ondes, n’avait encore
jamais été vérifiée dans un contexte d’eau peu profonde comme nous I'avons effectuée
ici. En outre, cette relation a vérifiée de maniére trés satisfaisante les mesures expéri-
mentales sur ressaut quasi-stationnaires fournies par Svendsen et al. [157] & condition

de modifier la valeur numérique de I'unique paramétre empirique associé. La nouvelle
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valeur qui a due étre affectée a pu étre expliquée en utilisant des arguments physiques
en rapport avec les différences topologiques existantes entre un déferlement en eau
profonde et en eau peu profonde. De plus, ce résultat semblerait étre plus général
que le concept de rouleau de déferlement en soi puisque I’hypothése de distribution
hydrostatique des pressions n’a pas été utilisée.

Les connaissances théoriques et expérimentales développées dans le Chapitre 4, et en
particulier le résultat concernant la localisation relative du rouleau de déferlement dans
une vague, ont été utilisées ensuite pour aborder la problématique du déferlement dans
les équations de Boussinesq. Dans le cadre de la théorie des chocs en eau peu profonde
nous avons entamé 1’étude d’une nouvelle paramétrisation pour ce phénomeéne, cette
fois-ci dans le domaine temporel. Pour commencer, une analyse critique, en particulier
du modéle type couche de mélange proposé dans les travaux de Kennedy et al. |85],
a été effectuée. Il a été clairement établi que celui-ci ne pouvait pas permettre une
représentation correcte et simultanée de la décroissance en amplitude et des asymétries
horizontales de vagues en zone de surf. Cette constatation nous a poussé alors a
développer une approche alternative qui pourrait corriger cette importante limitation.

Le nouveau modéle de déferlement considére, en plus du terme de déficit de quantité
de mouvement déja utilisé dans les approches précédentes, l'incorportation des effets
type couche de mélange turbulente qui favorisent une redistribution locale de la masse et
de ’énergie potentielle, & 'aide d’un terme de diffusion supplémentaire dans I’équation
de continuité. Méme si a premiére vue, le fait de modifier I’équation de conservation de
la masse qui dans le cadre de la théorie potentielle est exacte semble discutable, nous
avons montré que ce nouveau terme pouvait reproduire de maniére efficace certains
phénoménes physiques effacés par les hypothéses de fluide parfait. Par ailleurs, nous
remarquerons que d’autres équipes de recherche ont déja avancé quelques arguments
théoriques qui vont dans le méme sens. En particulier, Liu et Orfila [99] et Simarro
et al. [143] ont été amenés a modifier ’équation de conservation de la masse dans un
systéme d’équations de Boussinesq de fagon a introduire des effets de couche limite
laminaire au fond pour des problémes de propagation d’ondes solitaires.

Des considérations énergétiques issues de la théorie des chocs en eau peu pro-
fonde, ainsi que certains résultats en rapport avec le rouleau de déferlement présen-
tés dans le Chapitre 4, nous ont permis de fournir des expressions mathématiques
et 'interprétation physique correspondante pour les coefficients de diffusivité agissant
sur la quantité de mouvement et la masse. Le modéle de déferlement a été entiére-
ment défini par les deux paramétres physiques controllant la forme géométrique locale
des vagues en zone de surf, a savoir I'index v = H/d et 'angle d’inclinaison moyen,

®, du front d’onde. En outre, les expériences sur déferlement déversant de Ting et
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Kirby [162], qui fournissent une information détaillée de 1’évolution spatio-temporelle
des vagues se propageant sur une plage & pente constante, nous ont servi a calibrer les
valeurs numeériques des coefficients d’échelle associés a la paramétrisation. Les valeurs
optimales ainsi déterminées, ont fourni un représentation numérique trés satisfaisante
non seulement de la décroissance en amplitude, mais aussi des asymétries horizontales
et verticales des vagues déferlantes. De plus, ce jeu de paramétres optimal a pu étre
convenablement justifié d’un point de vue physique.

Nous avons ensuite évalué la performance du modéle de déferlement en comparant
ces prédictions avec d’autres mesures expérimentales, en gardant les mémes valeurs
numériques pour les parameétres obtenues dans le cas de ’expérience de Ting et Kirby
[162]. Les résultats présentés en particulier sur les cas tests produits par Hansen et
Svendsen [77] pour différentes conditions de houle réguliére, ont montré que la nouvelle
parameétrisation était en mesure de bien représenter les évolutions des ondes en zone
de surf pour des déferlements de type glissant. Méme si le point de déferlement n’a
pas pu étre correctement prédit dans le cas d’un déferlement plongeant, la décroissance
globale en amplitude de la houle a été elle aussi, dans ce cas, convenablement repro-
duite dans la zone de surf interne. Ces résultats conférent donc a ’argumentation qui
nous a permis d’écrire le modéle une certaine solidité physique puisque elle est basée
fondamentalement sur des informations valables pour des vagues déferlantes en quasi-
équilibre. Par ailleurs, il a été démontré que les predictions numériques dans le cas
des déferlements plongeants pouvaient étre améliorées en augmentant la valeur critique
pour la pente avale de ’onde utilisée comme déclencheur du déferlement.

Enfin, une expérience de laboratoire concernant la propagation et la déferlement
d’une onde solitaire sur une plage uniforme conduite par Synolakis [158], nous a permis
non seulement de confirmer les capacités du modéle hydrodynamique complet, mais

aussi la performance de la condition de trait de cote variable en présence du déferlement.

6.2 Perspectives futures

Le travail accompli dans cette thése a permis I’élaboration d’un outil de prédiction
de la houle le long d’un profil perpendiculaire & la plage en incorporant la plus part
des phénoménes physiques qui peuvent influencer les évolutions spatio-temporelles des
ondes depuis des profondeurs intermédiaires, et jusqu’au trait de cote. L’excellente per-
fomance du schéma compact aux volumes finis qui a été développé encourage fortement
une extension du modéle en deux dimensions horizontales (2DH). En effet, cela est tech-

niquement faisable en raison des récents développements théoriques qui se poursuivent
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de maniére trés active sur ce type de schémas numériques et qui ont déja donné lieu a
des modéles 3D appliqués sur des géométries complexes (e.g. [93, 142]). Néanmoins, un
certain nombre d’améliorations pratiques sont requises de facon a pouvoir concevoir un
modele équivalent applicable dans un environnement cotier. En particulier, les aspects

présentés ci-dessous devront étre abordés de maniére spécifique :

1. Développement de conditions aux limites 2DH d’absorption/génération des ondes

au large.
2. Amélioration du traitement de la condition aux limites de trait de cote variable.

3. Algorithmique de suivie des crétes des vagues efficace adaptée a la propagation

2DH et aux houles irréguliéres.
4. Extension du modéle de déferlement pour des applications 2DH.

5. Amélioration des critéres de déferlement utiliSees dans la pratique de maniére a

reproduire les différents types de déferlement qui peuvent exister en nature.

6. Incorporation éventuelle de termes supplémentaires de fagon & reproduire les
interactions 2DH entre structures tourbillonnaires et mélange turbulent dans la

direction long-shore.

Parallélement, dans sa forme présente le modéle hydrodynamique de Boussinesq que
nous avons développé pourrait parfaitement servir & fournir des informations indispen-
sables & une prédiction court/moyen terme des évolutions morphodynamiques d’un
profil de plage sableuse. Pour cela il faudra coupler le code hydrodynamique & des for-
mules de transport sédimentaire intra-phase qui puissent tenir compte des phénoménes
d’accélération dissymétrique reponsables en particulier du remblayement des plages en
périodes d’accalmie. Alternativement, des efforts de recherche pourraient encore se
poursuivre de maniére & mieux representer les profils de vitesses dans la verticale en
incorporant & ce moment la une phénoménologie plus détaillée des processus concernées
(i.e. modéle de couche limite turbulente, remise en suspension des sédiments, trans-
port par charriage au fond et par suspension dans la colonne d’eau, intéractions entre
phase solides et fluides, etc.). Cependant, cette approche mécaniciste ne pourra étre
convenablement abordée qu’a condition d’approfondir les connaissances fondamentales
actuelles en rapport avec les différents processus complexes qui ont lieu en particulier
dans la zone de surf. Dans ce sens, les mesures expérimentales de plus en plus fines
qui pourront étre mises a disposition dans les années & venir constribueront sans au-

cun doute a I’amélioration de la compréhension physique des intérations complexes
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entre le fluide et les sédiments, en fournissant au méme temps des meilleurs moyens de
représenter mathématiquement les phénomeénes concernés.

Finalement, il est parfaitement légitime de se demander dans quelle mesure les ef-
forts de recherche concernant le développement de modéles hydrodynamiques moyen-
nées dans la profondeur, tel que Boussinesq ou Saint-Venant, doivent se poursuivre.
Et cela en raison des importantes et rapides évolutions du matériel informatique ainsi
que des approches théoriques de modélisation 3D de la turbulence qui s’avérent étre de
plus en plus performantes (e.g. DNS, LES, DES, etc.). Néanmoins, nous pensons fer-
mement que plus que mettre en concurrence ces différentes approches, il est nécessaire
de les faire interagir puisqu’on voit mal comment on pourrait étre capable de prédire
par exemple, des évolutions morphologiques dans le moyen ou le long terme a ’aide des
modélisation 3D complétes, et cela au moins dans les dix années a venir. Au contraire,
une approche multi-échelles, accompagnée d’efforts expérimentaux a la hauteur des
besoins, a la fois en laboratoire et in-situ, devraient favoriser le développement d’outils
opérationnels de modélisation hydro-sédimentaire en mesure de fournir des réponses
objectives et fiables aux différentes questions qui se posent actuellement concernant la

gestion durable de I’environnement littoral.
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Appendix A

Obtention des Equations de Serre sur
Fond Variable

Le modéle de Boussinesq choisi constitue une extension des équations de Serre [140]
vers des applications sur fond variable. Nous obtenons par la suite ce systéme & partir
des équations du mouvement pour un écoulement parfait. L’adimensionnalisation des

équations s’effectue en introduisant les variables et paramétres suivants,

r=Lzx*, z=hyz*, t:Lcalt*,

E=h&, n=an*, p=pcp*, (A.1)
_ _ ¢
6_%a O-_fov /\_fov

avec * l'indice désignant les variables adimensionnelles, = et z étant respectivement
les coordonnées horizontale et verticale, ¢ le temps, & = —ho + ( la cote du fond avec
¢ = ho A(* la distance algébrique verticale entre la référence z = —hg et le fond, 7
la cote verticale de la surface libre, p la pression, p la masse volumique du fluide, et
g laccélération de gravité (voir Figure A.1). Par ailleurs nous avons introduit L et
a comme la longueur et I'amplitude caractéristique des ondes, ¢y = \/ghg la vitesse
de référence associée, hy la hauteur d’eau caractéristique dans la zone étudiée et (y
I’amplitude caractéristique des variations du fond. De cette adimensionnalisation ré-
sultent trois paramétres caractéristiques, €, o et A, qui tiennent compte respectivement
de I'importance relative des non-linéarités, de la dispersion et des variations spatiales
du fond. De plus nous introduissons I'opérateur de moyenne sur la profondeur totale
d’eau,
_ 1 en’

677_5* é—*

fr(z*, 2", ") dz". (A.2)

A Tl'aide des définitions présentées ci-dessus, il est possible d’écrire 1’équation po-
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Surface libre \
\

z
T z Niveau de référence

Profil bathymétrique

z =& au fond ///C_F\g

Figure A.1: Définition schématique des variables dimensionnelles pour une vague se propageant sur

un fond irrégulier. z = i correspond & la position de la surface libre, z = £ est la coordonnée vericale
du fond (£ étant ici une valeur négative), et h = 1 — € est la hauteur d’eau instantannée.

tentielle, en variables adimensionnelles, associée aux équations de conservation de la
masse et de la quantité de mouvement. Nous en déduisons le champ de vitesses com-
patible avec les équations qui gouvernent le mouvement des ondes de gravité dans un
fluide parfait et irrotationnel en prenant soin de retenir tous les termes jusqu’a O(o?).
Aucune hypothése ne sera introduite concernant la grandeur relative du paramétre e
car celui-ci est de O(1) prés du point de déferlement. En ce qui suit, nous ne tiendrons
pas compte des indices * par commodité.

En variables adimensionnelles, le systéme d’équations en termes du potentiel de
vitesses, ¢(z, z,t), s’écrit de la maniére suivante (voir par exemple les références [110,
113]),

Pz + %aﬁzz =0 pouré<z<en, (A.3)
M+ €Pull — %fzﬁz =0 pour z = en, (A.4)
¢ +m+ %e (qﬁi + éqﬁz) =0 pour z = e, (A.5)
%qﬁz — &0, =0 pour z=¢&. (A.6)

Développons maintenant la fonction potentielle ¢(z, z,t) en une série de puissances de
z — £ en introduisant une séparation des variables verticale et horizontale. La série de

puissances s’écrit, alors,

b(z,2,1) = Z%@n(x,t), (A7)

n=0
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avec ®,, les coefficients de la série.
En remplacant la série (A.7) dans les équations (A.3) et (A.6) nous obtenons une

définition récurrente des coefficients ®,,,

{ 0y (z,1) o*[1 4 (0€:)°] 1&“’0

92 0%,
(I)('n.+2) ($,t) = _02[1 + (Ofw) ] ! [Bcc('iz - g:v ((9;1) - %(fzé(n—l—l))}

avec ®y(z,t) étant le potentiel de vitesse évalué au fond (z = £). En supposant que A

(A.8)

est au plus de 'ordre O(1) (i.e. & ~ O(1)), les coefficients de la série s’écrivent,
@1($, t) - 02[1 - (051)2]&0 30 + O( )
> 0%,
Doy, ) = —0[1 = (06)"] |52 — £, 2220 — 2 (6,0(,.1))] +O(0)

La fonction potentielle de vitesses peut donc étre estimée de la maniére suivante,

d(z,z,t) = Pg— 02% { (= ;6)2%} + O(c%). (A.10)
2%

En définissant la vitesse horizontale évaluée au fond comme uy(z,t) = %2, nous

obtenons & partir de I’équation (A.10) les profils de vitesses horizontale et verticale,

(A.9)

u(z,z,t) = ¢p=1uy— 0268(% {(z _26) uo} + O(o"), (A.11)
w(z, 7, 1) = % S {(z — g} + 0(0?). (A.12)

Pour éliminer la coordonnée vertlcale z de Pexpression (A.11), il suffit d’appliquer
I'opérateur (A.2). Nous obtenons alors la vitesse horizontale moyennée sur la pro-

fondeur d’eau,

o (€en — 6)(

u(w,t) = [1—(0&)Juo + 0 2§z >+ Eartiy)

2(577 f) & ug 4
-0 & 920 +0(c%). (A.13)

En inversant la relation précédente nous pouvons écrire pour la vitesse horizontale

évaluée au fond,

(en —¢§)
2

Ce qui nous autorise & exprimer le champ de vitesses compatlble avec 'équation (A.3)

ug(w,t) = [1+ (0&,)%)u — o? 2 (€ 77 £)?

(28,10 + E4pl) + 07— Ty, + O(0*). (A.14)

et la condition aux limites (A.6) comme,

u(z,z,t) = u— o [(67727_{':) +(z — f)] (28315 + Epptt) +

+0° [(en I 6)2] Uge +0(0")  (A.15)

6 2
0

v(z,z,t) = % {(z — &)a} + O(c?) (A.16)
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Le systéme d’équations de Serre sur fond variable s’obtient en remplacant le champ
de vitesses donné par les expressions (A.15) et (A.16) dans les équations de continuité
et de conservation de la quantité de mouvement moyennées sur la profondeur totale

d’eau. Ces équations sont présentées ci-dessous,

1 {en -y =0, (A17)
(- om + (- O@E D} +eple =0, (A1)
p(z,z,t) = (en — 2) + eaQ/P(x, z,t) dz, (A.19)

z

avec ['(z, z,t) = w; + e(uw, + ww,) étant 'accélération verticale du fluide.

Il est important de noter que ce systéme constitue une forme «exacte» des équations
du mouvement pour le cas d’'un fluide parfait. L’utilisation du champ de vitesses
exprimé par les relations (A.15) et (A.16) conduit au systéme de Serre qui constituera
donc une approximation & 'ordre O(c*). Avant d’étre en mesure d’écrire ce systéme,
il nous faut exprimer les intégrales qui apparaissent dans les équations (A.17)-(A.19).
En utilisant les définitions pour les profils des vitesses on montre que,

u? =@+ 0(o*), (A.20)
en
p= ;(en ) +eo?(en — &) 1/ ['(z,2,t)dz, (A.21)
£
en
ple = (en — &) + eo? / ['(z,2,t)dz, (A.22)
£

Similairement, ’accélération verticale peut étre estimée comme,

(z=¢)

(=6 P(z,t) + Q(z,t)| + O(c?) (A.23)

O [

ou nous avons introduit deux nouvelles fonctions en rapport avec l’estimation de
I’accélération verticale du fluide & la surface libre,

P(iﬁ, t) - _(677 - 6) (ﬂ'wt + Gﬂﬂww - Cﬂi),

et au fond,

Q(x,t) = & (U + etilly) + €€y
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Finalement, nous pouvons écrire les intégrales associées aux termes d’accélération
verticale de la maniére suivante :
en
/F(x,z,t) dz = (en — &) <%P(a¢, t) + Q(m,t)) + O(0?)

£
€1

/(z — O (z,2,t) dz = (en — 2)? (%’P(m, t) + %Q(m, t)) + O(0?)
£

En remplagant les expressions qui viennent d’étre déterminées dans I’équation de
quantité de mouvement horizontale (A.18), et en rappelant que h = en — z, nous
obtenons les équations du mouvement sur fond variable en retenant tous les termes

jusqu’a l'ordre O(o?),

on 0 L

E-ﬁ-%{hu}—o, (A.24)
I I 22 Tt (L g 2
p {hu}+€8x {ha®} +hny + o % [h <3P(x,t) + 2Q(x,t)>} +

+%6h (%P(w, 0+ Q(x,t)) —0@").  (A.25)

Il est facile de verifier que cette forme est équivalente au systéme d’équations de

Serre sur fond variable écrit par Seabra-Santos et al. [136].
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Appendix B

Total energy dissipated by shear

stresses at the roller interface

The local rate of energy dissipation by turbulent shear stresses at the interface between
the aerated region and the underlying flow reads (see Chapter 4 for variables and

parameter definitions),

D, U [ de?
L e sin ®cos ® | cos P. (B.1)
prgc ¢ \dX

Using the shallow water approximation we can link the horizontal flow velocity with
the water depth as U/c = —d/h. Using in addition the approximated expression for
the mean location of the water depth, h = (1 +v/2 — X/d tan ®) d, we find,

T ! (B.2)

(1+7—Ztan®)’

Now expanding function (B.1) in Taylor series about 4 tan ® invoking relation (B.2),

we obtain,
D cos @ X tan @ de? de
= — ———| | = —esin®cos® | + O(—= tan® @, tan’ ).
P 1+2) +d(1+%) (dX e sin ® cos )+ (dX an” @, tan® @)

(B.3)

We want to spatially integrate equation (B.3) over the roller length, /.. Nonlinear
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terms appearing above are computed using integration by parts as follows,

b de? 21l 2 2
: Xd—dez[Xe}o—/e dX:—/e dXx, (B.4)
0 0
lr 1
— sin ® cos / XedX =~ cos’ tan ® [X7¢] (B.5)
0

1 b d d
+§(3052¢>tan<1> 0 X2d—;dX:O[£tan<D}.

Consequently, the total energy dissipation by shear stresses at the interface is estimated

as,
lr
D, — / D, dX
0 cos ¢
. ® (b d
Prgc ASin(I)COS(I)—L/ e2dX +O(tan3¢,tan2(1>—e>,
(1+3) d(1+3) Jo X
(B.6)

where A = fOT edX.
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Appendix C

Article Révue Européenne de Génie
Civil
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Appendix D

Conference Proceeding ICCE 2004
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Appendix E

Conference Proceeding WAVES 2005
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