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Abstract. In this study we focus on theoretical and numerical questions around
the shallow water equations. The first part is devoted to the formal derivation of
a new viscous shallow water model with friction and surface tension extra terms.
We perform then a mathematical analysis of the obtained model in order to obtain
existence results for global weak solutions.
In the second part we develop a new numerical well-balanced model which appears
to be particularly well-suited for problems involving a moving shoreline and strong
topography variations, in a two dimensional framework.
The third part is devoted to the applications of our numerical model to several
problems concerning nearshore hydrodynamics. More precisely, the propagation in
coastal domains of long waves regarded as tsunamis are first investigated. Then we
perform a study of nonlinear wave/currents interactions in the Inner Surf Zone.
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Les nombreux échanges scientifiques avec Philippe m’ont permis de découvrir et ap-
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Introduction générale

La circulation de masses d’eau en milieu littoral est contrôlée principalement par les
transformations non-linéaires de la houle et de la marée, liées à la forte diminution
de la profondeur d’eau à l’approche du rivage. La compréhension et la modélisation
de ces processus hydrodynamiques représentent un enjeu scientifique important, en
particulier si l’on veut être capable de prévoir l’évolution morphodynamique du lit-
toral (zones d’embouchures estuariennes et lagunaires, plages sableuses et formation
de barres, etc...) et l’impact d’éventuels aménagements.

L’objectif de cette thèse concerne la dérivation de modèles théoriques et le développe-
ment d’outils de simulation numérique permettant d’appréhender les écoulements lit-
toraux et l’hydrodynamique associée à la transformation de la houle en milieux peu
profonds en présence ou non de marée. Le domaine d’étude est de l’ordre de quelques
kilomètres carrés à quelques centaines de kilomètres carrés. Cofinancée par le CNRS et
le Conseil Régional d’Aquitaine, cette thèse repose sur une collaboration transverse as-
sociant deux UMR Bordeaux 1/CNRS : le Laboratoire de Mathématiques Appliquées
(MAB) et le Département de Géologie et Océanographie DGO (UMR EPOC). Plus
généralement, les travaux effectués au cours de cette thèse s’intègrent d’une part dans
le cadre des activités du Réseau littoral Aquitain et d’autre part dans le cadre du
programme national “Atmosphère et Océan à Multi-échelles” (PATOM) de l’INSU.

S’il est possible de calculer la propagation et la transformation des vagues à partir
de la résolution des équations de Navier-Stokes diphasiques (NSD) pour des cas idéal-
isés à petite échelle, il est nécessaire d’adopter une démarche différente lorsque l’on
s’intéresse à la modélisation hydrodynamique en milieu naturel aux échelles qui nous
intéressent. En l’état actuel, les modèles décrivant la génération des courants par la
houle et leurs interactions ne sont pas entièrement satisfaisants tant d’un point de vue
théorique que numérique, en particulier en milieu peu profond.
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2 Introduction générale

Figure 0.0.1. Représentation schématisée de la zone de surf et du domaine de
validité des modèles BSV (Bonneton [18]).

Dans la zone littorale, l’échelle horizontale caractéristique de l’écoulement moyen
est grande devant la profondeur d’eau. En particulier, l’approximation des “ondes
longues”, c’est à dire des ondes pour lesquelles la profondeur d’eau est petite devant la
longueur d’onde, semble bien adaptée à la description de phénomènes tels que marées,
propagation de houle dans la zone de surf interne et zone de swash, ou encore prop-
agation d’ondes de type tsunamis. Il apparâıt donc naturel d’essayer de réduire la
complexité du problème en travaillant non plus sur les équations tri-dimensionnelles
du mouvement, mais sur un système d’équations bi-dimensionnelles obtenu par inté-
gration suivant la verticale des équations de Navier-Stokes. Dans cette optique, deux
approches peuvent être envisagées. La première se situe dans un contexte de mod-
élisation statistique 2DH de l’évolution morphodynamique des plages sableuses pour
des échelles de temps qui vont de quelques cycles de marée à quelques mois. L’idée
est de traiter de façon déterministe les processus lents et de façon statistique les pro-
cessus rapides. Pour cela, une séparation d’échelles temporelles est effectuée et les
équations intégrées selon la verticale sont filtrées. La seconde approche concerne la
modélisation de la propagation des ondes de surface en milieu peu profond par les équa-
tions bi-dimensionnelles de type Boussinesq d’une part et Saint-Venant d’autre part
(Boussinesq et/ou Saint-Venant noté BSV dans la suite). Ici, le calcul de l’évolution
temporelle à haute fréquence de l’hydrodynamique est effectué, donnant accès à des
valeurs instantanées de certaines quantités caractéristiques (vitesse, vorticité, etc...)
et cette approche peut être utilisée également pour déterminer avec précision les vari-
ables hydrodynamiques moyennées sur une période de vague.
Nous nous focalisons dans cette étude sur cette dernière approche et en particulier sur
le système de Saint-Venant. Ce système permet en effet de décrire de façon naturelle
la propagation de vagues dans la zone de surf. Bien sûr, la variabilité verticale de
l’écoulement, ainsi que la turbulence ne sont pas explicitement calculées. Toutefois
de nombreuses études ont montré que ce modèle décrit de façon très satisfaisante la
transformation de la houle à l’approche du rivage et particulièrement dans la zone de
surf interne. La classification des différentes zones, ainsi que le domaine de validité
des modèles Boussinesq et Saint-Venant sont illustrés Figure 0.0.1.
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Le système de Saint-Venant initialement introduit dans sa version mono-dimensionnelle
dans un Compte Rendu à l’Académie des Sciences en 1871 par A.J.C. Barré de Saint-
Venant est un système hyperbolique décrivant l’écoulement d’eau dans un canal rec-
tiligne à fond plat en terme de hauteur d’eau h(t, x) et de vitesse moyennée selon la
direction verticale u(t, x) :

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(

hu2 + 1
2gh

2
)

= 0.

où g désigne la gravité. La seconde variable conservative m(t, x) = h(t, x)u(t, x) con-
sidérée dans ce modèle désigne le débit. Dans sa version bi-dimensionnelle, ce modèle
permet de modéliser bon nombre de phénomènes impliquant des fluides géophysiques
à surface libre en écoulement “peu profond”. Ce système peut inclure de nombreux
termes sources adaptés aux besoins spécifiques des phénomènes modélisés, comme des
termes tenant compte des variations de topographie, des termes dissipatifs de diffu-
sion ou de friction ou encore des termes générateurs de mouvements tenant compte
par exemple de l’influence du vent en surface. Son champ de validité et d’ application
s’avère donc être très étendu.

Le travail présenté dans cette thèse s’articule autour de trois parties. La première
partie concerne une étude théorique d’un modèle de Saint-Venant bi-dimensionnel
comprenant sa dérivation rigoureuse à partir des équations de Navier-Stokes puis la
démonstration d’un résultat d’existence de solutions globales pour ce système, dans
un sens faible. La deuxième partie s’attachera à la mise en place et à la validation
d’une méthode de résolution numérique adaptée à nos besoins et permettant de lever
partiellement quelques difficultés récurrentes dans la modélisation des phénomènes
de propagation d’ondes longues dans les domaines littoraux. Enfin la troisième et
dernière partie sera l’occasion de valider le modèle numérique obtenu à l’aide de cas
concrets et plus réalistes du point de vue physique. Les études numériques réalisées
dans cette partie concernent notamment le run-up d’ondes de type “tsunamis”, ainsi
que la transformation et la propagation de la houle sur des topographies réalistes. Plus
précisément, le détail des différents chapitres sera le suivant :

Première partie - Etude théorique

Le premier Chapitre est consacré à la dérivation par analyse asymptotique d’un
modèle de Saint-Venant bi-dimensionel incluant des termes de diffusion, de friction,
de tension de surface, de Coriolis, ainsi qu’un terme tenant compte des variations de
topographie. Cette dérivation est une généralisation au cas bi-dimensionel du travail
effectué par Gerbeau et Perthame [62] dans le cas uni-dimensionnel.
La dérivation des équations de Saint-Venant en tant que système hyperbolique ho-
mogène du premier ordre est classique. Cependant, trés peu de travaux concernent
la dérivation rigoureuse de modèles visqueux, et beaucoup moins encore de modèles
bi-dimensionnel visqueux. Les termes visqueux sont donc souvent ajoutés aux modèles
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a posteriori sans justifications satisfaisantes. Par ailleurs, l’inclusion d’autres termes
sources particuliers comme les termes de friction quadratiques de type Manning, Chezy
ou Strickler, les termes de tension de surface ou encore de forçage en surface reposant
sur des approximations empiriques, paramétrisations des petites échelles, est égale-
ment non justifiée d’un point de vue mathématique.

Nous proposons donc ici la dérivation d’un modèle de Saint-Venant bi-dimensionnel
visqueux à partir des équations de Navier-Stokes homogènes et incompressibles, dans
un domaine borné et régulier de R

3, en milieu tournant. Cette dérivation résulte
de l’approximation de “couche mince” (ou d”’onde longue”) permettant une analyse
asymptotique en fonction du rapport ε des échelles caractéristiques des mouvements
verticaux et horizontaux. Les conditions aux limites appliquées sont de type sur-
face libre avec continuité des contraintes à l’interface air-fluide et tension de surface
(phénomènes de capillarité). Le fond est considéré variable et nous introduisons des
conditions aux limites de friction (lois de paroi laminaire et quadratique au fond). Les
principaux apports de ce travail concernent d’une part l’extension bi-dimensionnelle
d’une méthode introduite initialement dans le cas uni-dimensionnel [62], ainsi qu’une
justification asymptotique de la présence de termes de diffusion, friction et tension de
surface, puisqu’ils sont ici obtenus directement à partir de l’analyse asymptotique. Le
caractère bi-dimensionnel de la dérivation fera en particulier apparâıtre une formula-
tion nouvelle du terme de diffusion. Le modèle dérivé et étudié tout au long de cette
thèse est le suivant :







































∂th+ div (hu) = 0 ,

∂t(hu) + div (hu ⊗ u) + g h∇h =

−α0(h)u − α1(h)h |u|u + µdiv
(

hD(u) + (2hdiv u)I
)

+βh∇∆h− f(hu)⊥ − g h∇d+ β h∇∆d .

où

α0(h) =
kl

1 +
klh

3µ

, α1(h) =
kt

(1 +
klh

3µ
)2
,

et

D(u) =
1

2

(

∇u + t∇u
)

.

Dans ce modèle, h(t, x, y) et u(t, x, y) désignent respectivement la hauteur de la
colonne d’eau et la vitesse intégrée selon la direction verticale. g, f , µ, kl, kt et β
désignent respectivement l’accélération de pesanteur, le paramètre de Coriolis et les
coefficients de viscosité, de friction laminaire et quadratique et de tension de surface.



Introduction générale 5

Le Chapitre 2 est consacré à la démonstration de résultats d’existence de solutions
faibles globales pour le modèle précédent. La démonstration proposée ici repose sur
des méthodes classiques d’analyse non-linéaire, à savoir l’obtention d’une formulation
variationelle approchée du problème et l’utilisation d’un théorème de point fixe, ici le
théorème de point fixe de Schauder. Dans un second temps, l’obtention d’inégalités
d’énergie, d’estimation a priori sur les solutions approchées permet le passage à la
limite dans la formulation approchée. Les critères de compacités nécessaires au passage
à la limite s’inspire d’une part des travaux effectués par Bresh et Desjardins [51] dans
le cas d’un modèle de Saint-Venant bi-dimensionnel avec terme visqueux classique et
coefficients de friction constants, et d’autre part des travaux de Simon [158] et Boyer et
Fabrie [22] dans le cadre des équations de Navier-Stokes non-homogènes. Dans le cas
uni-dimensionnel, un théorème d’existence de solutions faibles globales pour le modèle
complet est obtenu. L’apport de ce résultat vis à vis de celui introduit par Bresh et
Desjardins concerne la prise en compte d’une part du terme de viscosité particulier et
d’autre part des coefficients de friction α0(h) et α1(h). Cependant ce résultat n’a pu
être obtenu pour l’instant que sur le modèle uni-dimensionnel.
En effet, dans le cas bi-dimensionnel, des difficultés supplémentaires apparaissent,
imputables en particulier à la forme non classique du terme de diffusion qui interdit la
simple généralisation de la démonstration effectuée dans le cas uni-dimensionnel, et aux
coefficients de friction laminaire et quadratique α0(h) et α1(h) dont la dépendance en h
conduit à des estimations plus faibles sur la vitesse u que celles obtenues en dimension
un. Pour lever ces difficultés, un modèle simplifié a donc été étudié et une hypothèse
sur la positivité de la solution approchée h(t, x, y) a été faite.

Deuxième partie - Etude numérique

La deuxième partie de ce travail concerne l’implémentation d’une méthode numérique
permettant de discrétiser le modèle précédent. Le système de Saint-Venant peut être
considéré selon deux approches radicalement différentes. D’une part sa dérivation et
bon nombre de ses applications physiques mettent en évidence ses relations avec les
équations de Navier-Stokes et les méthodes de type éléments finis développées depuis
plusieurs dizaines d’années pour la résolution des équations de Navier-Stokes incom-
pressibles peuvent être en partie adaptées. D’autre part, les propriétés mathématiques
du système homogène soulignent son caractère hyperbolique et les analogies avec les
équations de la dynamique des gaz. L’étude des systèmes hyperboliques du premier or-
dre, apparaissant dans la modélisation de nombreux phénomènes physiques comme la
dynamique des gaz en variables eulériennes ou encore l’électromagnétique, est actuelle-
ment un des grands champs d’investigation de l’étude des équations aux dérivés par-
tielles. Ainsi, considérer le caractère hyperbolique du système de Saint-Venant peut
nous permettre de bénéficier de l’expérience acquise dans ces autres domaines. C’est
dans cette seconde optique que se situe notre approche numérique.
Pour le choix d’une méthode numérique adaptée, nous nous sommes attachés à anal-
yser avec soin les processus physiques impliqués dans le type d’applications recherchées.
Les principales caractéristiques considérées, ainsi que les réponses proposées du point
de vue numérique sont les suivantes :
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(1) Tout d’abord, les processus de déferlement des vagues dans la zone de surf
conduisent à des phénomènes de distorsion des vagues, menant à la formation
de fronts d’onde particulièrement raides et à une forme de vagues caractéris-
tique, dite en “dent de scie”. De plus, il est classique dans le Génie Côtier
d’estimer la dissipation dans les vagues ayant déferlé en faisant une analo-
gie entre ces fronts d’onde et le ressaut hydraulique propagatif, utilisant la
théorie hyperbolique des ondes de choc. Ces constatations ont conduit peu
à peu à l’adaptation des méthodes de type Volume Finis utilisant un solveur
de Riemann afin de permettre la capture et la propagation de discontinu-
ités isolées et d’obtenir une bonne estimation de la dissipation d’énergie sans
ajouter de termes correctifs. Nous nous sommes donc orientés vers le choix de
méthodes Volumes Finis sur maillage structuré régulier ou non, avec solveurs
de Riemann exacts ou approchés. En outre, le caractère souvent fortement
diffusif des schémas d’ordre un nous amène à considérer une extension vers
un schéma quasi d’ordre deux par une méthode de reconstruction de vari-
ables et de limitation de pentes (MUSCL). Dans une optique similaire, Bon-
neton et Vincent ont déja développé un code Volumes Finis uni-dimensionnel,
SURF−SV , basé sur un schéma du second ordre de type MacCormack. Ce
modèle donne de bons résultats concernant les processus évoqués plus haut
mais souffre de quelques limitations, notamment concernant la manière de
prendre en compte les variations de topographies et l’évolution de la ligne
d’eau. D’autres méthodes doivent donc être envisagées.

(2) Le phénomène de déferlement des vagues qui se produit pour de faibles pro-
fondeurs, le déferlement bathymétrique, joue un rôle dominant dans la dy-
namique littorale. Ce phénomène est très fortement conditionné par les vari-
ations topographiques. Dans une autre optique, certaines ondes longues peu-
vent atteindre le rivage sans avoir déferlé. Comprendre les interactions de
telles ondes avec les structures, naturelles ou non, présentes près des côtes est
également un sujet important. Ces observations nous amènent à considérer
avec soin la manière dont le terme source décrivant les variations de la to-
pographie est intégré au modèle numérique. Nous nous sommes donc orientés
vers le choix de schémas de type“schéma équilibre”. Ces schémas ont la partic-
ularité d’une part de mieux appréhender les fortes variations de topographie
et leur influence sur les caractéristiques de l’écoulement considéré, et d’autre
part autorisent la préservation au niveau discret des états d’équilibre de type
subcritique ou au repos, la convergence vers ces états d’équilibre ainsi que le
calcul de faibles oscillations autour de tels états.

(3) La simulation d’écoulements dans la zone de surf implique également d’être
capable de simuler les phénomènes complexes générés dans la zone de swash,
qui est alternativement couverte et découverte sous l’effet des ondes inci-
dentes. Ces phénomènes, nommés “run-up” et “run-down”dans la littérature,
sont complexes d’un point de vue numérique puisqu’ils impliquent d’être ca-
pable de gérer l’apparition ou le recouvrement de zones sèches, sur des to-
pographies souvent irrégulières. La ligne d’eau, définissant la frontière entre
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la zone inondée et la zone sèche, est en perpétuel mouvement, générant une
variation temporelle du domaine occupé par le fluide. Ce problème de gestion
de ligne d’eau est donc souvent assimilé dans la littérature à un problème de
condition aux limites, menant à des algorithmes de gestion du domaine de cal-
cul compliqués et difficilement généralisables aux domaines bi-dimensionnels.
L’utilisation de méthodes de type Volume Finis apparâıt alors comme une
alternative intéressante. En effet l’utilisation d’un solveur de Riemann local,
combiné avec une gestion souvent simple des cellules de discrétisation “mouil-
lées” ou “sèches” permet de “capturer” les transitions entre ces deux types de
cellules et conduit à des résultats encourageants et aisément transposables
au cas bi-dimensionnel. Toutefois, l’extension d’une telle méthode de gestion
de la ligne d’eau dans le cas de propagation d’ondes sur une topographie
variable conjointement à l’utilisation d’un schéma équilibre n’est pas triviale.
En effet, une nouvelle difficulté, liée à la préservation de la positivité de la
hauteur d’eau, apparâıt. A notre connaissance, aucun schéma équilibre n’a
encore été appliqué à la gestion de problème de ligne d’eau et de run-up sur
des topographies variables.

(4) Enfin, le choix d’une méthode de type Volume Finis pour discrétiser la partie
hyperbolique nous amène inévitablement à considérer un algorithme à pas
fractionnaires permettant de prendre en compte les termes sources restant, à
savoir les termes de dissipation, de Coriolis et de tension de surface. Cette
méthode à pas fractionnaires doit en outre nous permettre de conserver les
bénéfices issus du schéma équilibre utilisé pour le système hyperbolique ainsi
que la positivité de la hauteur d’eau.

Ainsi, après une étude bibliographique concernant les divers aspects que nous venons
d’évoquer, nous rappelons au Chapitre 3 la méthode classique de Volumes Finis de
type Godunov, dans un contexte bi-dimensionnel sur maillage cartésien. Les principes
généraux sous-jacents aux schémas de type équilibre sont ensuite exposés brièvement
avant de rappeler plus en détail le formalisme de deux solveurs “well-balanced” ré-
cents basés sur la résolution directe d’un problème de Riemann sur une topographie
constante par maille : le schéma équilibre original issu des travaux de Greenberg et
Leroux [72], et une version équilibre du solveur VFRoe-ncv introduit par Gallouët et
al. [59]. Des validations de type hydraulique sont d’abord présentées pour ces deux
solveurs. Puis nous nous intéressons à un problème classique de run-up sur plage en
pente afin de mettre en évidence les limitations de ces deux schémas pour ce type de
problèmes particuliers.
Dans le Chapitre 4, nous exposons brièvement une méthode récente introduite dans
[3], permettant d’obtenir un schéma équilibre qui préserve la positivité de la hauteur
d’eau. Cette méthode est ici utilisée conjointement au solveur VFRoe-ncv pour sys-
tèmes homogènes, qui, sans assurer la positivité de la hauteur d’eau dans un sens aussi
précis que pour les schémas de Godunov ou cinétiques [58], permet toutefois de bien
gérer en pratique l’apparition ou le recouvrement de zones sèches. Une extension vers
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un schéma équilibre quasi d’ordre deux est ensuite décrite et la question des condi-
tions aux limites génératrices/absorbantes est abordée. Tout ceci nous conduit à un
nouveau modèle, nommé SURF−SVWB, permettant de lever en partie les limitations
du code SURF−SV . Enfin, des validations numériques s’appuyant sur des cas tests
uni-dimensionnels et bi-dimensionnels impliquant des problèmes de ligne d’eau non-
triviaux sont effectuées.
Le Chapitre 5 nous permet d’introduire la méthode à pas fractionnaires implémen-
tée pour le traitement des termes sources de diffusion, Coriolis, tension de surface et
friction. Nous avons cherché à préserver les propriétés intéressantes induites par le
schéma équilibre utilisé dans le pas “hyperbolique”, comme la capacité de la méthode
à préserver les états d’équilibre au repos ou encore la convergence vers de tels états.
Quelques exemples numériques attestent enfin de la bonne gestion de la ligne d’eau
pour le modèle numérique complet.

Troisième partie - Application à l’ hydrodynamique
littorale

La troisième partie est l’occasion de mettre en oeuvre le modèle numérique développé
dans des situations décrivant la propagation de vagues en zone littorale.

Le Chapitre 6 est consacré à l’étude de la propagation et du run-up d’ondes longues
non déferlantes de type tsunami sur des topographies non régulières. La propagation
littorale de tsunamis et la modélisation du run-up généré par de telles ondes sur des
topographies complexes reste un problème ouvert. La plupart des modèles consti-
tuant l’état de l’art en la matière et utilisés pour la prévention de tel phénomènes
sont toujours basés sur des méthodes à pas fractionnaires. En particulier, la conver-
gence vers les états stationnaires au repos est donc impossible et les simulations sur
des topographies complexes conduisent souvent à des phénomènes d’oscillations ré-
sonnantes persistantes, en partie dues aux interactions non-linéaires de la topographie
avec l’onde mais également aux erreurs numériques dues à la méthode à pas frac-
tionnaires. Le traitement de la ligne d’eau repose aussi souvent sur des algorithmes
complexes. Dans cette optique, l’apport d’un schéma équilibre et du traitement précis
de la ligne d’eau associé peut apporter des solutions. Plusieurs tests numériques sont
donc réalisés, nous permettant d’observer, du moins d’un point de vue qualitatif, les
bénéfices apportés par notre modèle. Nous nous intéresserons principalement à deux
cas bi-dimensionnels, simulant d’une part le run-up d’une onde solitaire sur une plage
avec variations de topographie dans la direction longshore, permettant d’étudier les
phénomènes de résonances, et d’autre part le run-up d’un tsunami sur une ı̂le cônique
idéalisée, mettant en avant les phénomènes de réfraction autour de l’̂ıle.

Enfin le Chapitre 7 est centré sur l’étude numérique de la propagation des vagues
dans la zone de surf interne. Le phénomène de déferlement bathymétrique qui se pro-
duit pour des faibles profondeurs joue un rôle dominant dans la dynamique littorale.
La compréhension des processus non-linéaires associés au déferlement bathymétrique
reste également un problème scientifique ouvert. Une meilleure compréhension de ces
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phénomènes est importante ausi bien du point de vue fondamental que dans l’objectif
d’améliorer leur modélisation en vue de simulations méso-échelles (10 km × 10 km)
et hydro-sédimentaires. Des efforts doivent être consacrés à l’étude de ces processus
complexes en particulier en présence de bathymétries fortement irrégulières (barres
littorales). En particulier, l’étude de la génération de courants moyens induits par la
houle est un domaine complexe et l’approche numérique classique, souvent dans un
contexte de modélisation morphodynamique pour de grande échelles de temps [39],
repose principalement sur l’utilisation de modèles intégrés selon la verticale et moyen-
nés sur une période de vague. Cette approche, qui apporte par ailleurs des réponses
satisfaisantes dans les domaines morphodynamiques, impose certaines limitations im-
portantes. En particulier, l’accès à certaines quantités instantanées, comme les oscil-
lations de la vitesse ou le champ de vorticité, quantités importantes pour l’étude du
transport sédimentaire, est impossible. De plus un traitement précis de la ligne d’eau
est également difficile. Dans cette optique, l’utilisation de modèles de type BSV peut
se révéler avantageuse, permettant en particulier le calcul, à la résolution temporelle
désirée, d’un grand nombre de variables instantanées caractéristiques de l’écoulement
et éventuellement également de quantités intégrées. Des études bi-dimensionnelles con-
cernant la zone de surf interne ont été menées récemment utilisant des modèles de type
Boussinesq. Mais à notre connaissance, aucune étude n’a été réalisée en s’appuyant
sur un modèle de type Saint-Venant, profitant ainsi de la description naturelle de la
propagation des vagues et de la dissipation d’énergie associée dans la zone de surf
interne.
Ainsi, après une validation de la capacité du modèle à appréhender la propagation et la
distorsion des vagues dans la zone de surf interne reposant sur un jeu de données expéri-
mentales

”
nous nous intéressons plus particulièrement à la mise en évidence numérique

de la formation de courants sagittaux au dessus d’un système de barre/baı̈ne idéalisé.
Notons que la terminologie “courant sagittal” désigne un courant moyen, calculé sur
une période de vague. Une mise en évidence de la réfraction des vagues se propageant
au dessus du système, ainsi qu’une brève étude du champ de vorticité instantané généré
sont également présentées.
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Theoretical study





Introduction

Derivation of a new two dimensional viscous shallow water
model

Modelization of free surface flows is an extensive domain of research which plays
an important role in many engineering applications such as ocean circulation, coastal
exploitation, man-made structures in rivers or lakes or study of the atmosphere for
instance. It is usual to describe this kind of flow in a classical fluid mechanics frame-
work using the three dimensional Navier-Stokes equations , assuming the fluid to be
Newtonian, viscous and incompressible. Computationally, the complete resolution of
the Navier-Stokes equations for a free surface flow is known to be dramatically onerous
and the three dimensional framework often entails numerical complexity in the mesh-
ing procedure and the implementation of the discretization method. For these reason,
and when the fluid domain can be regarded as a thin layer of fluid (when the ratio
between the vertical and the horizontal scales is small enough), it is usual to consider
the nonlinear shallow water equations.
More generally, non-linear shallow water equations (NSW) model the dynamics of
a shallow, rotating layer of homogeneous incompressible and inviscid fluid and are
typically used to describe vertically averaged flows in three dimensional domains, in
terms of horizontal velocity and depth variation. This set of equations is particularly
well-suited for the study and numerical simulations of a large class of geophysical phe-
nomena, such as river flows, coastal domains, ocean circulation, or even run-off or
avalanches when modified with adapted source terms. These models are also exten-
sively used in the field of hydraulic applications. The usual conservative form of NSW
equations introduced in [160],without viscosity and capillary effects, is written as a
first order hyperbolic system with various source terms as bed slope or bottom friction
terms.
The derivation of the NSW system is classical when the viscosity and capillary or wind
effects on the free surface are neglected ([53], [182], [161]). In the literature, we often
find various NSW models which may include wind effects on the free surface, bottom
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topography and friction effects on the bottom, often defined using the Manning-Chezy
empirical formula, or viscosity (see [1] and [9] for instance). However, these models are
often linked to a particular field of investigation and their derivation is often unclear,
relying on some unjustified heuristic and empirical approximations. Moreover, the vis-
cosity is often neglected in the derivation and added a posteriori to the NSW model,
using turbulent models and leading to empirical and anisotropic eddy viscosity [41],
[110]. For numerical purpose, even if empirical NSW models are widely used since
over twenty years and often provide suitable results when applied to their domain of
validity, it may be an improvement to understand precisely the derivation including
viscous terms.

In [62], Gerbeau and Perthame have introduced some ideas leading to the deriva-
tion of a viscous one dimensional shallow water model, with a particular laminar
friction term at the bottom. Starting from the free surface two dimensional Navier-
Stokes equations on a flat bottom with a Navier condition at the bottom which takes
into account the friction effects, they derive their one-dimensional model in two steps,
relying on an asymptotic analysis with respect to the ratio between the vertical and
the horizontal scales (namely the aspect ratio). No stresses on the free surface and no
turbulence model for the stress tensor were considered. In the first step, a first order
hyperbolic model is derived relying on hydrostatic and shallow water approximation.
This first model includes a classical laminar friction term and approximates the free
surface Navier-Stokes equations at the first order with respect to the aspect ratio. In
a second step, the vertical distribution of the velocity is recovered through a parabolic
reconstruction, leading to a second model including viscosity. This model approxi-
mates the free surface Navier-Stokes equations at the second order with respect to
the aspect ratio. It is worth mentioning that the laminar friction term is modified in
this second model, since the viscous effects are recovered in its formulation. Note that
this derivation has been generalized by Audusse in [5], where the derivation of a one
dimensional multilayer Saint-Venant model which aims at describing more precisely
the vertical variability of the relevant quantities.

In the first chapter, we aim at improving the two dimensional derivation of NSW
models by introducing a new two dimensional NSW model, including viscosity, laminar
and turbulent friction terms, bed slope source term, Coriolis effects and capillary ef-
fects on the free surface. This new model is obtained following [62] from an asymptotic
analysis of the non-dimensional and incompressible three dimensional Navier-Stokes-
Coriolis equations with a large-scale assumption and hydrostatic approximation in a
rotating sub-domain of R

3. The method for the one-dimensional is extended to the
two-dimensional case. The free moving surface boundary condition for the Navier-
Stokes-Coriolis equations is completed with normal stress continuity and capillary
effects at the air-fluid interface. The bottom is considered as uneven with no assump-
tions about these variations. Furthermore, we introduce here different kinds of friction
terms in the bottom boundary conditions, namely linear and quadratic laws. We do
not propose any turbulent model or wind-stresses on the free surface, although it does
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not modify the main ideas of the derivation. In our study it is worth noting the origi-
nality of introducing surface tensions through the capillary effects at the free surface.
This term can be regarded as a small dispersive term. As emphasized in [51], the
introduction of the third-order surface-tension term induced by capillary effects and
of the quadratic bottom friction term is of a relevant utility in the proof of existence
of weak-solutions for this particular model. This problem is addressed in Chapter 2.
Furthermore, the quadratic formulation of the bottom friction allows us to extend the
validity of this set of NSW equations to coastal hydrodynamic simulations by the use of
Manning-Chezy or Strickler numerical formulation (see [133]). The two-dimensional
framework also highlights the existence of a particular viscous term, which was only
identified as a modified coefficient in the one-dimensional case.

The derivation is realized in two steps. First we derive a shallow water model
with Coriolis effects and uneven bottom with a small laminar friction term, resulting
from a first order analysis, thanks to the large-scale assumption and the hydrostatic
approximation. In a second part, we perform a parabolic correction of the horizontal
velocity in order to take into account the vertical variability of the phenomenon. A
more accurate asymptotic analysis provides a new model with a particular viscous
term, capillary effects and linear and quadratic drag terms with water depth and
viscosity dependent coefficients :







































∂th+ div (hu) = 0 ,

∂t(hu) + div (hu ⊗ u) + g h∇h =

−α0(h)u − α1(h)h |u|u + µdiv
(

h(∇u +t ∇u) + (2hdiv u)I
)

+βh∇∆h− f(hu)⊥ − g h∇d+ β h∇∆d .

(0.1)

where we have :

α0(h) =
kl

1 +
klh

3µ

and α1(h) =
kt

(1 +
klh

3µ
)2
.

where h stands for the water depth, u the depth averaged horizontal velocity and d
the variations of topography. Note that we have recently been aware of a recent paper
[149] in which Ferrari and Saleri also uses the main ideas of [138] to derive a two-
dimensional NSW model, including atmospheric pressure effects and wind effects in
the free surface boundary condition. This model does not consider quadratic friction
law and does not take into account the variations of topography, since all the terms
connected to the bottom topography are canceled trough the asymptotic analysis.
They suggest in a second step to symmetrize their model using a change of variable.
Note that these new non-conservative variables are also used in our numerical study
in order to recover suitable numerical properties [58]. Then, they add a viscous per-
turbation, which transforms the derived hyperbolic system into a parabolic one and
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consider numerical solutions of this new parabolic system. The convergence of this
new model solution towards the one of the undisturbed problem as the perturbation
vanishes is discussed. However the authors added a posteriori a standard viscous term
to the model after deriving it, and the term does not match the viscous term of [62] in
the degenerated one dimensional case. We emphasize that in the derivation proposed
here, the new viscous term is asymptotically derived from the Navier-Stokes-Coriolis
equations and degenerates into the same term as in [62].

Existence of weak solutions

We consider in Chapter 2 the shallow water model previously derived, in a bounded
two dimensional domain with periodic boundary conditions.
If mathematical theories for the study of the three dimensional Navier Stokes equa-
tions for incompressible homogeneous fluids are well-established now, this is not the
case for the two dimensional viscous shallow water model.
Bui [34] proved local existence and uniqueness of classical solutions to the Dirichlet
problem for the viscous shallow water equations using Lagrangian coordinates and
Hölder space estimates. Kloeden [94] proved global existence and uniqueness of clas-
sical solutions to the Dirichlet problem using Sobolev space estimates. He further
assumes that the solutions are spatially periodic and satisfy Dirichlet Boundary con-
ditions. In other works, Gustafsson and Sundstrom [75] studied mixed hyperbolic-
parabolic systems, including the viscous shallow water equations. They assumed ex-
istence of sufficiently smooth solutions and derived necessary boundary conditions for
well-posedness. Kanayama and Ushijima [89] establish an existence and uniqueness
results for weak solutions of the linearized viscous shallow water equations using the
Hille-Yosida Theorem. Miglio and Saleri [126] proposed an existence and unique-
ness result for the 3D shallow water equations using the convergence of a numerical
method. Xin and Zhang [192] studied the uniqueness and large time behavior of the
weak solutions to a particular one-dimensional model including third order derivative.
Existence of smooth solutions for small enough time or data close to equilibrium was
proven by Sundbye [163] with a viscous term of the form div (h∇u). Finally, Bresch
and Desjardins proved existence of global weak solutions first to a simplified model
[24] using a method developed for a Kdv model, and later for a model slightly different
to model (0.1), the main differences being constant friction coefficients and a simpler
viscous term [51].

Other ways of modelling viscous effects have been studied from a mathematical view
point. We can refer for instance to Lions [114] or Bernardi and Pironneau [13], who
have shown existence of solutions for various forms of the viscous term and have proved
convergence results for certain numerical schemes. Viscous terms of the form h∆h were
investigated by Orenga [130], in which existence of weak solutions with small enough
data was obtained. But unlike the system studied here, the corresponding model allows
to divide by h the momentum equation. The underlying assumption is of course that
h stay away from vanishing. It is worth mentioning that in the low Reynolds number,
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it is possible to assume potential flow, as in [111]. This is not possible with the vis-
cous term of model (0.1), since an equation on the velocity potential cannot be written.

We also refer to [37] where Chatelon and Orenga have studied a non-homogeneous
shallow water model or even to [19] where Bosseur and Orenga proposed existence
results for shallow water models with boundary conditions using optimal control. In
[110], local well-posedness of a particular model relying on semi-empirical anisotropic
eddy viscous model is investigated by Levermore and Sammartino.

The result introduced in Chapter 2 is inspired from the demonstration proposed by
Bresch and Desjardins in [51]. It relies on an approximated formulation for which
the existence and uniqueness of solution is proved by a fixed point method, following
ideas of Simon [157] and Boyer and Fabrie [22]. Afterwards, an energy inequality is
obtained and a priori estimates in Sobolev spaces are obtained. Compactness criteria
introduced by Simon [158] and Hanouzet [76] enable us to pass to the limit in non-
linear terms and thus to obtain the existence of weak solutions.
We have made the distinction between the one and two-dimensional cases. In the
one-dimensional case, we obtain a result for the complete model, without any partic-
ular assumption, whereas in the two-dimensional case, we have studied a simplified
model with classical viscous term and made a strong assumption on the water depth
positivity.





Chapter 1

Derivation of a new
two-dimensional
viscous shallow water
model

This chapter is devoted to the derivation of a new two dimensional shallow water
model including viscosity, varying topography, friction and capillary effects, following
the ideas proposed by Gerbeau and Perthame [62] in the one dimensional case.

1.1. The Navier-Stokes-Coriolis system and boundary
conditions

We briefly introduce the classical set of three dimensional Navier-Stokes-Coriolis equa-
tions which is considered as the basis of the following analysis. Well-suited boundary
conditions are proposed for the free surface and the bottom boundaries.

1.1.1. The system. We start from the rotating three dimensional Navier-Stokes
equations for incompressible homogeneous fluids, namely the Navier-Stokes-Coriolis
system, evolving in a subdomain of R

3. These equations are studied in a frame which
rotates with the planetary angular velocity Ω, considered as constant. For homoge-
neous and incompressible fluids motions, the condition of mass conservation reduces
to the incompressibility condition div U = 0. Expressing the motions in terms of
quantities which are observed in the rotating frame, we obtain the following system :







div U = 0 ,

∂tU + div (U ⊗U) + 2Ω ∧U + Ω ∧ (Ω ∧ r) = div σ(U) + Fext ,
(1.1)
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where

• U = (u, v, w) is the velocity seen in the rotating frame.

• Fext represents the body forces which are applied, mostly the gravitational
attraction of the earth, oriented along the radial direction, from the position of the
fluid element to the center of the earth. We have the classical expression :

Fext = −GM
r2

k

where G is the gravitational constant, M the mass of the earth, r the radius and k

the unit vector oriented along the radial direction. (see figure 1.1.1).

• 2Ω∧U and Ω∧ (Ω∧ r) are respectively the Coriolis acceleration and the
centripetal acceleration, considered in a solid-body rotation, where Ω represents the
planetary angular velocity vector, of magnitude ω and r the position vector of the
element of fluid in the local frame. We denote by r its magnitude. If we consider
that this magnitude is a constant and that the earth rotation is approximately of 2 Π
radian in a sideral day time length, we have :

ω =
2π

86164
= 0.727.104 radian/s.

r

r

φ

r cos φ

z

y

x

d

k

Ω

Figure 1.1.1. Spherical coordinates and local frame
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• div σ(U) are the viscosity forces and σ the total stress tensor. An explicit
form for this tensor is :

σ(U) = −pI + 2µD(U); (1.2)

p(t, x, y, z) represents the local pression in the fluid, µ is the dynamical viscosity and
D(U) the viscosity tensor :

Dij(U) =
1

2
(∂jui + ∂iuj) for 1 ≤ i, j ≤ 3 , (1.3)

where (u1, u2, u3) = (u, v, w) and ∂1 = ∂x, ∂2 = ∂y, ∂3 = ∂z.

In a solid body rotation, if we don’t take into account the earth center movements,
the centripetal acceleration γE = Ω ∧ (Ω ∧ r) can be rewritten as follows :

γE = −ω2r cosφd.

where d is the perpendicular normalized vector, oriented from the rotation axis to the
position of the fluid element. r cosφ is the projection of r on the axis defined by d

and can be seen as the perpendicular distance from the rotation axis to the position
of the fluid element (Figure 1.1.1).
It is usual to combine the centrifugal acceleration and the earth’s gravitational attrac-
tion [133] to obtain the effective gravitational acceleration g :

g = −GM
r2

k + ω2r cosφd (1.4)

Considering expression (1.4), the gravitational acceleration depends on the latitude φ.
The centrifugal acceleration is of maximal magnitude at the equator, where it is about
0.034m.s−1. Thus this term is often neglected in practice and we assume the gravi-
tational acceleration to be of constant magnitude g = 9.81m.s−2 and directed from
the observation point to the earth’s center, along the radial direction. The component
form becomes Fext = (0, 0,−g).

For the sake of simplicity, the equations are written in the local frame (x, y, z) where
(x, y) defines a tangential surface to the fluid domain. At the latitude Φ, the component
of Ω in this frame are (see figure 1.1.2) : (0, ωcosΦ, ωsinΦ) .
The Coriolis acceleration term has a priori 3 significant components :

γC =









2ω cosΦw − 2ω sinΦ v

2ω sinΦu

2ω cosΦu









.

By focusing our attention on large-scale motions only, that is, by characterizing the
motion by single scales for velocity and length, the nearly horizontal character of the
fluid trajectories makes the vertical velocity w so small compared to the horizontal ones
that we can in first approximation neglect the 2ω cos Φw component. This approxi-
mation will be developed in the next section. Furthermore, the radial projection of γC

is very small compared to the effective gravitational acceleration (
2ω cos Φu

|Fext|
= 10−5)

and will also be neglected.
So if we collect the consequences of these approximations we obtain, in component
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form, the Coriolis acceleration term (−fv, fu, 0) where f = 2Ω sinΦ is the local
component of the planetary vorticity normal to the earth surface which is usually
called the Coriolis parameter. In Europe, Φ is nearly equal to 45◦ and a usual approx-
imation is to consider f as a constant of magnitude 10−4 s−1.

N
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Equateurφ

Ω

Ω

Z

Y

φ

Figure 1.1.2. Projection of Ω on the tangential surface.

The system (1.1) thus becomes :







div U = 0 ,

∂tU + div (U ⊗U) = div σ(U) + F ,
(1.5)

where F = (fv, −fu, −g) represents Coriolis and effective gravitational accelerations.

In the sequel, we will focus our attention on this system for

t > 0, (x, y) ∈ R and d(x, y) ≤ z ≤ ξ(t, x, y) ,

where z = ξ(t, x, y) represents the local water elevation from the surface z = 0 to
the air/fluid interface and z = d(x, y) represents the description of the topography
variations.
We also introduce at once h(t, x, y) which describes the total height of the water column
located at the (x, y) coordinate with :

h(t, x, y) = ξ(t, x, y) − d(x, y) (1.6)

1.1.2. Boundary conditions. Well-suited boundary conditions are respectively
introduced for the bottom and the air-fluid interface boundaries.



1.1. The Navier-Stokes-Coriolis system and boundary conditions 23

Z

h(t,x,y)

d(x,y)

x

ξ (t,x,y)

0

Figure 1.1.3. Sketch of the relevant variables.

Normal stress continuity and surface tension. On the free surface, we assume a normal-
stress continuity condition with surface tension at the air/fluid interface, considering
the air viscosity as negligible :

σ(U).ns − βκ(t, x, y)ns = −pons at z = ξ(t, x, y) , (1.7)

where ns is the outward normal to the free surface, defined with ns =
∇S
|∇S| and

S = z − ξ(t, x, y), β is a capillary coefficient, κ the mean curvature of the surface
at point (x, y) and po(x, y) the atmospheric pression at the surface. We obtain the
following expression :

ns =
1

√

1 + |∇ξ|2









−∂xξ

−∂yξ

1









,

where | | stands for the Euclidian norm.

Remark 1.1.1. It is possible to include the tension due to the wind effect in this free
surface boundary condition as in [149]. Giving the wind stresses on the free surface
with :

ssurf|xy
= C|W |W

where W is an evaluation of the wind velocity at the free surface and C a suitable
coefficient, and introducing

ssurf|z = po

it raises the following boundary condition :

σ(U).ns − βκ(t, x, y)ns = ssurf at z = ξ(t, x, y) .

Boundary conditions at the bottom. At the bottom, we assume a wall-law with linear
and quadratic terms [133], which respectively refer to laminary and turbulent friction
phenomena :

(σ(U) · nb) · τbi
= kl(U · τbi

) + kt(h|U|U · τbi
) at z = d(x, y) , (1.8)
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where kl et kt are the laminary and the turbulent friction coefficients.
The outward normal is defined with :

nb =
1

√

1 + |∇d|2









−∂xd

−∂yd

1









,

and
(

τbi

)

i=1,2
is a basis of the tangential surface :

τb1 =
1

|∇d|









−∂yd

∂xd

0









and τb2 =
1

√

|∇d|2 + |∇d|4









−∂xd

−∂yd

−|∇d|2









. (1.9)

We complete this condition with a no-penetration condition at the bottom :

U · nb = 0 at z = d(x, y) . (1.10)

1.1.3. Indicator function. Following the idea developed in [138], let φ denote an
indicator function which allows us to define precisely the fluid region at time t :

φ(t, x, y, z) =

{

1 for d(x, y) ≤ z ≤ ξ(t, x, y)
0 otherwise.

(1.11)

The mass conservation equation becomes, using the incompressibility relation :

∂tφ+ ∂x

(

φu
)

+ ∂y

(

φv
)

+ ∂z

(

φw
)

= 0 (1.12)

1.2. The non-dimensionalized system

In this section, we briefly consider some characteristic scales which applied for the
shallow water model. Then, a non-dimensionalized set of equations is obtained and
the usual hydrostatic approximation is assumed.

1.2.1. Vertical scales in oceanic circulation. As previously emphasized, the
NSW equations with viscosity, friction terms and varying topography are extensively
used in the fields of oceanography and particularly for the numerical simulation of
oceanic or coastal circulation. Although the depth of the fluid varies in space and
time, we assume that characteristic scale for the depth can be chosen. This average
thickness H of the oceans is nearly 4 km whereas their horizontal characteristic value
is about 4000 km. So the ratio of the vertical scale to the horizontal one, the so-called

aspect ratio, is about
1

1000
. The situation is analogous in coastal domain where the

characteristic scale for vertical variations is reduced to 100 m and the horizontal one
is about 100 km. In this context, we shall assume that the vertical movements and
variations are very small compared to the horizontal ones. The continuity equation
allows us in the same way to estimate the ratio of the vertical and horizontal velocity
scales, respectively W and V :
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W

U
≈ H

L
≈ 1

1000
.

1.2.2. Dimensionless quantities. According to the previous section, we use in
the sequel the thin-layer assumption and introduce a “small” parameter :

ε =
H

L
=
W

V
(1.13)

where H, L, W , V are respectively the characteristic scales for the vertical and the
horizontal dimension of the fluid domain of interest and for the vertical and the hori-

zontal velocity. We then introduce some characteristic dimensions : T =
L

V
et P = V 2

for the time and the pressure.
The dimensionless quantities are temporarily noted with a˜ and are defined as follows :

ũ =
u

V
, ṽ =

v

V
, w̃ =

w

W
, x̃ =

x

L
, ỹ =

y

L
, z̃ =

z

H
, t̃ =

t

T
and p̃ =

p

P
.

Some dimensionless numbers are also introduced : the Reynolds number Re =
V L

ν
,

the Froude number Fr =
V√
gH

and the Rossby number Ro =
V

fL
. Finally, let us

define the modified laminar and quadratic friction coefficient k ′l =
kl

V
and k′t = kt L.

In what follows, we mostly focus on the horizontal velocity. We thus distinguish
the horizontal components (u, v) and the vertical one w. The tensor σ(U) defined in
(1.2) will be denoted by σ for the sake of clarity and we introduce U = (u, v). It is
also convenient to introduce the tensor Dh(U) with :

(Dh(U))ij =
1

2
(∂jui + ∂iuj) for 1 ≤ i, j ≤ 2. (1.14)

where u1 = u, u2 = v, ∂1 = ∂x and ∂2 = ∂y. Finally we denote by U⊥ the following

quantity : U⊥ = (−v, u). The differential operators ∇xy, div xy et ∆xy refer to hori-
zontal derivations.

Dropping the ,̃ the non-dimensionalized Navier-Stokes system becomes :































































divx U + ∂zw = 0 ,

∂tU + divx (U ⊗ U) + ∂z(wU) + ∇xy p+
U⊥

Ro

=
1

Re

(

2 divx

(

Dh(U)
)

+
1

ε2
∂2

z U + ∇xy

(

∂zw
)

)

,

ε2
(

∂tw + divx (wU) + ∂z

(

w2
)

)

+ ∂zp

= − 1

F 2
r

+
1

Re

(

∂z

(

2divx U
)

+ ε2∆xyw + 2 ∂2
zw
)

.

(1.15)
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Boundary conditions are also written in a dimensionless form :



























(

p− po + βκ
)

∇xy ξ +
1

Re

( 1

ε2
∂zU + ∇xy w − 2Dh(U) · ∇xy ξ

)

= 0

at z = ξ(t, x, y) ,

p− po + βκ+
1

Re

(

∇xy ξ ·
(

∂zU + ε2∇xy w
)

−2 ∂zw
)

= 0 at z = ξ(t, x, y) ,

(1.16)

and :











































1/(ε2V 2)(σ.nb).τb1 = −1

ε
(k′l + ε k′t h |U |)

(

U⊥ · ∇xy d
)

at z = d(x, y) ,

1/(ε2V 2)(σ.nb).τb2 = −1

ε
(k′l + ε k′t h |U |)

(

U · ∇xy d+ ε2w | ∇xy d |2
)

at z = d(x, y) ,

U · ∇xy d− w = 0 at z = d(x, y) .

(1.17)

The hydrostatic approximation, which consists in dropping terms of second order of
magnitude in ε (1.13) in the relations (see [138], [74] and [133]), enables us to go
ahead in the derivation. Actually, the nearly horizontal nature of the fluid evolution
induces so small vertical accelerations that the Archimedian principle for a static fluid
is applicable. The system (1.15)-(1.17) becomes :



















































divx U + ∂zw = 0 ,

∂tU + divx (U ⊗ U) + ∂z(wU) + ∇xy p+
U⊥

Ro
=

1

Re

(

2 divx

(

D(U)
)

+
1

ε2
∂2

z U + ∇xy

(

∂zw
)

)

,

∂zp = − 1

F 2
r

+
1

Re

(

∂z

(

divx U
)

+ 2 ∂2
zw
)

,

(1.18)

at the free surface boundary :
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

























(

p− po + βκ
)

∇xy ξ +
1

Re

( 1

ε2
∂zU + ∇xy w − 2D(U) · ∇xy ξ

)

= 0

at z = ξ(t, x, y) ,

p− po + βκ+
1

Re

(

∇xy ξ · ∂zU − 2 ∂zw
)

= 0 at z = ξ(t, x, y) ,

(1.19)

and at the bottom :











































1/(ε2V 2)(σ.nb).τb1 = −1

ε
(k′l + εk′t h|U |)

(

U⊥ · ∇xy d
)

at z = d(x, y) (i)

1/(ε2V 2)(σ.nb).τb2 =
1

ε
(k′l + εk′t h|U |)

(

U · ∇xy d
)

at z = d(x, y) (ii)

U · ∇xy d− w = 0 at z = d(x, y) (iii)

(1.20)

The solution of this system always depends on ε, owing to the horizontal momentum
conservation relation in (1.18). Keeping in mind that we are looking for a solution of
order O(1), we emphasize that (1.19) gives :

1

Re
∂zU|z=ξ = −ε2

(

(

p− po + βκ
)

∇xy ξ − 2D(U) · ∇xy ξ + ∇xy w
)

|z=ξ
. (1.21)

This term cannot be neglected, since we have the term
1

ε2
∂2

z U in the horizontal mo-

mentum relation.

Moreover, we have, always from relation (1.19) :

(

p− po −
2

Re
∂zw + βκ

)

|z=ξ
= − 1

Re

(

∇xy ξ · ∂zU
)

|z=ξ
, (1.22)

We notice that the left hand part of (1.22) appears as a O(1) term when the relations
(1.18) are integrated along the vertical direction. Using (1.21) and recalling that we

have
1

Re
∂zU|z=ξ = O(ε2), we obtain :

(

p− po −
2

Re
∂zw + βκ

)

|z=ξ
= O(ε2) . (1.23)
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Integrating the relation (1.18) for the pressure and using (1.23) gives :

p(t,x, y, z) − po + β κ(t, x, y) =
1

F 2
r

(ξ − z)

+
1

Re

(

∫ z

ξ

∂x(∂zu(t, x, y, η))dη +

∫ z

ξ

∂y(∂zv(t, x, y, η))dη + 2 ∂zw(t, x, y, z)
)

+O(ε2) .

Finally, thanks to the incompressibility relation, we get :

p(t, x,y, z) − po + βκ(t, x, y) =
1

F 2
r

(ξ − z)

− 1

Re

(

∂xu(t, x, y, z) + ∂xu(t, x, y, ξ) + ∂yv(t, x, y, z) + ∂yv(t, x, y, ξ)
)

+O(ε2) .

(1.24)

1.3. The vertically averaged non-dimensionalized system

1.3.1. Free surface condition. If (1.12) is integrated between z = d(x, y) and
z = +∞, we get by Leibniz formula :

∂t

∫ ∞

d

φdz + ∂x

(

∫ ∞

d

φu dz
)

+ ∂y

(

∫ ∞

d

φv dz
)

+
[

φw
]∞

d
+
(

u ∂xd+ v ∂yd
)

|z=d
= 0

Using the no-penetration condition (1.10) and keeping in mind the definition of the
indicator function φ (1.11), we obtain :

∂th(t, x, y) + ∂x

(

∫ ξ

d

u(t, x, y, z) dz
)

+ ∂y

(

∫ ξ

d

v(t, x, y, z) dz
)

= 0 . (1.25)

where h(t, x, y) is defined by (1.6).
If (1.12) is integrated in a different way, namely between z = d(x, y) and z = ξ(t, x, y),
we obtain :

∂th+ ∂x

(

∫ ξ

d

u dz
)

+∂y

(

∫ ξ

d

v dz
)

−
(

∂tξ + u ∂xξ + v ∂yξ − w
)

|z=ξ

+
(

u ∂xd+ v ∂yd− w
)

|z=d
= 0 .

Finally, gathering these results and using again condition (1.10), we get :
(

∂tξ + U · ∇xy ξ − w
)

|z=ξ
= 0 . (1.26)

1.3.2. Momentum equation. Integrating the horizontal momentum relation (1.18)
for d(x, y) ≤ z ≤ ξ(t, x, y) gives :

∂t

(

∫ ξ

d

Udz
)

+ divx

(

∫ ξ

d

(U ⊗ U)dz
)

+ ∇xy

(

∫ ξ

d

p dz
)

+
1

Ro

∫ ξ

d

U⊥dz

−U
(

∂tξ + U · ∇xy ξ − w
)

|z=ξ
+ U

(

U · ∇xy d− w
)

|z=d

= divx

(

∫ ξ

d

2

Re
Dh(U) dz

)

+
1

Re

(

( 1

ε2
∂zU + ∇xyw

)

|z=ξ
−
( 1

ε2
∂zU + ∇xyw

)

|z=d

)
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+
(

p∇xy ξ −
2

Re
Dh(U) · ∇xy ξ

)

|z=ξ
−
(

p∇xy d−
2

Re
Dh(U) · ∇xy d

)

|z=d
.

Using (1.26) together with the boundary conditions at the bottom (1.10) and at the
free surface (1.19) we obtain :

∂t

(

∫ ξ

d

Udz
)

+ divx

(

∫ ξ

d

(U ⊗ U) dz
)

+ ∇xy

(

∫ ξ

d

p dz
)

+
1

Ro

∫ ξ

d

U⊥dz

= divx

(

∫ ξ

d

2

Re
Dh(U) dz

)

+
(

po − βκ
)

∇xy ξ

−
(

p∇xy d−
2

Re
Dh(U) · ∇xy d+

1

Re

( 1

ε2
∂zU + ∇xyw

)

)

|z=d
. (1.27)

It remains to use the friction boundary conditions at the bottom (1.20) to conclude
this first step in the derivation. Developing these relations, the following linear com-
bination (∂yd× (1.20 (i)) + ∂xd× (1.20 (ii)) gives :

(

(

−p+ (Dh)xx

)

∂xd+ (Dh)xy ∂yd−
1

Re

( 1

ε2
∂zu+ ∂xw

)

)

|z=d

= −k
′
l

ε
u|z=d − k′t h|U |u|z=d − ∂xd

(

p− 2

Re
∂zw

)

|z=d
+

1

Re
∂xd
(

∇xy d · ∂zU
)

|z=d
.

in the same way, with the combination (∂yd × (1.20 (ii)) − ∂xd × (1.20 (i)), we ob-
tain the second relation :

(

(

−p+ (Dh)yy

)

∂yd+ (Dh)xy ∂xd−
1

Re

( 1

ε2
∂zv + ∂yw

)

)

|z=d

= −k
′
l

ε
v|z=d − k′t h|U | v|z=d − ∂yd

(

p− 2

Re
∂zw

)

|z=d
+

1

Re
∂yd
(

∇xy d · ∂zU
)

|z=d
.

Gathering these two scalar relations, we obtain the vectorial one :
(

−p∇xy d+
2

Re
Dh(U) · ∇xy d−

1

Re

( 1

ε2
∂zU + ∇xyw

)

)

|z=d

= −k
′
l

ε
U|z=d − k′t h|U |U|z=d −∇xy d

(

p− 2

Re
∂zw

)

|z=d
+

1

Re
∇xy d

(

∇xy d · ∂zU
)

|z=d
.

(1.28)

This relation (1.28) can be directly used in equation (1.27) and we finally obtain :

∂t

(

∫ ξ

d

Udz
)

+ divx

(

∫ ξ

d

(U ⊗ U) dz
)

+ ∇xy

(

∫ ξ

d

p dz
)

+
1

Ro

∫ ξ

d

U⊥dz
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= −k
′
l

ε
U|z=d

− k′t h|U |U|z=d
+ divx

(

∫ ξ

d

2

Re
Dh(U) dz

)

+
(

po − βκ
)

∇xy ξ

−∇xy d
(

p− 2

Re
∂zw

)

|z=d
+

1

Re
∇xy d

(

∇xy d · ∂z U
)

|z=d
. (1.29)

1.4. The Shallow Water system

In this section, the derivation of the NSW model by asymptotic analysis of the non-
dimensionalized integrated Navier-Stokes system with hydrostatic approximation is
performed.
We introduce the following averaged quantity for a generic function f depending on
(t, x, y, z) :

f̄(t, x, y) =
1

h(t, x, y)

∫ ξ

d

f(t, x, y, η)dη .

where we recall that we have :

h(t, x, y) = ξ(t, x, y) − d(x, y).

From this, relation (1.25) can be directly expressed in the following form :

∂th+ divx

(

hŪ
)

= 0 .

In the sequel, we assume the following asymptotic regime (see [138]) :

1

Re
= ενo , k′l = ε r0 and k′t = ε r1. (1.30)

1.4.1. First order approximation. An asymptotic analysis of relations (1.18),
(1.16) and (1.17) (see [138]) gives :

∂2
zU = O(ε) , ∂zU|z=ξ = O(ε) and ∂zU|z=d = O(ε) (1.31)

This implies that :

U(t, x, y, z) = U(t, x, y,−d) +O(ε),

and so

U(t, x, y, z) = Ū(t, x, y) +O(ε) . (1.32)

Furthermore, at first order, we immediately obtain the following equality :

U ⊗ U(t, x, y) = Ū ⊗ Ū(t, x, y) +O(ε) . (1.33)

The relations (1.30) enable us to write (1.24) under the form :

p(t, x, y, z) = po − β κ(t, x, y) +
1

F 2
r

(ξ − z) +O(ε) . (1.34)

The mean curvature of the free surface, denoted by κ(t, x, y), is usually expressed in
term of the local surface elevation ξ(t, x, y), in its nondimensional form :

κ(ξ) =
ε ξxx(1 + ε2ξ2y) − 2 ε3ξx ξy ξxy + ε ξyy(1 + ε2ξ2x)

(1 + ε2ξ2x + ε2ξ2y)
3

2

, (1.35)
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and then we have :

κ = ε∆ξ +O(ε3). (1.36)

Thus, the pressure (1.34) reduces to :

p(t, x, y, z) = po +
1

F 2
r

(ξ − z) +O(ε) . (1.37)

Using again the relations (1.30), and keeping in mind that ∂zŪ = O(ε), the relation
(1.29) becomes at first order :

∂t

(

hŪ
)

+ divx

(

hŪ ⊗ Ū
)

+ ∇xy

(

∫ ξ

d

p dz
)

+
hŪ⊥

Ro

= −r0 Ū|z=d
− p|z=d

∇xy d+ po∇xy ξ +O(ε) .

Plugging (1.34) into this expression yields therefore :

∇xy

(

∫ ξ

d

p dz
)

=
1

2F 2
r

∇xy

(

h2
)

+ po∇xy h+O(ε) ,

and

p|z=d
∇xy d =

1

F 2
r

h∇xy d+ po∇xy d+O(ε) .

Finally, dropping the O(ε) terms, we obtain the following NSW model, which results
of an approximation in O(ε) of the system (1.15)-(1.17), where we have set div = divx

and ∇ = ∇xy:























∂th+ div (hŪ) = 0 (i)

∂t(hŪ ) + div (hŪ ⊗ Ū) +
1

F 2
r

h∇h+
(hŪ )⊥

Ro
= −r0 Ū − 1

F 2
r

h∇d (ii)
(1.38)

Multiplying by
H V 2

L
and setting u = Ū , we recover the system in dimensionalized

variables :














∂th+ div (hu) = 0 (i)

∂t(hu) + div (hu ⊗ u) + g h∇h+ f(hu)⊥ = −kl u− g h∇d (ii)
(1.39)
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1.4.2. Second order approximation and parabolic correction. We per-
form here a parabolic correction in z for the horizontal velocity in order to take the
vertical variability of the quantities into account and by this way improve the precision
of the NSW model (1.32).
Coming back to the relation (1.18), we have for the horizontal velocity U = (u, v) :

∂

∂z

(νo

ε

∂U

∂z

)

= ∂tU + div (U ⊗ U) + ∇p+
U⊥

Ro
+O(ε) .

Considering the incompressibility relation, we have :

∂

∂z

(νo

ε

∂U

∂z

)

= ∂tU + U · ∇U + ∇p+
U⊥

Ro
+O(ε) , (1.40)

and using the relations (1.32) and (1.34), (1.40) becomes :

∂

∂z

(νo

ε

∂U

∂z

)

= ∂tŪ + Ū∇Ū +
1

F 2
r

∇ξ +
Ū⊥

Ro
+O(ε) ,

so, keeping in mind that ξ(t, x, y) = h(t, x, y) + d(x, y) and using the equation
(1.38 (ii)) we obtain :

∂

∂z

(νo

ε

∂U

∂z

)

= −r0
h
U|z=d

+O(ε) .

Integrating from d to z we deduce :

νo

ε

∂U

∂z
− νo

ε

∂U

∂z |z=d

= −r0 (z + d)

h
U|z=d

+O(ε) .

Dropping the O(ε) terms, the boundary condition at the bottom (1.28) reads :

−νo

ε

∂U

∂z |z=d

= −r0 U|z=−d
+O(ε) . (1.41)

and we obtain :
νo

ε

∂U

∂z
= r0(1 − z + d

h
)U|z=d

+O(ε) . (1.42)

Then, integrating another time we deduce the expansion at second order in z of the
horizontal velocity U :

U(t, x, y, z) =
(

1 +
r0 ε(z + d)

νo
(1 − z + d

2h
)
)

U|z=d
+O(ε2) . (1.43)

The expression of Ū = (ū, v̄) is then obtained,integrating (1.43) between z = d and
z = ξ :

Ū =
(

1 +
r0 εh

3νo

)

U|z=d
+O(ε2) . (1.44)
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Furthermore, we have for the scalar horizontal component u :

u2(t, x, y, z) =
(

1 +
2αoε(z + d)

νo
(1 − z + d

2h
)
)

u2
|z=−d

+O(ε2) ,

and

u2 =
1

h

∫ ξ

−d

u2 =
(

1 +
2αoεh

3νo

)

u2
|z=−d

+O(ε2) = ū2 +O(ε2) .

It results that :

u2 = ū2 +O(ε2) .

And in the same way we have the following tensorial equality :

U ⊗ U = Ū ⊗ Ū +O(ε2) . (1.45)

Using (1.32),(1.36) and (1.30), the pressure (1.24) becomes :

p(t, x, y, z) = po +
1

F 2
r

(ξ−z)− 2

Re
∂xū(t, x, y)−

2

Re
∂y v̄(t, x, y)−εβ∆ξ+O(ε2) . (1.46)

The boundary condition at the bottom (1.28) is also simplified, recalling (1.30) and
using (1.41) :

1

Re

(

∂zU
)

|z=d
= O(ε2) .

Then, dropping the O(ε2) terms we obtain :
(

−p∇xy d+
2

Re
Dh(U) · ∇xy d−

1

Re

( 1

ε2
∂zU + ∇xyw

)

)

|z=d

= −r0 U|z=d − ε r1 h|U |U|z=d −∇xy d
(

p− 2

Re
∂zw

)

|z=d
+O(ε2) ,

and so

(

−p∇xy d+
2

Re
Dh(U) · ∇xy d−

1

Re

( 1

ε2
∂zU + ∇xyw

)

)

|z=d

= −r0 U|z=−d − ε r1 h|U |U|z=d −∇xy d
(

p+
2

Re
divx U

)

|z=d
+O(ε2) , (1.47)

thanks to the incompressibility relation.
Gathering (1.44), (1.46) and (1.47) and introducing :

α0(h) =
r0

1 +
ε r0h

3 νo

, α1(h) =
ε r1

(1 +
ε r0h

3 νo
)2

and β′ = εβ
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where α0(h) and α1(h) are modified friction coefficients, we obtain the following NSW
system, which results from an approximation in O(ε2) in the asymptotic analysis of
the system (1.15)-(1.17) :











































∂th+ div (hŪ) = 0 ,

∂t(hŪ ) + div (hŪ ⊗ Ū) +
1

F 2
r

h∇h =

−α0(h) Ū − α1(h)h |Ū | Ū +
1

Re
div

(

h(∇Ū +t ∇Ū) + (2hdiv Ū)I
)

+β′h∇∆h− (hŪ)⊥

Ro
− 1

F 2
r

h∇d+ β′ h∇∆d .

(1.48)

Multiplying by
H V 2

L
and setting u = Ū , we recover the system in dimensionalized

variables :







































∂th+ div (hu) = 0 ,

∂t(hu) + div (hu ⊗ u) + g h∇h =

−α0(h)u − α1(h)h |u|u + µdiv
(

h(∇u +t ∇u) + (2hdiv u)I
)

+βh∇∆h− f(hu)⊥ − g h∇d+ β h∇∆d .

(1.49)

where we have :

α0(h) =
kl

1 +
klh

3µ

and α1(h) =
kt

(1 +
klh

3µ
)2
.



Chapitre 2

Existence de solutions
faibles globales

Le but de ce chapitre est l’étude théorique du modèle de Saint-Venant dérivé
au chapitre précédent. Notre objectif est d’établir un résultat d’existence de solution
faibles globales par des méthodes d’estimations d’énergie et passage à la limite dans
une formulation approchée. Ce travail s’inspire des travaux de Simon [157], Boyer et
Fabrie [22] et Bresch et Desjardins [51], [24].
Nous allons commencer par étudier l’équation de conservation de la hauteur d’eau
pour des données régulières. Nous introduirons ensuite un problème approché complet
dans lequel la donnée initiale approchée sera minorée par une constante positive. La
résolution de ce problème utilise le théorème du point fixe de Schauder. Nous déri-
verons alors des estimations d’énergie qui permettront de conclure à l’existence d’au
moins une solution vérifiant l’équation dans un sens faible. Il sera nécessaire à ce stade
de la démonstration de différencier les cas de la dimension un et de la dimension deux,
puisque les estimations obtenues nous permettront de passer à la limite dans le mo-
dèle complet en dimension un alors que des hypothèses supplémentaires concernant la
positivité de la hauteur d’eau et la forme du terme de diffusion devront être effectuées
en dimension deux.

Nous nous intéressons ici au modèle en variable adimensionnées, avec les notations
suivantes :

35
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









































∂th+ div (hu) = 0 ,

∂t(hu) + div (hu ⊗ u) +
1

F 2
r

h∇h = h f

−α0(h)u − α1(h)h |u|u + νdiv
(

h(D(u) + (2hdiv u)I)
)

+βh∇∆h− (hu)⊥

Ro
− 1

F 2
r

h∇d+ β h∇∆d ,

(2.1)

avec

α0(h) =
r0

1 +
ε r0h

3 νo

, α1(h) =
r1

(1 +
ε r0h

3 νo
)2
,

et

D(u) =
1

2

(

∇u + t∇u
)

où ν = 1/Re, Ro et Fr désignent respectivement l’inverse du nombre de Reynolds,
le nombre de Rossby et le nombre de Froude. β désigne le coefficient de tension de
surface et r0 et r1 représentent respectivement les coefficients de friction laminaire
et quadratique. f désigne ici une fonction représentant un terme source ne faisant
pas intervenir les inconnues du problème. Ce terme supplémentaire peut être obtenu
directement dans la dérivation précédente.

2.1. Principaux résultats

Notations. Soit I =]0, L[, ouvert borné de R. On introduit C∞
per(I) l’ensemble des

fonctions de régularité C∞ et vérifiant des conditions aux limites périodiques sur I.

Définition 2.1.1. On note W s,p
per(I) l’adhérence de C∞

per(I) pour la norme de W s,p(I).

On définit alors respectivement les espaces Lp
per(I) = W 0,p

per(I) etHs
per(I) = W s,2

per(I)

et on note (W s,p
per(I))′ le dual de W s,p

per(I).

De même soit Ω =]0, 1[×]0, L[ et C∞
per(Ω) l’ensemble des fonctions de régularité C∞ et

vérifiant des conditions aux limites périodiques sur Ω.

Définition 2.1.2. On note W s,p
per(Ω) l’adhérence de C∞

per(Ω) pour la norme de W s,p(Ω).

On définit alors respectivement les espaces Lp
per(Ω) = W 0,p

per(Ω) et Hs
per(Ω) =

W s,2
per(Ω) et on note (W s,p

per(Ω))′ le dual de W s,p
per(Ω).

Cas de la dimension 1.

Théorème 2.1.1 (Existence d’une solution faible en dimension 1). .
Soit d ∈ L∞

per(I) et f ∈ L2(R+; L∞
per(I)). Alors il existe au moins une solution (h, u)

satisfaisant dans (D(R+; H2
per(I)))

′



2.1. Principaux résultats 37



































































∂th+ ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2) +
1

F 2
r

h ∂xh− β h ∂3
xh+ α0(h)u+ α1(h)h|u|u =

hf + 3ν ∂x

(

h ∂xu
)

− 1

F 2
r

h ∂xd+ β h ∂3
xd ,

h(0) = h0,

(

hu
)

(0) = h0 u0,

(2.2)

avec

α0(h) =
r0

1 +
ε r0h

3 νo

, α1(h) =
r1

(1 +
ε r0h

3 νo
)2
,

et r0 > 0, r1 > 0, β > 0. De plus (h, u) vérifie les propriétés de régularité suivantes :

– ∀ T > 0, h ∈ L∞(0, T ; L∞
per(I)) ∩ L∞(0, T ; H1

per(I)) ∩ L2(0, T ; H2
per(I)),

– ∀ T > 0, u ∈ L2(0, T ; L2
per(I)),

– ∀ T > 0, hu ∈ L3(0, T ; L3
per(I)) ∩ L2(0, T ; W 1,1

per(I)).

Les conditions initiales h0 et u0 sont choisies telles que :

√
h0 ∈ H1

per(I), h0 ≥ 0,

h0 u
2
0 ∈ L1

per(I) , log
(

r−1
0 h0 α0(h0) ∈ L1(I),

et satisfaites au sens suivant :

h(0) = h0,

∀ψ ∈ L2
per(I),

(
∫

I

(hu)ψ

)

(0) =

∫

I

(h0 u0)ψ.

Remarque 2.1.1. Remarquons l’hypothèse de positivité stricte faite sur les coefficients
r0, r1 et β. Cette hypothèse s’avère nécessaire dans la démonstration adoptée ici afin
d’obtenir des estimations suffisamment régulières sur h, u et hu. Plus précisément, le
terme de tension de surface permet d’obtenir des bornes H 1 et H2 sur h, les injections
de Sobolev en dimension un fournissant une borne L∞. Les termes de friction laminaire
et quadratique permettent respectivement d’obtenir une régularité suffisante sur u et
hu. Dans [51], il apparâıt que le résultat d’existence obtenu en dimension deux par
Bresch et Desjardins peut être obtenu en dimension un avec des conditions moins
restrictives sur β et r1, qui peuvent être choisis positifs au sens large. En effet, dans
[51], la compacité n’est pas obtenue sur (hkuk) mais sur (

√
hkuk)k, en négligeant les
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hautes fréquences uniformément en k. Ceci permet directement le passage à la limite
pour le terme non linéaire (hk u

2
k)k, sans avoir la régularité L2 sur (uk)k. L’existence

de solutions faibles globales peut donc être obtenue pour le modèle unidimensionnel
dérivé dans [62].

Cas de la dimension 2.

Théorème 2.1.2 (Existence d’une solution faible en dimension 2). .
Soit f ∈ L2(R+; L∞

per(Ω)) et d ∈ L∞
per(Ω). On suppose qu’il existe γ > 0 tel que l’on

ait
h(t, x) > γ ∀(t, x) ∈ R

+ × Ω.

Alors il existe au moins une solution (h, u) satisfaisant dans (D(R+; H2
per(Ω)))′































∂th+ div (hu) = 0 ,

∂t(hu) + div (hu ⊗ u) +
1

F 2
r

h∇h = h f − α0(h)u − α1(h)h |u|u

+ν div
(

hD(u)
)

+ βh∇∆h− (hu)⊥

Ro
− 1

F 2
r

h∇d+ β h∇∆d ,

(2.3)

avec r0 > 0, r1 > 0, β > 0. De plus (h, u) vérifie les propriétés de régularité suivantes :

– ∀ T > 0, h ∈ L∞(0, T ; H1
per(Ω)) ∩ L2(0, T ; H2

per(Ω)),

– ∀ T > 0, u ∈ L2(0, T ; H1
per(Ω)),

– ∀ T > 0, hu ∈ L∞(0, T ; L
2p

p+2

per (Ω)) ∩ L2(0, T ; W
1,

2p

p+2

per (Ω)) ∀p <∞.

Les conditions initiales h0 et u0 sont choisies telles que :

√
h0 ∈ H1

per(Ω), h0 ≥ 0,

h0 |u0|2 ∈ L1
per(Ω) , log

(

r−1
0 h0 α0(h0) ∈ L1(Ω),

et satisfaites au sens suivant :

h(0) = h0,

∀ψ ∈ H1
per(Ω),

(∫

Ω
(hu)ψ

)

(0) =

∫

Ω
(h0 u0)ψ.

Remarque 2.1.2. Il semble possible d’obtenir un résultat similaire sans supposer
l’existence d’une borne inférieure sur la hauteur d’eau h. La conséquence est une régu-

larité moins bonne sur la vitesse qui est alors seulement L2(0, T ; L
3

2
per(Ω)). Ce résultat

est actuellement à l’étude.
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2.2. Résolution de l’équation de conservation de la
hauteur d’eau

Les résultats présentés ici le sont dans le cas bidimensionnel. Des résultats similaires
sont immédiatement déduits pour le cas unidimensionnel en remplaçant Ω par I.

2.2.1. Equation linéarisée. On rappel que Ω =]0, 1[×]0, L[ et u(t, x) une fonction
de classe C∞ de Rt × Ω vérifiant des conditions aux limites périodiques sur les bords
de Ω. On s’intéresse à la résolution de l’équation :

{

∂th(t, x) + div
(

u(t, x)h(t, x)
)

= 0,

h(0, x) = h0(x).
(2.4)

où h(t, x) vérifie également des conditions aux limites périodiques.

On pose k(t, x) = lnh(t, x) et on obtient l’équation suivante :
{

∂tk(t, x) + u(t, x) · ∇k(t, x)) = div u(t, x),
k(0, x) = k0(x).

(2.5)

On résout (2.5) par la méthode des caractéristiques en introduisant la fonction Z
solution de :

{

d

ds
Z(s, t, x) = u(s, Z(s, t, x)),

Z(t, t, x) = x.
(2.6)

La fonction Z représente la position à l’instant s d’une particule fluide située au point
x à l’instant t.

2.2.2. Existence et unicité.

Proposition 2.2.1. Soit u une fonction de classe C∞ de R×Ω dans R
2 vérifiant des

conditions aux limites périodiques sur le bord de Ω. On suppose que h0 est une fonction
de classe C2 de Ω dans R, vérifiant également des conditions aux limites périodiques.
Alors il existe une solution de classe C2 du problème linéaire (2.4) donnée par

h(t, x) = h0(Z(0, t, x))e

∫ t

0
(div u)(τ, Z(τ, t, x))dτ

. (2.7)

En particulier, on a les estimations suivantes :

‖h(t)‖L2(Ω) ≤ ‖h0‖L2(Ω) e

∫ t

0
‖u(τ)‖W 1,∞(Ω)dτ

(2.8)

‖h(t)‖L∞(Ω) ≤ ‖h0‖L∞(Ω) e

∫ t

0
‖u(τ)‖W 1,∞(Ω)dτ
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On a de plus les estimations dans H1(Ω) :

‖∇h(t)‖L2(Ω) ≤

(

‖∇h0‖L2(Ω) + ‖h0‖L2(Ω)

∫ T

0
‖u(τ)‖W 2,∞(Ω)dτ

)

e

∫ T

0
2‖u(τ)‖W 1,∞(Ω)dτ

(2.9)

et dans H2(Ω) :

‖∇2h(t, .)‖L2(Ω) ≤
(

‖∇2h0‖L2(Ω) + 2‖∇h0‖L2(Ω)

∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

+ ‖h0‖L2(Ω)

∫ T

0
‖u(τ)‖W 3,∞(Ω) dτ

+ ‖h0‖L2(Ω)

(

∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

)2
)

e

∫ T

0
3‖u(τ)‖W 1,∞(Ω) dτ

+

(

‖∇h0‖L2(Ω)

∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

+ ‖h0‖L2(Ω)

(

∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

)2
)

e

∫ T

0
4‖u(τ)‖W 1,∞(Ω) dτ

.

(2.10)

Enfin h(t, ·) vérifie des conditions aux limites périodiques sur le bord de Ω.

Preuve.

(1) Unicité :

Supposons qu’il existe deux solutions régulières u1 et u2 de (2.4), alors la
différence u = u1 − u2 vérifie

∂th+ div (hu) = 0,
h(0) = 0.

En multipliant l’équation précédente par h et en intégrant sur Ω on obtient :

1

2

d

dt
‖h(t)‖2

L2(Ω) −
∫

Ω
hu · ∇h = 0.

Comme h∇h = 1
2∇(h2), on obtient en intégrant par parties :

d

dt
‖h(t)‖2

L2(Ω) +

∫

Ω
h2div u = 0.

soit :
d

dt
‖h(t)‖2

L2(Ω) ≤ ‖div u(t)‖L∞(Ω)‖h(t)‖2
L2(Ω).
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On conclut en utilisant le lemme de Gronwall :

‖h(t)‖2
L2(Ω) ≤ ‖h(0)‖2

L2(Ω) e

∫ t

0
‖div u(s)‖L∞(Ω) ds

,

soit ‖h(t)‖2
L2(Ω) = 0 et donc h(t, x) = 0.

(2) Existence :

Posons div u(t, x) = f(t, x). On s’intéresse à la résolution du système
suivant :

{

∂tk(t, x) + u(t, x) · ∇k(t, x) = f(t, x),
k(0, x) = k0(x).

(2.11)

On cherche une solution sous la forme k(t, x) = g(t, Z(0, t, x)). On note dans
cette partie fx la dérivation par rapport à x et ft celle par rapport à t d’une
fonction f . On évalue

∂tk(t, x) + u(t, x)∇k(t, x) − f(t, x) = gt(t, Z(0, t, x)) + gx(t, Z(0, t, x))Zt(0, t, x)

+ u(t, x) gx(t, Z(0, t, x))Zx(0, t, x)

− f(t, Z(t, t, x)) = 0.

Posons γ(s, t, x) = Zt(s, t, x) + Zx(s, t, x)u(t, x). On a alors :

gt(t, Z(0, t, x)) + γ(0, t, x)gx(t, Z(0, t, x)) = 0

On va montrer que γ(t, t, x) = 0 et que γ vérifie une équation linéaire.

Par construction on a Z(t, t, x) = x pour tout x et tout t, et ainsi en
dérivant par rapport à t il vient

Zt(t, t, x) + Zs(t, t, x) = 0,

et par ailleurs

Zs(t, t, x) = u(s, Z(s, t, x))|s=t = u(t, x).

Enfin, en dérivant (2.6) par rapport à la donnée x, il vient

Zx(t, t, x) = Id.

Au final,

γ(t, t, x) = Zt(t, t, x) + Zx(t, t, x)u(t, x) = −u(t, x) + u(t, x) = 0.

Par ailleurs en appliquant les résultats de dérivation par rapport aux
données et à un paramètre, on a

d

ds
γ(s, t, x) =

d

ds
(Zt(s, t, x) + Zx(s, t, x)u(t, x)) ,

=
d

dt
Zs(s, t, x) +

(

d

dx
Zs(s, t, x)

)

.u(t, x),

= ux(s, Z(s, t, x)).Zt(s, t, x) + ux(s, Z(s, t, x))Zx(s, t, x).u(t, x)

= ux(s, Z(s, t, x))γ(s, t, x).
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Ainsi, s 7→ γ(s, t, x) est solution d’une EDO linéaire et vérifie γ(t, t, x) = 0,
ce qui prouve que ∀s, γ(s, t, x) = 0 et donc en particulier γ(0, t, x) = 0.

On obtient alors l’équation suivante :

gt(t, Z(0, t, x)) = f(t, Z(t, t, x)),

que l’on intègre pour obtenir :

g(t, Z(0, t, x)) = g0(Z(0, t, x)) +

∫ t

0
f(τ, Z(τ, t, x))dτ,

soit :

k(t, x) = k0(Z(0, t, x)) +

∫ t

0
(div u)(τ, Z(τ, t, x))dτ,

ou encore :

h(t, x) = h0(Z(0, t, x))e

∫ t

0
(div u)(τ, Z(τ, t, x))dτ

.

On vérifie sur cette expression que h(t, x) vérifie des conditions aux limites
périodiques. On obtient immédiatement les estimations voulues :

‖h(t)‖L2(Ω) ≤ ‖h0‖L2(Ω) e

∫ t

0
‖∇u(τ)‖L∞(Ω)dτ

et

‖h(t)‖L∞(Ω) ≤ ‖h0‖L∞(Ω) e

∫ t

0
‖∇u(τ)‖L∞(Ω)dτ

.

(3) Estimation H1 :

En dérivant l’expression (2.7), par rapport à x, on obtient :

∂xi
h(t, x) = ∂xi

(

h0(Z(0, t, x))
)

e

∫ t

0
(div u)(τ, Z(τ, t, x))dτ

+ h0(Z(0, t, x)) ∂xi

(

e

∫ t

0
(div u)(τ, Z(τ, t, x))dτ )

avec :

∂xi
h0(Z(0, t, x)) =

∑

j

∂xi
h0(Z(0, t, x))∂xi

Zj(0, t, x),

soit encore :
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∇h(t, x) = ∇
(

h0(Z(0, t, x))
)

e

∫ t

0
(div u)(τ, Z(τ, t, x))dτ

+ h0(Z(0, t, x))∇
(

e

∫ t

0
(div u)(τ, Z(τ, t, x))dτ )

(2.12)

avec :

∇
(

h0(Z(0, t, x))
)

= (∇Z(0, t, x))t∇h0(Z(0, t, x)). (2.13)

Si on dérive l’équation (2.6), par rapport à x, on obtient l’équation matricielle
suivante :

{

∂s(∇Z)(s, t, x) = (∇u)(s, Z(s, t, x)).(∇Z)(s, t, x),

∇Z(t, t, x) = I.
(2.14)

Un lemme classique sur les équations différentielles linéaires montre que l’on
a :

∂s det(∇Z) = Tr(∇u) det(∇Z),

et un calcul immédiat montre que :

Tr(∇u) = div (u)

Comme det(∇Z(t, t, x)) = 1, on obtient l’équation différentielle ordinaire sui-
vante :

{

∂s det(∇Z)(s, t, x) = div u(s, Z(s, t, x)) det(∇Z)(s, t, x),

det(∇Z(t, t, x)) = 1.
(2.15)

On remarque que det(∇Z)(s, t, x) = 0 ∀s est solution de l’ équation :

∂s det(∇Z)(s, t, x) = div u(s, Z(s, t, x)) det(∇Z)(s, t, x).

Un résultat classique sur les équations différentielles linéaires du type x ′(t) =
a(t)x(t) nous assure alors que toute solution différente de la solution identi-
quement nulle ne s’annule jamais.

Autrement dit, comme det(∇Z(t, t, x)) = 1 alors l’unique solution de l’équa-
tion (2.15) vérifie à t et x fixé :

det(∇Z)(s, t, x) 6= 0 ∀s,
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et donc à t et s fixés, x 7→ Z(t, s, x) est un C1 difféomorphisme de Ω dans
lui-même qui conserve le volume. En effet la bijectivité résulte de l’identité
Z(t, s, Z(s, t, x)) = x, et la régularité du théorème d’inversion locale.

Ainsi, grâce au théorème de changement de variable, on a pour toute fonction
f ∈ L1(Ω)

∫

Ω
f(x) dx =

∫

Ω
f(Z(s, t, x)) dx.

Si on revient à (2.12), on obtient, sous l’hypothèse que ∇h0 est dans
L2(Ω) :

‖∇h(t)‖L2(Ω) ≤ ‖∇h0‖L2(Ω)‖∇Z(0, t, .)‖L∞(Ω) e

∫ t

0
‖∇u(τ)‖L∞(Ω) dτ

+ ‖h0‖L2(Ω) ‖∇
(

e

∫ t

0
(div u)(τ, .)dτ )

‖L∞(Ω)

Par ailleurs l’équation sur ∇Z s’écrit :

∇Z(s, t, x) = I +

∫ s

t

(∇u)(τ, Z(τ, t, x)).(∇Z)(τ, t, x)dτ,

ce qui donne :

‖∇Z(s, t, .)‖L∞(Ω) ≤ 1 +

∣

∣

∣

∣

∫ s

t

‖∇u(τ, .)‖L∞(Ω)‖∇Z(τ, t, .)‖L∞(Ω) dτ

∣

∣

∣

∣

,

et donc par le lemme de Gronwall :

‖∇Z(s, t, .)‖L∞(Ω) ≤ e

∣

∣

∣

∣

∫ t

s

‖∇u(τ)‖L∞(Ω) dτ

∣

∣

∣

∣

,

soit :

‖∇Z(s, t, .)‖L∞(Ω) ≤ e

∫ T

0
‖∇u(τ)‖L∞(Ω) dτ

∀s, t > 0. (2.16)

Il reste à évaluer le second terme :

∇
(

e

∫ t

0
(div u)(τ, Z(τ, t, x))dτ )

=

∇
(

∫ t

0
(div u)(τ, Z(τ, t, x))dτ

)

e

∫ t

0
(div u)(τ, Z(τ, t, x))dτ
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avec :

∇
(

(div u)(s, Z(s, t, x))
)

= (∇Z(s, t, x))t(∇div u)(s, Z(s, t, x)).

Il vient :

‖∇
(

e

∫ t

0
(div u)(τ, .)dτ )

‖L∞(Ω) ≤

(

∫ t

0
‖∇Z(τ, t, .)‖L∞(Ω)‖u(τ)‖W 2,∞(Ω) dτ

)

e

∫ t

0
‖∇u(τ)‖L∞(Ω)dτ

soit :

‖∇
(

e

∫ t

0
(div u)(τ, .)dτ )

‖L∞(Ω) ≤

(

∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

)

e

∫ T

0
2‖∇u(τ)‖L∞(Ω)dτ

d’où l’estimation H1 :

‖∇h(t)‖L2(Ω) ≤
(

‖∇h0‖L2(Ω)

+ ‖h0‖L2(Ω)

∫ T

0
‖u(τ)‖W 2,∞(Ω)dτ

)

e

∫ T

0
2‖u(τ)‖(W 1,∞Ω)dτ

.

(2.17)

(4) Estimation H2 :
On a :

∇2h(t, x) =∇
(

∇Z(0, t, x))t∇h0(Z(0, t, x)) e

∫ t

0
(div u)(τ, Z(τ, t, x)) dτ)

+

∇
(

h0(Z(0, t, x)) e

∫ t

0
(div u)(τ, Z(τ, t, x))dτ

×
∫ t

0
(∇Z(τ, t, x))t(∇div u)(τ, Z(τ, t, x)) dτ

)

,

avec :
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∇
(

∇Z(0, t, x))t∇h0(Z(0, t, x)) e

∫ t

0
(div u)(τ, Z(τ, t, x)) dτ)

= ∇2h0(Z(0, t, x))
(

∇Z(0, t, x)
)2
e

∫ t

0
(div u)(τ, Z(τ, t, x)) dτ

+ ∇h0(Z(0, t, x))∇2Z(0, t, x) e

∫ t

0
(div u)(τ, Z(τ, t, x)) dτ

+ ∇Z(0, t, x))t∇h0(Z(0, t, x))e

∫ t

0
(div u)(τ, Z(τ, t, x)) dτ

×
∫ t

0
(∇Z(τ, t, x))t(∇div u) dτ,

et

∇
(

h0(Z(0, t, x)) e

∫ t

0
(div u)dτ ∫ t

0
(∇Z(τ, t, x))t(∇div u)(τ, Z(τ, t, x)) dτ

)

= ∇Z(0, t, x))t∇h0(Z(0, t, x)) e

∫ t

0
(div u)dτ

×
∫ t

0
(∇Z(τ, t, x))t(∇div u)(τ, Z(τ, t, x)) dτ

+ h0(Z(0, t, x))

(∫ t

0
∇2Z(τ, t, x)∇div u(τ, Z)

+ (∇Z(τ, t, x))2∇2div u(τ, Z) dτ

)

e

∫ t

0
(div u)dτ

+ h0(Z(0, t, x))

(
∫ t

0
(∇Z(τ, t, x))t(∇div u)(τ, Z(τ, t, x)) dτ

)2

e

∫ t

0
(div u) dτ

.

Par ailleurs, en dérivant une nouvelle fois l’équation (2.14) on obtient :

{

∂s(∇2Z)(s, t, x) = (∇2u)(s, Z).(∇Z)2(s, t, x) + (∇u)(s, Z).(∇2Z)(s, t, x),

∇2Z(t, t, x) = 0.
(2.18)

Ainsi
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(∇2Z)(s, t, x) =

∫ s

t

(∇2u)(τ, Z(τ, t, x)).(∇Z)2(τ, t, x) dτ

+

∫ s

t

(∇u)(τ, Z(τ, t, x)).(∇2Z)(τ, t, x) dτ,

d’où :

‖(∇2Z)(s, t, .)‖L∞(Ω) ≤
∣

∣

∣

∣

∫ s

t

‖u(τ)‖W 2,∞(Ω)‖∇Z(τ, t, .)‖2
L∞(Ω) dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s

t

‖u(τ)‖W 1,∞(Ω)‖∇2Z(τ, t, .)‖L∞(Ω) dτ

∣

∣

∣

∣

.

En utilisant (2.16) on obtient :

‖(∇2Z)(s, t, .)‖L∞(Ω) ≤
(∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

)

e

∫ T

0
2‖u‖W 1,∞(Ω) dτ

+

∣

∣

∣

∣

∫ s

t

‖u(τ)‖W 2,∞(Ω)‖∇2Z(τ, t, .)‖L∞(Ω) dτ

∣

∣

∣

∣

,

(2.19)

d’où par le lemme de Gronwall :

‖(∇2Z)(s, t, .)‖L∞(Ω) ≤
(∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

)

e

∫ T

0
3‖u(τ)‖W 1,∞(Ω) dτ

et finalement l’estimation H2(Ω) :

‖∇2h(t, .)‖L2(Ω) ≤
(

‖h0‖H2(Ω) + 2‖h0‖H1(Ω)

∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

+ ‖h0‖L2(Ω)

∫ T

0
‖u(τ)‖W 3,∞(Ω) dτ

+ ‖h0‖L2(Ω)

(

∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

)2
)

e

∫ T

0
3‖u‖W 1,∞(Ω) dτ

+

(

‖∇h0‖L2(Ω)

∫ T

0
‖u(τ)‖(W 2,∞Ω) dτ

+ ‖h0‖L2(Ω)

(

∫ T

0
‖u(τ)‖W 2,∞(Ω) dτ

)2
)

e

∫ T

0
4‖u‖(W 1,∞Ω) dτ

.
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2.3. Problème approché

Soit h0 ∈ H1
per(Ω), h0 ≥ 0 et u0 tel que h0 |u0|2 ∈ L1

per(Ω), par exemple u0 ∈
L3

per(Ω). On prolonge h0 par 0 en dehors de Ω, puis on introduit hk
0 = (η 1

k
?h0)+ 1

k
, où

(η 1

k
)k est une suite régularisante périodique, de sorte que hk

0 est une fonction périodique

de classe C1(R3), minorée par 1
k

et qui converge vers h0 dans H1
per(Ω) faible. On pose

enfin uk
0 = Pk(u0) où Pk est la projection orthogonale dans L3

per(Ω) sur Vk, espace
de dimension finie engendré par les k premières fonctions propres du Laplacien de
domaine H2

per(Ω). Le problème approché est alors le suivant :

On cherche un couple (hk,uk) ∈ C1([0, T [, C1
per(Ω)) × C1([0, T [, Vk) solution de :























































































































∂hk

∂t
+ div (hkuk) = 0,

hk(0) = hk
0 ,

∀ψk ∈ Vk,

∫

Ω

(

(∂(hkuk)

∂t
+

(hkuk)
⊥

R0
+ α0(hk)uk + α1(hk)hk|uk|uk +

hk∇hk

F 2
r

−βhk∇∆hk

)

· ψk

)

dx

+

∫

Ω

(

(

hkuk ⊗ uk + ν hk D(uk) + 2ν
(

hkdiv uk

)

I
)

· ∇ψk

)

dx

=

∫

Ω

(

hk

(

f − ∇d
F 2

r

+ β∇∆d

)

· ψk

)

dx,

uk(0) = uk
0

2.3.1. Existence et unicité de la solution du problème approché. Afin
d’alléger les notations on omettra dans ce paragraphe l’indice k, ainsi que la mesure
dx. On pose de plus :

f̃ = f − ∇d
F 2

r

+ β∇∆d.

Ainsi le problème approché devient :
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On cherche un couple (h,u) ∈ C1([0, T [, C1
per(Ω)) × C1([0, T [, Vk) solution de :



























































































∂hk

∂t
+ div (hkuk) = 0,

hk(0) = hk
0 ,

∀ψk ∈ Vk,

∫

Ω

(∂(hkuk)

∂t
+

(hkuk)
⊥

R0
+ α0(hk)uk + α1(hk)hk|uk|uk

+
hk∇hk

F 2
r

− βhk∇∆hk

)

· ψk

+

∫

Ω

(

hkuk ⊗ uk + ν hk D(uk) + 2ν
(

hkdiv uk

)

I
)

· ∇ψk =

∫

Ω
hk f̃ · ψk,

uk(0) = uk
0

(2.20)

Proposition 2.3.1. Soit hk
0 ∈ C1

per(Ω) et uk
0 donnée dans Vk. Alors pour tout T > 0

le problème (2.20) possède une unique solution (h,u) dans

C1([0, T ]; C1(Ω)) × C1([0, T ], Vk).

Preuve.

On procède par une technique de point fixe et de linéarisation. On remarque que
l’on a :

∂(hu)

∂t
+ div (hu ⊗ v) = u

(

∂h

∂t
+ div (hv)

)

+ h

(

∂u

∂t
+ (v · ∇)u

)

Soit w donnée dans C0([0, T ], Vk), on définit u = Θ(w) par

∂h

∂t
+ div (w h) = 0,

h(0) = hk
0 ,

(2.21)

∀ψ ∈ Vk,

∫

Ω
h

(

∂u(t)

∂t
+ (w · ∇)u

)

· ψ +

∫

Ω

(

ν h
(

D(u) + 2ν
(

hdiv u
)

I
)

· ∇ψ

+

∫

Ω

(

(hu)⊥

R0
+ α0(h)u + α1(h)h|u|u +

h∇h
F 2

r

− βh∇∆h

)

· ψ =

∫

Ω
hf̃ψ(x)

u(0) = uk
0 .

(2.22)

Nous pouvons alors résoudre le problème précédent. Il est équivalent de résoudre le
problème approché (2.20) et de trouver un point fixe de Θ. Le problème approché pos-
sède une et une seule solution de classe C1 en temps. L’équation (2.21) se résout par
la méthode des caractéristiques comme on l’a vu à la section précédente, tandis que
l’équation (2.22) apparâıt comme une équation différentielle ordinaire dans un espace



50 2. Existence de solutions faibles globales

de dimension finie.
On remarque que comme hk(t, x) ≥ 1

k
> 0 la matrice de coefficients

∫

Ω h(t)wi · wjdx
est uniformément définie positive ce qui permet d’écrire le système précédent sous la

forme
d

dt
α(t) = F (t, α), où α est un système de coordonnées de u dans la base (ui).

Par ailleurs, l’application F ainsi définie est linéaire en α, et continue en temps à
condition que f(t, x) soit continue en temps. On peut remplacer f par fk = f ∗ η 1

k

dans la définition du problème approché, ce qui ne change rien à la suite.

On va donc montrer que Θ admet un unique point fixe dans C0([0, T ], Vk).

(1) Estimation sur u

Lemme 2.3.1. Quelle que soit la fonction w ∈ C0([0, T ], Vk), on a

∀T > 0, ∃K1(T, k), sup
t≤T

‖u(t)‖L2(Ω) ≤ K1(T, k).

Preuve du lemme 2.3.1.

On procède par estimation de l’énergie, en posant ψ = 2u dans (2.22). Comme
(∇u + t∇u) · (∇u− t∇u) = 0, on a l’identité suivante :

(∇u +t ∇u) · ∇u =
1

2
|∇u +t ∇u|2.

On a également :

(div u)I · ∇u = (div u)2.

On obtient :

∫

Ω
h(t)

(

∂|u(t)|2
∂t

+ (w(t) · ∇)|u(t)|2 +
ν

2
|∇u(t) + t∇u(t)|2

+ 4 ν|div u(t)|2 + 2α1(h)|u(t)|3
)

+ 2

∫

Ω
α0(h)|u(t)|2 +

2

F 2
r

∫

Ω
h(t)∇h(t) · u(t) − 2β

∫

Ω
h(t)∇∆h(t) · u(t)

= 2

∫

Ω
h(t)f̃(t)u(t).

(2.23)

En multipliant scalairement l’équation (2.21) par |u|2 puis en intégrant par
parties, il vient, en utilisant les conditions aux limites périodiques :

∫

Ω
|u(t)|2 ∂h

∂t
dx−

∫

Ω
h(t)(w(t) · ∇)|u(t)|2dx = 0. (2.24)
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En additionnant (2.23) et (2.24) on obtient :

d

dt
||
√

h(t)u(t)||2L2(Ω) +
ν

2
‖
√

h(t)(∇u(t) + t∇u(t))‖2
L2(Ω)

+ 4 ν ‖
√

h(t)div u(t)‖2
L2(Ω) + 2‖α0(h)

1

2 u(t)‖2
L2(Ω) + 2‖α1(h)

1

3 h
1

3 u(t)‖3
L3(Ω)

+
2

F 2
r

∫

Ω
h(t)∇h(t) · u(t) dx− 2β

∫

Ω
h(t)∇∆h(t) · u(t) dx

= 2

∫

Ω
h(t)f̃(t)u(t)dx.

(2.25)

On a en intégrant par partie et en utilisant (2.21), tenant compte des condi-
tions aux limites périodiques :

∫

Ω
h∇h · u = −

∫

Ω
hdiv (hu) =

∫

Ω
h
∂h

∂t
=

d

dt
‖h(t)‖2

L2(Ω)

et
∫

Ω
h∇∆h · u = −

∫

Ω
∆hdiv (hu) =

∫

Ω
∆h

∂h

∂t

= −
∫

Ω
∇h · ∂

∂t
(∇h)

= −1

2

d

dt
‖∇h(t)‖2

L2(Ω)

Ainsi on obtient l’inégalité :

d

dt

(

‖
√

h(t)u(t)‖2
L2(Ω) +

2

F 2
r

‖h(t)‖2
L2(Ω) + 2β‖∇h(t)‖2

L2(Ω)

)

≤ 2‖
√

h(t)‖L∞(Ω)‖f̃(t)‖L2(Ω)‖
√

h(t)u(t)‖L2(Ω),

En intégrant entre 0 et t on obtient alors :

‖
√

h(t)u(t)‖2
L2(Ω) +

2

F 2
r

‖h(t)‖2
L2(Ω) + 2β‖∇h(t)‖2

L2(Ω)

≤ a0 +

∫ t

0
‖
√

h(s)‖L∞(Ω)‖
√

h(s)u(s)‖L2(Ω)‖f̃(s)‖L2(Ω),

(2.26)

où

a0 = ‖
√

h0u0‖2
L2(Ω) +

1

F 2
r

‖h0‖2
L2(Ω) + β‖∇h0‖2

L2(Ω).

On conclut en utilisant le lemme suivant :
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Lemme 2.3.2 (Gronwall-carré). Soient y et g deux fonctions continues et
positives et C ≥ 0. On suppose que

∀t ≥ 0, y2(t) ≤ C +

∫ t

0
g(s)y(s) ds.

Alors, on a

∀t ≥ 0, y(t) ≤
√
C +

1

2

∫ t

0
g(s) ds.

Preuve.

On pose

h(t) = C +

∫ t

0
g(s)y(s) ds,

qui est une fonction de classe C1 vérifiant

h′(t) = g(t)y(t) ≤ g(t)
√

h(t),

car y et g sont positives. Si on suppose C > 0, alors pour tout t ≥ 0, h(t) > 0,
on peut donc écrire

h(′t)

2
√

h(t)
≤ 1

2
g(t),

ce qui donne en intégrant

√

h(t) ≤
√

h(0) +
1

2

∫ t

0
g(s) ds.

Or y(t) ≤
√

h(t) par hypothèse et h(0) = C, ce qui fournit le résultat

y(t) ≤
√
C +

1

2

∫ t

0
g(s) ds. (2.27)

Dans le cas où C = 0, l’hypothèse est alors vérifiée en particulier pour toute
constante C > 0, ainsi (2.27) est vraie pour tout C > 0. Le résultat pour
C = 0 en découle par passage à la limite.

Ainsi, par application du lemme, on obtient l’inégalité suivante :

‖
√

h(t)u(t)‖L2(Ω) ≤
√
a0 +

1

2

∫ t

0
‖
√

h(s)‖L∞(Ω)‖f̃(s)‖L2(Ω)ds

Comme la fonction h est minorée par
1

k
et majorée d’après (2.8), on a :

‖h‖L∞(0,T ; L∞(Ω) ≤ ‖h0‖L∞(Ω) e

∫ T

0
‖∇u(τ)‖L∞(Ω))dτ

≤ C(‖h0‖L∞(Ω), T ).
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On déduit de l’inégalité précédente que

‖u(t)‖L2(Ω) ≤
√
α0 +

C

2

∫ T

0
‖f̃(s)‖L2(Ω)ds

et donc qu’il existe une constante K1(T, k) indépendante de ‖w‖ telle que :

sup
t≤T

‖u(t)‖L2(Ω) ≤ K1(T, k).

Ainsi, si u est un point fixe de Θ, alors en prenant w = u, le lemme montre
que

‖u‖L∞(]0,T [,Vk) ≤ K1(T, k).

Nous pouvons donc nous restreindre à la recherche de points fixes de Θ dans
l’ensemble des fonctions continues en temps à valeurs dans la boule fermée de
Vk de centre 0 et de rayonK1(T, k) (en munissant Vk, par exemple, de la norme
L2(Ω) puisque étant de dimension finie, toutes les normes sont équivalentes).

(2) Equicontinuité de u

On utilise ici principalement l’équivalence des normes dans Vk.

Lemme 2.3.3. Si w ∈ C1([0, T ], Vk) est telle que

‖w‖L∞(0,T ;L2(Ω)) ≤ K1(T, k),

alors

∀T > 0, ∃K2(T, k), sup
t≤T−η

‖u(t+ η) − u(t)‖L2(Ω) ≤
√
ηK2(T, k).

Preuve du Lemme 2.3.3.

On reprend la formulation variationnelle du problème approché (2.22) en
effectuant une intégration par parties sur le terme de capillarité :

−
∫

Ω
h∇∆h · ψ =

∫

Ω
∆hdiv (hψ)

=

∫

Ω
∆h∇h · ψ +

∫

Ω
h∆hdiv (ψ).

On prend ψ =
∂u

∂t
. On remarque que, comme (∇u+t∇u)· ∂

∂t

(

∇u−t∇u
)

= 0,

on a l’identité suivante :

(∇u + t∇u) · ∇
(∂u

∂t

)

=
1

2

∂

∂t
|∇u + t∇u|2,

ainsi que :

(div u) I · ∇
(∂u

∂t

)

=
1

2

∂

∂t
|div u|2.
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Il vient
∫

Ω
h
∣

∣

∣

∂u(t)

∂t

∣

∣

∣

2
+
ν

4

∫

Ω
h
∂

∂t
|∇u(t) + t∇u(t)|2 + ν

∫

Ω
h
∂

∂t
|div u(t)|2

+

∫

Ω

(

α0(h)u + α1(h)h |u|u
)

·∂u(t)

∂t

= −
∫

Ω
h

(

(w · ∇)u +
1

R0
u⊥ +

1

F 2
r

h∇h− f̃

)

· ∂u(t)

∂t

− β

∫

Ω
∆h∇h · ∂u(t)

∂t
dx− β

∫

Ω
h∆hdiv

(∂u(t)

∂t

)

(2.28)

ou encore

∫

Ω
h
∣

∣

∣

∂u(t)

∂t

∣

∣

∣

2
+
ν

4

d

dt

∫

Ω
h |∇u(t) + t∇u(t)|2 + ν

d

dt

∫

Ω
h |div u(t)|2

+
1

2

d

dt

∫

Ω
α0(h) |u(t)|2 =

ν

4

∫

Ω

∂h

∂t
|∇u(t) + t∇u(t)|2 + ν

∫

Ω

∂h

∂t
|div u(t)|2

+
1

2

∫

Ω

∂α0(h)

∂t
|u(t)|2 − β

∫

Ω
∆h∇h · ∂u(t)

∂t
dx− β

∫

Ω
h∆hdiv

(∂u(t)

∂t

)

−
∫

Ω
h

(

(w · ∇)u +
1

R0
u⊥ +

1

F 2
r

h∇h+ α1(h) |u|u − f̃

)

· ∂u(t)

∂t
.

(2.29)

Nous reprenons les estimations (2.8) sur h que nous écrivons sous la forme :

‖h‖L∞(0,T ; L2(Ω)) ≤ ‖h0‖L2(Ω) e
Ck T‖u‖L∞(0,T ;L2(Ω))

≤ ‖h0‖L2(Ω) e
Ck T K1(T, k),

(2.30)

et

‖h‖L∞(0,T ; L∞(Ω)) ≤ ‖h0‖L∞(Ω) e
Ck T‖u‖L∞(0,T ; L2(Ω))

≤ ‖h0‖L∞(Ω) e
Ck T K1(T, k).

(2.31)

Ainsi il existe une constante Ak telle que nous ayons ‖h‖L∞(0,T ;L∞(Ω)) ≤ Ak.
Ceci implique également :

α0(h) =
r0

1 +
ε r0h

3 νo

≥ α0k =
r0

1 +
ε r0Ak

3 νo

(2.32)

et

α1(h) =
r1

(1 +
ε r0h

3 νo
)2

≥ α1k =
r1

(1 +
ε r0Ak

3 νo
)2
. (2.33)
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De plus en écrivant que

∂h

∂t
= −∇h · u− hdiv u,

on obtient une borne L∞(0, T ; L∞(Ω)) pour
∂h

∂t
. En effet, on montre que ∇h

est borné dans L∞(0, T ; L∞(Ω)) en remplaçant toute les bornes L2(Ω) par des

bornes L∞(Ω) dans l’expression (2.17). On a donc également ‖∂h
∂t

‖L∞(0,T ; L∞(Ω)) ≤
Bk

On a donc :

∫

Ω
h
∣

∣

∣

∂u(t)

∂t

∣

∣

∣

2
+
ν

4

d

dt

∫

Ω
h |∇u(t) + t∇u(t)|2 + ν

d

dt

∫

Ω
h |div u(t)|2

+
1

2

d

dt

∫

Ω
α0(h) |u(t)|2 ≤ ‖∂h

∂t
‖L∞(Ω)

(

ν

2
‖∇u(t)‖2

L2(Ω)

+ ν‖div u(t)‖2
L2(Ω) +

1

2
c0 r0 ‖u(t)‖2

L2(Ω)

)

+ ‖h‖L∞(Ω)

(

‖w‖L∞(Ω)‖∇u‖L2(Ω) +
1

R0
‖u‖L2(Ω) +

1

F 2
r

‖∇h‖L2(Ω)

+ r1 ‖u‖L∞(Ω)‖u‖L2(Ω) + ‖f̃‖L2(Ω)

)∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

L2(Ω)

+ β ‖∆h‖L2(Ω)‖∇h‖L2(Ω)

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

L∞(Ω)

+ β ‖h‖L∞(Ω)‖∆h‖L2(Ω)

∥

∥

∥

∥

div
∂u

∂t

∥

∥

∥

∥

L2(Ω)

,

(2.34)

Comme h est minorée par
1

k
et puisque toutes les normes sont équivalentes

sur Vk, on obtient en intégrant sur [0, t] et en utilisant l’inégalité de Young :
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∫ t

0

∥

∥

∥

∥

∂u

∂t
(τ)

∥

∥

∥

∥

2

L2(Ω)

dτ +
ν

4
‖∇u + t∇u‖2

L2(Ω) + ν ‖div u‖2
L2(Ω) +

α0k

2
‖u‖2

L2(Ω)

≤ ν

4
‖∇u0 + t∇u0‖2

L2(Ω) + ν ‖div u0‖2
L2(Ω) +

r0
2
‖u0‖2

L2(Ω)

+ k Ck

∫ t

0
‖∂h
∂t

‖L∞(Ω)

(

ν

2
‖u(t)‖2

L2(Ω)

+ ν‖u(t)‖2
L2(Ω) +

1

2
c0 r0 ‖u(t)‖2

L2(Ω)

)

+ kCk

∫ t

0
‖h‖2

L∞(Ω)

(

‖w‖2
L2(Ω)‖u‖2

L2(Ω) + ‖u‖2
L2(Ω)

+ ‖∇h‖2
L2(Ω) + r1 ‖u‖4

L2(Ω) + ‖f̃‖2
L2(Ω)

)

dτ

+ k Ck

∫ t

0

(

‖∆h‖2
L2(Ω)‖∇h‖2

L2(Ω) + ‖h‖2
L∞(Ω)‖∆h‖2

L2(Ω)

)

dτ.

(2.35)

En supposant ‖w‖L∞(0,T ; L2(Ω)) ≤ K1(T, k) alors, d’après le lemme 2.3.1, nous
avons

‖u‖L∞(0,T ; L2(Ω)) ≤ K1(T, k).

En utilisant (2.30) et (2.31), l’estimation (2.9) devient

‖∇h‖L∞(0,T ;L2(Ω)) ≤
(

‖∇h0‖L2(Ω) + Ck T‖h0‖L2(Ω)‖u‖L∞(0,T ; L2(Ω))

)

e
2Ck T‖u‖L∞(0,T ; L2(Ω))

soit

‖∇h‖L∞(0,T ; L2(Ω)) ≤
(

‖∇h0‖L2(Ω) + Ck T‖h0‖L2(Ω)K1(T, k)

)

e2Ck T K1(T, k)

≤ K∇h(T, k)

(2.36)

De même en reprenant (2.10), on montre qu’il existe une constante K∆h > 0
telle que l’on ait :

‖∆h‖L∞(0,T ; L2(Ω)) ≤ K∆h(T, k). (2.37)

puisque ‖∆h(t)‖L2(Ω) ≤ ‖∇2h(t)‖L2(Ω).
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On a alors :

∫ t

0

∥

∥

∥

∥

∂u

∂t
(τ)

∥

∥

∥

∥

2

L2(Ω)

dτ ≤ ν

4
‖∇u0 + t∇u0‖2

L2(Ω) + ν‖∇u0‖2
L2(Ω) +

r0
2
‖u0‖2

L2(Ω)

+ k Bk Ck T
(ν

2
K1(T, k)

2 + νK1(T, k)
2 +

r0 c0
2

K1(T, k)
2
)

+ k Ck T‖h0‖2
L∞(Ω) e

2Ck T K1(T, k)
(

K1(T, k)
4 +K1(T, k)

2

+K2
∇h + r1K1(T, k)

4 + ‖f̃‖L1(0,T ; L2(Ω))

)

+ k Ck T
(

K2
∇hK

2
∆h +K2

∆h ‖h0‖2
L∞(Ω) e

2Ck T K1(T, k)
)

et donc, il existe une constante K2(T, k) tel que :

∫ t

0

∥

∥

∥

∥

∂u

∂t
(τ)

∥

∥

∥

∥

2

L2(Ω)

dτ ≤ K2(T, k)
2.

Ainsi, pour t ≤ T − η, on a

‖u(t+ η) − u(t)‖L2(Ω) ≤
∫ t+η

t

∥

∥

∥

∥

∂u

∂t
(τ)

∥

∥

∥

∥

L2(Ω)

dτ

≤ √
η

∥

∥

∥

∥

∂u

∂t
(τ)

∥

∥

∥

∥

L2(0,T ; L2(Ω))

≤ √
η K2(T, k).

(2.38)

Ce lemme permet de montrer que si u est un point fixe de Θ, alors on a

‖u(t+ η) − u(t)‖L∞(0,T−η; ,Vk) ≤ K2(T, k)
√
η.

Ainsi, tout point fixe éventuel de Θ dans C0([0, T ], Vk) se trouve nécessaire-
ment dans l’ensemble

K = {u ∈ C0([0, T ], B̄Vk
(0,K1(T, k))),

tel que ‖u(t+ η) − u(t)‖L2(Ω) ≤
√
ηK2(T, k)}.

(2.39)

(3) Continuité de l’application Θ

Les lemmes 2.3.1 et 2.3.3, montrent que Θ laisse invariant l’ensemble K
défini par (2.39). On a alors le résultat suivant :

Lemme 2.3.4. L’application Θ est Lipschitzienne sur l’ensemble K. Plus
précisément, il existe une constante K4(T, k) telle que pour tous w1,w2 ∈ K
on ait

∀t ∈ [0, T ], ‖Θ(w1) − Θ(w2)‖L∞(0,t; Vk) ≤ tK4(T, k)‖w1 −w2‖L∞(0,t; Vk).
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Preuve.

Soient (h1,u1) et (h2,u2) les solutions du problème linéarisé associées à deux
fonctions w1,w2 ∈ K. On pose h = h1 − h2, u = u1 −u2 et w = w1 −w2, et
on a :

∂h

∂t
+ div (h1 w) + div (hw2) = 0,

∀ψ ∈ Vk,

∫

Ω

(

h(t)

(

∂u1

∂t
+ (w1.∇)v1

)

+ h2

(

∂u

∂t
+ (w.∇u1) + (w2.∇)u

))

· ψ

+

∫

Ω

ν

2

(

h(∇u1 + t∇u1) + h2(∇u + t∇u) + 4hdiv (u1)I + 4h2div (u)I
)

.∇ψ

+

∫

Ω

(

1

Ro
(hu1)

⊥ +
1

Ro
(h2 u)⊥ + α0(h1)u +

(

α0(h1) − α0(h2)
)

u2

)

· ψ dx

+

∫

Ω

(

α1(h1)h1|u1|u + α1(h1)h|u1|u2 + α1(h1)
(

|u1| − |u2|
)

h2 u2

+
(

α1(h1) − α1(h2)
)

|u2|h2 u2

)

· ψ

+

∫

Ω

(

1

F 2
r

h∇h1 +
1

F 2
r

h2∇h− βh∇∆h1 − βh2∇∆h

)

· ψ =

∫

Ω
h f̃ · ψ

(2.40)

ainsi que les conditions initiales h(0) = 0 et u(0) = 0.

On prend ψ = u dans (2.40). Il vient :
∫

Ω
hu ·

(∂u1

∂t
+ (w1.∇)u1

)

+
1

2

∫

Ω
h2

(∂|u|2
∂t

+ w2.∇|u|2
)

+

∫

Ω
h2u · (w.∇)u1

+

∫

Ω

ν

2

(

(

h(∇u1 + t∇u1) + 4hdiv (u1)I
)

· ∇u

+
h2

2
|∇u + t∇u|2 + 4h2|div u|2

)

+

∫

Ω
hu ·

(

1

Ro
u⊥

1 +
1

F 2
r

h∇h1 + α1(h1)|u1|u2 − f̃

)

+

∫

Ω
α0(h1) |u|2 +

∫

Ω
α1(h1)h1|u1||u|2

+

∫

Ω

(

(

α1(h1) − α1(h2)
)

|u2|h2 u2 +
(

α0(h1) − α0(h2)
)

u2

+ α1(h1)
(

|u1| − |u2|
)

h2u2 +
1

F 2
r

h2∇h− β h∇∆h1 − β h2∇∆h

)

· u

= 0.

(2.41)
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On effectue une intégration par parties sur le terme en w2 ·∇|u|2 et on utilise
l’équation de conservation de la hauteur d’eau vérifiée par h2 pour obtenir :

∫

Ω
h2w2 · ∇|u|2 = −

∫

Ω
|u|2div (h2w2) =

∫

Ω
|u|2 ∂h2

∂t
.

L’équation (2.41) devient :

1

2

d

dt

∫

Ω
h2|u|2 +

ν

4

∫

Ω
h2

(

|∇u + t∇u|2 + 8|div u|2
)

+

∫

Ω
α0(h1) |u|2

+

∫

Ω
α1(h1)h1|u1||u|2 =

∫

Ω
hu · g −

∫

Ω
h2u · `

− ν

2

∫

Ω

(

h(∇u1 + t∇u1) + 4hdiv (u1)I
)

· ∇u

−
∫

Ω

(

α0(h1) − α0(h2)
)

u2 · u − β

∫

Ω
∆h1 div (hu) − β

∫

Ω
∆hdiv (h2u)

avec

g = f̃ − 1

F 2
r

∇h1 −
1

Ro
u⊥

1 − ∂ u1

∂t
− (w1 · ∇)u1 − α1(h1)|u1|u2,

et

` = (w.∇)u1 +
1

F 2
r

∇h+
(

α1(h1) − α1(h2)
)

|u2|u2 + α1(h1)
(

|u1| − |u2|
)

u2.

On a alors les estimations suivantes :

‖g(t)‖L2(Ω) ≤ ‖f̃(t)‖L2(Ω) +
1

F 2
r

‖∇h1(t)‖L2(Ω) + ‖∂ v1
∂t

‖L2(Ω)

+
1

Ro
‖u1(t)‖L2(Ω) + ‖w1‖L∞(Ω)‖∇u1‖L2(Ω) + r1 ‖u1‖L∞(Ω)‖u2‖L2(Ω),

et

‖`(t)‖L2(Ω) ≤ ‖w‖L∞(Ω)‖∇u1‖L2(Ω) +
1

F 2
r

(

‖∇h1(t)‖L2(Ω) + ‖∇h2(t)‖L2(Ω)

)

+ 2r1 ‖u2‖L∞(Ω)‖u2‖L2(Ω) + r1‖u‖L∞(Ω)‖u2‖L2(Ω).

Comme les normes L∞, L2 et H1 sont équivalentes sur Vk, il existe une
constante Ck > 0 telle que

‖g(t)‖L2(Ω) ≤ ‖f̃(t)‖L2(Ω) +
1

F 2
r

‖∇h1(t)‖L2(Ω) + ‖∂ v1
∂t

‖L2(Ω)

+
1

Ro
‖u1(t)‖L2(Ω) + Ck‖w1‖L2(Ω)‖u1‖L2(Ω) + r1Ck ‖u1‖L2(Ω)‖u2‖L2(Ω),

et

‖`(t)‖L2(Ω) ≤ Ck‖w‖L2(Ω)‖u1‖L2(Ω) +
1

F 2
r

(

‖∇h1(t)‖L2(Ω) + ‖∇h2(t)‖L2(Ω)

)

+ 2r1 Ck ‖u2‖2
L2(Ω) + r1 Ck‖u‖L2‖u2‖L2(Ω).
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Si on choisit w1 et w2 telles que

‖w1‖L∞(0,T ; L2(Ω)) ≤ K1(T, k)

et

‖w2‖L∞(0,T ;L2(Ω)) ≤ K1(T, k),

alors d’après les lemmes (2.3.1), (2.3.3) et l’estimation (2.9), on obtient :

‖g‖L1(0,T ; L2(Ω)) ≤ ‖f̃‖L1(0,T ;L2(Ω)) +
T

F 2
r

K∇h1

+
√
TK2(T, k) +

K1(T, k)T

Ro

+ CkTK1(T, k)
2 + +r1CkTK1(T, k)

2

(2.42)

et

‖`‖L1(0,T ; L2(Ω)) ≤ CkTK1(T, k)
2 +

T

F 2
r

(

K∇h1

+K∇h2

)

+ 4r1T CkK1(T, k)
2.

(2.43)

Enfin, en multipliant par h l’équation de conservation vérifiée par h et en
intégrant par parties, il vient

1

2

d

dt
‖h‖2

L2(Ω) +

∫

Ω
hdiv (h1w)dx+

1

2

∫

Ω
div w2|h|2dx = 0,

ce qui donne en sommant cette estimation à celle obtenue sur
∫

Ω h2|u|2 :

1

2

d

dt

(

‖h‖2
L2(Ω) + ‖

√

h2u‖2
L2(Ω)

)

+
ν

4

∫

Ω
h2

(

|∇u + t∇u|2 + 8|div u|2
)

+

∫

Ω
α0(h1) |u|2 +

∫

Ω
α1(h1)h1|u1||u|2 =

∫

Ω
hu · g −

∫

Ω
h2u · `

− ν

2

∫

Ω

(

h(∇u1 + t∇u1) + 4hdiv (u1)I
)

· ∇u

−
∫

Ω

(

α0(h1) − α0(h2)
)

u2 · u− β

∫

Ω
∆h1div (hu)

− β

∫

Ω
∆hdiv (h2u) −

∫

Ω
hdiv (h1w) − 1

2

∫

Ω
div w2|h|2
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et donc :

1

2

d

dt

(

‖h‖2
L2(Ω) + ‖

√

h2u‖2
L2(Ω)

)

+
ν

4

∫

Ω
h2

(

|∇u + t∇u|2 + 8|div u|2
)

+

∫

Ω
α0(h1) |u|2 +

∫

Ω
α1(h1)h1|u1||u|2 ≤ ‖h‖L2(Ω)‖u‖L∞(Ω)‖g‖L2(Ω)

+ ‖h2‖L2(Ω)‖u‖L∞(Ω)‖`‖L2(Ω) + 2 r0‖u‖L2(Ω)‖u2‖L2(Ω)

+
ν

2
‖h‖L∞(Ω)‖∇u1 + t∇u1 + 4div (u1)I‖L2(Ω)‖∇u‖L2(Ω)

+ β

(

‖∆h1‖L2(Ω)

(

‖h‖L2(Ω)‖div u‖L∞(Ω) + ‖∇h‖L2(Ω)‖u‖L∞(Ω)

)

+ ‖∆h‖L2(Ω)

(

‖h2‖L2(Ω)‖div u‖L∞(Ω) + ‖∇h2‖L2(Ω)‖u‖L∞(Ω)

)

)

+ ‖h‖L2(Ω)

(

‖w‖L∞(Ω)‖∇h1‖L2(Ω) + ‖div w‖L∞(Ω)‖h1‖L2(Ω)

)

+ ‖div w2‖L∞(Ω)‖h‖2
L2(Ω)

En utilisant à nouveau l’équivalence des normes dans Vk et l’inégalité de
Young et comme α0(h1) > 0 et α1(h1) > 0 nous obtenons :

1

2

d

dt

(

‖h‖2
L2(Ω) + ‖

√

h2u‖2
L2(Ω)

)

≤ Ck‖h‖L2(Ω)‖u‖L2(Ω)‖g‖L2(Ω) + Ck‖h2‖L2(Ω)‖u‖L2(Ω)‖`‖L2(Ω)

+ Ck ν ‖h‖L∞(Ω)‖u1‖L2(Ω)‖u‖L2(Ω) + 2 r0 ‖u‖L2(Ω)‖u2‖L2(Ω)

+ β

(

‖∆h1‖L2(Ω)

(

Ck‖h‖L2(Ω)‖u‖L2(Ω) + Ck‖∇h‖L2(Ω)‖u‖L2(Ω)

)

+ ‖∆h‖L2(Ω)

(

Ck‖h2‖L2(Ω)‖u‖L2(Ω) + Ck‖∇h2‖L2(Ω)‖u‖L2(Ω)

)

)

+ ‖w‖2
L2(Ω) + Ck‖h‖2

L2(Ω)

(

‖∇h1‖2
L2(Ω) + ‖h1‖2

L2(Ω)

)

+ Ck‖w2‖L2(Ω)‖h‖2
L2(Ω)

On majore ‖h1,2‖L2(Ω) par ‖h0‖L2(Ω)e
Ck T ‖w1,2‖L∞(0,T ; L2(Ω)) , grâce aux es-

timations (2.8) et en utilisant l’équivalence des normes dans Vk. On utilise
une nouvelle fois l’inégalité de Young pour obtenir, puisque h2 est minoré :

d

dt

(

‖h‖2
L2(Ω) + ‖

√

h2u‖2
L2(Ω)

)

≤ ‖w‖L2(Ω) + k(t)
(

‖h‖2
L2(Ω) + ‖

√

h2 u‖2
L2(Ω)

)

,
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où

k(t) = Ck

(

‖ g‖L2(Ω) + ‖ `‖2
L2(Ω)‖h0‖2

L2(Ω) e
2Ck T ‖w2‖L∞(0,T ; L2(Ω))

+ Ck ν ‖u1‖L2(Ω) + 2 r0 ‖u2‖2
L2(Ω) + β ‖∆h1‖L2(Ω)

+ β ‖∆h1‖2
L2(Ω)‖∇h‖2

L2(Ω)

+ β ‖∆h‖2
L2(Ω)

(

‖h0‖2
L2(Ω) e

2Ck T ‖w2‖L∞(0,T ;L2(Ω)) + ‖∇h2‖2
L2(Ω)

)

+ ‖∇h1‖2
L2(Ω) + ‖h0‖2

L2(Ω) e
2Ck T ‖w1‖L∞(0,T ; L2(Ω)) + ‖w2‖L2(Ω)

)

.

Le lemme de Gronwall permet d’obtenir, sachant que u(0) = 0, h(0) = 0 et
h2 minoré :

‖h(t)‖2
L2(Ω) + ‖u(t)‖2

L2(Ω) ≤ C

∫ t

0
e

∫ t

s

k(τ)dτ
‖w(s)‖2

L2(Ω)ds,

≤ Ct sups≤t ‖w(s)‖2
L2(Ω)e

T K3(T,k).

En utilisant le lemme 2.3.1, en remarquant que l’on a ‖∇h‖L2(Ω) ≤
‖∇h1‖L2(Ω) +‖∇h2‖L2(Ω) ainsi que ‖∆h‖L2(Ω) ≤ ‖∆h1‖L2(Ω) +‖∆h2‖L2(Ω) et
en majorant respectivement ‖∇hi‖L2(Ω) et ‖∆hi‖L2(Ω) parK∇hi

et K∆hi
pour

i = 1, 2, grâce aux estimations (2.9) et (2.10), nous obtenons l’expression de
la constante :

K3(T, k) = Ck

(

‖ g‖L1(0,T ; L2(Ω)) + ‖ `‖2
L1(0,T ; L2(Ω))‖h0‖2

L2(Ω) e
2Ck T K1(T, k)

+ Ck ν K1(T, k) + 2r0 K1(T, k)
2 + βK∆h1

+ β K2
∆h1

(

K∇h1
+K∇h2

)2

+ β
(

K∆h1
+K∆h2

)2(

‖h0‖2
L2(Ω) e

2Ck T K1(T, k) +K2
∇h2

)

+K2
∇h1

+ ‖h0‖2
L2(Ω) e

2Ck T K1(T, k) +K1(T, k)

)

.

On obtient donc :

‖u1(t) − u2(t)‖2
L2(Ω) ≤ C eT K3(T,k) t sup

s≤t
‖w1(s) −w2(s)‖2

L2(Ω).

Il existe donc une constante K4(T, k) telle que pour tous w1,w2 ∈ K on ait

∀t ∈ [0, T ], ‖Θ(w1) − Θ(w2)‖L∞(0,t; Vk) ≤ tK4(T, k)‖w1 −w2‖L∞(0,t; Vk).

(4) Fin de la démonstration de la proposition 2.3.1

D’après le lemme 2.3.3 l’ensemble K est équicontinu. De plus l’ensemble
K(t) défini parK(t) = {u(t),u ∈ K} est d’adhérence compacte dans B̄Vk

(0,K1(T, k))
car Vk étant de dimension finie, B̄Vk

(0,K1(T, k)) est compacte. Ainsi, d’après
le théorème d’Ascoli, l’ensemble K défini par (2.39) est un ensemble convexe
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compact dans C0([0, T ], Vk). De plus, l’application Θ est continue (car lipshit-
zienne) de K dans lui-même et laisse invariant ce compact d’après les lemmes
2.3.1 et 2.3.3. On utilise le théorème suivant :

Théorème 2.3.1 (Point fixe de Schauder). Soit X un espace de Banach et
C une partie compacte convexe de X. Si T est une application continue de C
dans C, elle admet un point fixe dans C.

Preuve.

Voir [91]

Ainsi, d’après le théorème de Schauder, Θ possède au moins un point fixe
dans K.

On a donc montré l’existence d’une solution pour le problème approché (2.20).

2.3.2. Unicité et globalité de la solution du problème approché.

Proposition 2.3.2. Le problème approché (2.20) possède une unique solution sur
[0, T ] pour tout T > 0. En conséquence, cette solution est définie sur R

+ tout entier.

Preuve.

L’unicité est une conséquence immédiate du lemme 2.3.4. En effet, si u1 et u2 sont
deux points fixes de Θ, on a déjà vu que nécessairement u1 et u2 sont dans K, et on
a donc

∀t ≥ 0, ‖u1 − u2‖L∞(0,t; Vk) ≤ tK4(T, k)‖u1 − u2‖L∞(0,t; Vk).

Ainsi, pour t0 > 0 assez petit (t0 <
1

K4(T, k)
) on a

‖u1 − u2‖L∞(0,t; Vk) = 0.

Ceci montre l’unicité locale au voisinage de t = 0. En fait, cela montre que si u1 et
u2 cöıncident en t1 alors elles cöıncident sur un intervalle [t1, t1 + ε], ce qui permet de
conclure à l’unicité de la solution sur [0, T ].

Pour montrer le caractère global de la solution, on recolle les solutions construites sur
des intervalles [0, n]. Ce recollement peut avoir lieu sans problème grâce à l’unicité
obtenue ci-dessus qui assure que les solutions se recouvrent de façon adéquate.
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2.3.3. Estimations a priori. Il s’agit maintenant d’obtenir des estimations sur
la solution du problème approché indépendantes de k. C’est la raison pour laquelle on
reprend la notation initiale (hk,uk) pour la solution du problème approché.

Proposition 2.3.3. La solution du problème approché (2.20) vérifie l’inégalité d’éner-
gie suivante :

∫

Ω

(

h2
k

2F 2
r

+ hk
|uk|2

2
+ β

|∇hk|2
2

)

+

∫ t

0

∫

Ω
α0(hk) |uk|2 +

∫ t

0

∫

Ω
α1(hk)hk |uk|3

+
ν

4

∫ t

0

∫

Ω
hk|∇uk + t∇uk|2 + 2ν

∫ t

0

∫

Ω
hk|div uk|2

≤
∫

Ω

(

h2
0

2F 2
r

+ h0
|u0|2

2
+ β

|∇h0|2
2

)

+

∫ t

0

∫

Ω
hkf̃ · uk

(2.44)

Preuve.

Remarquons tout d’abord que l’on a l’identité suivante :

∂(hkuk)

∂t
+ div (hkuk ⊗ uk) = hk

(

∂uk

∂t
+ div (uk ⊗ uk)

)

+

(

∂hk

∂t
+ div (ukhk)

)

uk.

Le dernier terme étant nul grâce à l’équation vérifiée par hk, nous obtenons :

∂(hkuk)

∂t
+ div (hkuk ⊗ uk) = hk

(

∂uk

∂t
+ div (uk ⊗ uk)

)

, (2.45)

et en multipliant (2.45) par uk :

∂(hkuk)

∂t
uk + div (hkuk ⊗ uk)uk = hkuk

(

∂uk

∂t
+ div (uk ⊗ uk)

)

.

Chacun de ces deux termes est donc égal à leur demi-somme, ce qui donne :

∂(hkuk)

∂t
uk + div (hkuk ⊗ uk)uk =

1

2

(

∂(hkuk)

∂t
uk + div (hkuk ⊗ uk)uk

+ hkuk

(

∂uk

∂t
+ div (uk ⊗ uk)

))

=
1

2

∂hk|uk|2
∂t

+
1

2
div (hkuk ⊗ uk)uk

+
1

2
hkukdiv (uk ⊗ uk)

=
1

2

∂hk|uk|2
∂t

+
1

2
div (hk|uk|2uk).

Ainsi pour ψk = uk dans (2.20) et comme uk · u⊥
k = 0 on obtient :
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1

2

d

dt

∫

Ω
hk|uk|2dx+

1

2

∫

Ω
div (hkuk|uk|2)dx+

∫

Ω
α0(hk) |uk|2 +

∫

Ω
α1(hk)hk|uk|3

+
1

F 2
r

∫

Ω
hk∇hk · uk +

ν

2

∫

Ω
hk

(

∇uk +t ∇uk

)

· ∇uk + 2ν

∫

Ω
(hkdiv uk)I · ∇uk

− β

∫

Ω
hk∇∆hk · uk =

∫

Ω
hkf̃ · uk.

(2.46)

Le second terme de (2.46) est nul, en utilisant la formule de la divergence, car les
conditions aux limites sont de type périodiques. On a en intégrant par partie et en
utilisant (2.20), tenant compte des conditions aux limites périodiques :

1

F 2
r

∫

Ω
hk∇hk · uk = − 1

F 2
r

∫

Ω
hkdiv (hk uk)

=
1

F 2
r

∫

Ω
hk
∂hk

∂t

=
1

2F 2
r

d

dt
‖hk‖2

L2(Ω),

(2.47)

et

β

∫

Ω
hk∇∆hk · uk = −β

∫

Ω
∆hkdiv (hk uk)

= β

∫

Ω
∆hk

∂hk

∂t

= −β
∫

Ω
∇hk · ∂

∂t
(∇hk)

= −β
2

d

dt
‖∇hk‖2

L2(Ω).

On obtient donc l’égalité suivante :

1

2

d

dt

∫

Ω

(

hk|uk|2 +
h2

k

F 2
r

+ β|∇hk|2
)

+

∫

Ω
α0(hk) |uk|2 +

∫

Ω
α1(hk)hk |uk|3

+
ν

4

∫

Ω
hk|∇uk +t ∇uk|2 + 2ν

∫

Ω
hk|div uk|2 =

∫

Ω
hkf̃ · uk

(2.48)

que l’on intègre entre 0 et t :
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1

2

∫

Ω

(

hk|uk|2+
h2

k

F 2
r

+ β|∇hk|2
)

+

∫ t

0

∫

Ω
α0(hk) |uk|2 +

∫ t

0

∫

Ω
α1(hk)hk |uk|3

+
ν

4

∫ t

0

∫

Ω
hk|∇uk +t ∇uk|2 + 2ν

∫ t

0

∫

Ω
hk|div uk|2

=
1

2

∫

Ω

(

(hk
0)

2

F 2
r

+ hk
0 |uk

0 |2 + β|∇hk
0 |2
)

+

∫ t

0

∫

Ω
hkf̃ · uk

(2.49)

pour obtenir finalement l’inégalité d’énergie suivante :

1

2

∫

Ω

(

hk|uk|2+
h2

k

F 2
r

+ β|∇hk|2
)

+

∫ t

0

∫

Ω
α0(hk) |uk|2 +

∫ t

0

∫

Ω
α1(hk)hk |uk|3

+
ν

4

∫ t

0

∫

Ω
hk|∇uk + t∇uk|2 + 2ν

∫ t

0

∫

Ω
hk|div uk|2

≤ 1

2

∫

Ω

(

(h0)
2

F 2
r

+ h0|u0|2 + β|∇h0|2
)

+

∫ t

0

∫

Ω
hkf̃ · uk.

(2.50)

Proposition 2.3.4. Nous avons les estimations a priori suivantes :

(1)
(

hk

)

k
bornée dans L∞(0, T ; H1

per(Ω)),

(2)
(√
hkuk

)

k
bornée dans L∞(0, T ; (L2

per(Ω))2),

(3)
(

α0(hk)
1

2 uk

)

k
bornée dans L2(0, T ; (L2

per(Ω))2),

(4)
(

α1(hk)
1

3 h
1

3

k uk

)

k
bornée dans L3(0, T ; (L3

per(Ω))2),

(5)

(√
hk(∇uk + t∇uk)

)

k

bornée dans L2(0, T ; (L2
per(Ω))4),

(6)
(√
hkdiv uk

)

k
bornée dans L2(0, T ; L2

per(Ω)),

(7)

(

∂hk

∂t

)

k

bornée dans L∞(0, T ; H−3
per(Ω)), car (hkuk) est bornée dans

L∞(0, T ; (L
4

3
per(Ω))2).

Preuve.

L’égalité (2.48) peut être mise sous la forme :
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1

2

d

dt

(

‖
√

hkuk‖2
L2(Ω) +

1

F 2
r

‖hk‖2
L2(Ω) + β‖∇hk‖2

L2(Ω)

)

+ ‖α0(hk)
1

2 uk‖2
L2(Ω)

+ ‖α1(hk)
1

3 h
1

3

k uk‖3
L3(Ω) +

ν

4
‖
√

hk(∇uk + t∇uk)‖2
L2(Ω) + 2ν‖

√

hkdiv uk‖2
L2(Ω)

=

∫

Ω
hkf̃ · uk,

(2.51)

soit

1

2

d

dt

(

‖
√

hkuk‖2
L2(Ω)+

1

F 2
r

‖hk‖2
L2(Ω) + β‖∇hk‖2

L2(Ω)

)

≤ ‖
√

hk‖L4(Ω)‖
√

hkuk‖L2(Ω)‖f̃‖L4(Ω)

≤
(1

2
‖
√

hkuk‖2
L2(Ω) +

1

2
‖
√

hk‖2
L4(Ω)

)

‖f̃‖L4(Ω)

≤
(1

2
‖
√

hkuk‖2
L2(Ω) +

1

2
‖
√

hk‖4
L4(Ω) +C

)

‖f̃‖L4(Ω),

(2.52)

et comme ‖
√
hk‖4

L4(Ω) = ‖hk‖2
L2(Ω) il vient

1

2

d

dt

(

‖
√

hkuk‖2
L2(Ω)+

1

F 2
r

‖hk‖2
L2(Ω) + β‖∇hk‖2

L2(Ω)

)

≤ C
(

‖
√

hkuk‖2
L2(Ω) +

1

F 2
r

‖hk‖2
L2(Ω) + C ′

)

‖f̃‖L4(Ω).

(2.53)

En intégrant entre 0 et t on obtient alors :

‖
√

hk(t)uk(t)‖2
L2(Ω)+

1

F 2
r

‖hk(t)‖2
L2(Ω) + β‖∇hk(t)‖2

L2(Ω)

≤ ‖
√

h0u0‖2
L2(Ω) +

1

F 2
r

‖h0‖2
L2(Ω) + β‖∇h0‖2

L2(Ω)

+ C

∫ t

0

(

‖
√

hkuk‖2
L2(Ω) + ‖hk‖2

L2(Ω)

)

‖f̃‖L4(Ω) + C ′

∫ t

0
‖f̃‖L4(Ω)

(2.54)

ou encore

‖
√

hk(t)uk(t)‖2
L2(Ω)+

1

F 2
r

‖hk(t)‖2
L2(Ω) + β‖∇hk(t)‖2

L2(Ω)

≤ C0 + C

∫ t

0

(

‖
√

hkuk‖2
L2(Ω) +

1

F 2
r

‖hk‖2
L2(Ω)

)

‖f̃‖L4(Ω).

(2.55)
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On conclut pour les termes ‖
√

hk(t)uk(t)‖2
L2(Ω)+

1

F 2
r

‖hk(t)‖2
L2(Ω) en utilisant le lemme

de Gronwall pour obtenir l’inégalité suivante :

‖
√

hkuk(t)‖L2(Ω) +
1

F 2
r

‖hk(t)‖2
L2(Ω) ≤ C0 e

C

∫ t

0
‖f̃(τ)‖L4(Ω)dτ

,
(2.56)

où

C0 = ‖
√

h0u0‖2
L2(Ω) +

1

F 2
r

‖h0‖2
L2(Ω) + β‖∇h0‖2

L2(Ω) + C ′

∫ t

0
‖f̃‖L4(Ω).

On a alors en utilisant les bornes L∞(0, T ; L2
per(Ω)) que l’on vient d’obtenir sur

(
√
hkuk)k et (hk)k :

β‖∇hk(t)‖2
L2(Ω) ≤ C0 + C

∫ t

0
‖f̃(s)‖L4(Ω), (2.57)

soit

β‖∇hk(t)‖2
L2(Ω) ≤ C

(

C0, ‖
√

hkuk‖L∞(0,T ; L2(Ω)), ‖hk‖L∞(0,T ;L2(Ω)) , ‖f̃‖L1(0,T ;L4(Ω))

)

.

(2.58)

On revient à l’équation (2.51) que l’on intègre entre 0 et t pour obtenir :

∫ t

0
‖α0(hk)

1

2 uk(t)‖2
L2(Ω) +

∫ t

0
‖α1(hk)

1

3h
1

3

k uk(t)‖3
L3(Ω) + 2ν

∫ t

0
‖
√

hk(t)div uk(t)‖2
L2(Ω)

+
ν

4

∫ t

0
‖
√

hk(t)(∇uk(t) + t∇uk(t))‖2
L2(Ω) ≤ C

∫ t

0
‖f̃‖L4(Ω)).

(2.59)

Enfin on remarque que comme (
√
hkuk)k et (hk)k sont bornées dans L∞(0, T ; L2

per(Ω))

alors (hk uk)k est bornée dans L∞(0, T ; L
4

3
per(Ω)) et en particulier (div (hk uk))k dans

L∞(0, T ; W−1,1
per (Ω)). Comme on a l’injection W−1,1

per (Ω) ⊂ H−3
per(Ω) on obtient

(

∂hk

∂t

)

k

bornée dans L∞(]0, T [, H−3
per(Ω)).

Ceci termine la démonstration de la proposition 2.3.3.

A partir de maintenant nous allons différencier le cas de la dimension un du cas de la
dimension deux. En fait, nous sommes en mesure de passer à la limite en utilisant ces
estimations, ainsi que des estimations supplémentaires, et d’obtenir un résultat d’exis-
tence pour le modèle complet en dimension un d’espace. Dans le cas de la dimension
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deux, les estimations sont moins fortes et nous sommes obligés d’avoir recours à une
hypothèse supplémentaire sur la positivité de hk, inspiré de [24], afin d’obtenir un
résultat d’existence pour un modèle avec terme de diffusion simplifié.

2.4. Existence d’une solution faible en dimension 1

2.4.1. Modèle unidimensionnel. Nous nous intéressons ici au cas de la dimen-
sion un. Dans le cas unidimensionnel, nous sommes capables de passer à la limite sur le
modèle complet sans aucune hypothèse supplémentaire. On considère le système 2.1,
défini sur un ouvert I =]0, 1[, avec des conditions aux limites périodiques. Le système
devient :



































































∂th+ ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2) +
1

F 2
r

h ∂xh− β h ∂3
xh+ α0(h)u+ α1(h)h|u|u =

hf + 3 ν ∂x

(

h ∂xu
)

− 1

F 2
r

h ∂xd+ β h ∂3
xd .

h(0) = h0,

(

hu
)

(0) =
(

hu
)

0
.

(2.60)

L’inégalité d’énergie (2.44) devient en dimension un :

∫

I

(

h2
k

2F 2
r

+
hk

2
u2

k + β
(∂xhk)

2

2

)

+

∫ t

0

∫

I

α0(hk)u
2
k +

∫ t

0

∫

I

α1(hk)hk |uk|3

+ 3 ν

∫ t

0

∫

I

hk(∂xuk)
2 ≤

∫

I

(

h2
0

2F 2
r

+ h0
(u0)

2

2
+ β

(∂xh0)
2

2

)

+

∫ t

0

∫

I

hkf̃ uk

(2.61)

2.4.2. Nouvelles estimations. A partir des estimations (2.3.4) obtenues en di-
mension deux, on obtient la proposition suivante, valable en dimension un :

Proposition 2.4.1. Nous avons les estimations a priori suivantes :

(1) (hk)k bornée dans L∞(0, T ; L∞
per(I)) ∩ L∞(0, T ; H1

per(I)),

(2) (
√
hkuk)k bornée dans L∞(0, T ; L2

per(I)),

(3) (uk)k bornée dans L2(0, T ; L2
per(I)),

(4) (h
1

3

k uk)k bornée dans L3(0, T ; L3
per(I)),

(5)
(√
hk ∂xuk

)

k
bornée dans L2(0, T ; L2

per(I)),

(6)

(

∂hk

∂t

)

k

bornée dans L∞(0, T ; H−1
per(I)).



70 2. Existence de solutions faibles globales

Preuve.

La borne L∞(0, T ; L∞
per(I)) pour (hk)k vient du fait qu’en dimension un nous avons

l’injection continue H1
per(I) ⊂ L∞

per(I). L’estimation sur (uk)k provient alors de l’iden-
tité suivante :

uk =
α0(hk)

1

2 uk

α0(hk)
1

2

= r
− 1

2

0 α0(hk)
1

2 uk (1 + c0 hk)
1

2 (2.62)

où c0 =
ε r0
3 ν0

. Nous avons (α0(hk)
1

2uk)k qui est bornée dans L2(0, T ; L2(I)) d’après

(2.3.4) et (1+ c0 hk)k bornée dans L∞(0, T ; L∞(I)) d’après ce qui précède. On a donc

bien (α0(h)
1

2 uk (1 + c0 hk)
1

2 )k bornée dans L2(0, T ; L2(I)). De même nous avons :

h
1

3

k uk =
α1(h)

1

3 h
1

3

k uk

α1(h)
1

3

= r
− 1

3

1 α1(h)
1

3 h
1

3

k uk (1 + c0 hk)
2

3 (2.63)

d’où, puisque nous avons
(

(1 + c0 hk)
2

3

)

k
bornée dans L∞(0, T ; L∞

per(I)), (h
1

3

k uk)k est

bornée dans L3(0, T ; L3
per(I)).

Enfin nous avons, d’après ce qui précède, (hk uk)k bornée dans L∞(0, T ; L2
per(I))

puisque (
√
hk uk)k est bornée dans L∞(0, T ; L2

per(I)). Donc

(

∂hk

∂t

)

k

bornée dans

L∞(0, T ; W−1,2
per (I)).

Pour le passage à la limite nous avons besoin d’estimations supplémentaires, notam-
ment concernant la dérivée seconde de h. Les différents lemmes techniques démontrés
ici pour obtenir les estimations a priori qui suivent sont inspirés du travail présenté
par Bresch et Desjardins dans [51] pour le cas bidimensionnel, et adaptés au problème
qui nous intéresse. Des difficultés d’ordre technique supplémentaires apparaissent et
sont en particulier dues à la présence des coefficients α0(h) et α1(h).

Proposition 2.4.2. Nous avons les estimations a priori supplémentaires suivantes,
fondamentales pour le passage à la limite dans le problème approché :

(1) (hk uk)k bornée dans L3(0, T ; L3
per(I))∩L∞(0, T ; L2

per(I))∩L2(0, T ; W 1,1
per(I)),

(2) (α0(hk))k bornée dans L∞(0, T ; H1
per(I)) ∩ L∞(0, T ; L∞

per(I)),

(3) (α1(hk))k bornée dans L∞(0, T ; H1
per(I)) ∩ L∞(0, T ; L∞

per(I)),

(4) (∂x

√
hk)k bornée dans L∞(0, T ; L2

per(I)),

(5) (hk)k bornée dans L2(0, T ; H2
per(I)).

Preuve.

La première estimation se démontre en écrivant que l’on a ∂x(hk uk) = ∂xhk uk +√
hk

√
hk ∂xuk. Les estimations précédentes permettent alors de conclure immédiate-

ment que (hk uk)k est bornée dans L2(0, T ; W 1,1
per(I)). Les bornes dans L3(0, T ; L3

per(I))

et L∞(0, T ; L2
per(I)) sont évidentes aux vue des estimations (2.4.1).
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Les estimations sur (α0(hk))k et (α1(hk))k s’obtiennent d’une part en remarquant que
l’on a 0 < α0(hk) < r0 et 0 < α1(hk) < r1, pour tout indice k, puisque hk > 0. D’autre
part on a ∂x α0(hk) = α′

0(hk) ∂xhk et ∂x α1(hk) = α′
1(hk) ∂xhk. Comme (α′

0(hk))k
et (α′

0(hk))k sont également uniformément bornées et que l’on a une borne dans
L∞(0, T ; L2

per(I)) pour (∂xhk)k, on obtient bien les bornes voulues.

Les deux dernières estimations nécessitent plus de travail et sont démontrées en adap-
tant des idées introduites dans [51] et [24]. Nous montrons tout d’abord deux lemmes
techniques.

Lemme 2.4.1. Nous avons les deux identités suivantes :

1

2

d

dt

∫

I

hk|∂x log hk|2 +

∫

I

hk ∂
2
xuk ∂x log hk +

∫

I

hk ∂xuk (∂x log hk)
2 = 0 (2.64)

3

2
ν2 d

dt

∫

I

hk(∂x log hk)
2 + ν

∫

I

α0(hk)uk ∂x log hk + ν

∫

I

α1(hk) |uk|uk ∂xhk

+ νβ

∫

I

(∂2
xhk)

2 + ν

∫

I

(∂xhk)
2

F 2
r

= −ν d
dt

∫

I

uk ∂xhk

+ ν

∫

I

hk(∂xuk)
2 + ν

∫

I

f̃ ∂xhk

(2.65)

Preuve du lemme 2.4.1.

La première identité s’obtient en divisant l’équation de conservation de la masse par
hk (n’oublions pas que l’on a par définition hk >

1
k
). On obtient :

∂t(log hk) + uk ∂x(log hk) + ∂xuk = 0 (2.66)

En dérivant cette équation par rapport à x, en la multipliant par hk ∂x log hk et en
intégrant sur I on obtient :

1

2

∫

I

hk ∂t(∂x log hk)
2 +

∫

I

hk ∂xuk (∂x log hk)
2

+
1

2

∫

I

hk uk ∂x(∂x log hk)
2 +

∫

I

hk ∂
2
xuk ∂x log hk = 0

Enfin, comme :

d

dt

∫

I

hk(∂x log hk)
2 =

∫

I

∂t(hk (∂x log hk)2) +

∫

I

∂x(hk uk (∂x log hk)
2)

et en utilisant le fait que, grâce à l’équation de conservation de la hauteur d’eau, nous
avons :

∫

I

∂thk (∂x log hk)
2 +

∫

I

∂x(hk uk) (∂x log hk)
2 = 0,



72 2. Existence de solutions faibles globales

nous obtenons :

1

2

d

dt

∫

I

hk|∂x log hk|2 +

∫

I

hk ∂xuk (∂x log hk)
2 +

∫

I

hk ∂
2
x uk ∂x log hk = 0

.

Pour la deuxième identité, on remarque tout d’abord que l’on a :

∂t(hkuk) + ∂x(hku
2
k) = hk(∂tuk + uk∂xuk + uk(∂thk + ∂x(hkuk)).

L’équation sur hk permet d’éliminer le terme en facteur de uk. On multiplie ensuite
l’équation de conservation de la quantité de mouvement par ν∂x log hk pour obtenir :

ν

∫

I

(∂tuk + uk ∂xuk) ∂xhk + 3ν2

∫

I

hk ∂xuk ∂x

(∂xhk

hk

)

+ ν β

∫

I

(∂2
xhk)

2

+ ν

∫

I

α0(hk)uk ∂x log hk + ν

∫

I

α1(hk) |uk|uk ∂xhk + ν

∫

I

(∂xhk)
2

F 2
r

= ν

∫

I

f̃ ∂xhk,

(2.67)

ou encore, en développant le terme en ν2 :

ν

∫

I

(∂tuk + uk ∂xuk) ∂xhk + 3ν2

∫

I

∂xuk ∂
2
x hk − 3ν2

∫

I

∂xuk
(∂xhk)

2

hk

+ ν β

∫

I

(∂2
xhk)

2 + ν

∫

I

α0(hk)uk ∂x log hk + ν

∫

I

α1(hk) |uk|uk ∂xhk

+ ν

∫

I

(∂xhk)
2

F 2
r

= ν

∫

I

f̃ ∂xhk.

(2.68)

Multipliant l’identité (2.64) par 3 ν2 et l’ajoutant à (2.68), et en remarquant que l’on
a, en intégrant par parties

3ν2

∫

I

∂xuk ∂
2
x hk + 3ν2

∫

I

∂2
x uk hk∂x log hk = 0

on obtient :

3

2
ν2 d

dt

∫

I

hk(∂x log hk)
2 + ν

∫

I

(∂xhk)
2

F 2
r

+ ν β

∫

I

(∂2
xhk)

2 + ν

∫

I

α0(hk)uk ∂x log hk

+ ν

∫

I

α1(hk) |uk|uk ∂xhk = Ik

(2.69)

avec
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Ik = −ν
∫

I

∂tuk ∂xhk − ν

∫

I

uk ∂xuk ∂xhk + ν

∫

I

f̃ ∂xhk.

Réécrivons Ik en tenant compte de l’équation de conservation de la masse et en inté-
grant par parties :

Ik = −ν d

dt

∫

I

uk ∂xhk + ν

∫

I

uk∂x∂t hk − ν

∫

I

uk ∂xuk ∂xhk + ν

∫

I

f̃ ∂xhk

= −ν d

dt

∫

I

uk ∂xhk − ν

∫

I

uk∂
2
x (hk uk) − ν

∫

I

uk ∂xuk ∂xhk + ν

∫

I

f̃ ∂xhk

= −ν d

dt

∫

I

uk ∂xhk + ν

∫

I

(∂x uk)
2 hk + ν

∫

I

f̃ ∂xhk.

Ceci termine la démonstration de la deuxième identité.

Lemme 2.4.2. Nous avons l’inégalité suivante :

3

2

d

dt

∫

I

(

hk

(1

3
uk + ν ∂x log hk

)2
+

h2
k

9F 2
r

+ β
(∂xhk)

2

9

)

− ν r0
d

dt

∫

I

log
(

r−1
0 hk α0(hk)

)

+ ν

∫

I

α′
0(hk) ∂xhk uk + ν

∫

I

α1(hk) |uk|uk ∂xhk + ν β

∫

I

(∂2
xhk)

2

+ ν

∫

I

(∂xhk)
2

F 2
r

+
1

3

∫

I

α0(hk)u2
k +

1

3

∫

I

α1(hk)hk |uk|3

≤ ν

∫

I

hk (∂xuk)
2 +

1

3

∫

I

f̃(hk uk + 3 ν∂xhk)

(2.70)

Preuve du lemme 2.4.2.

L’égalité (2.65) se réécrit sous la forme suivante :

3

2

d

dt

∫

I

hk

(1

3
uk + ν ∂x log hk

)2
+ ν

∫

I

(∂xhk)
2

F 2
r

+ ν β

∫

I

(∂2
xhk)

2

+ ν

∫

I

α0(hk)uk ∂x log hk + ν

∫

I

α1(hk) |uk|uk ∂xhk

=
1

6

d

dt

∫

I

hk u
2
k + ν

∫

I

(∂x uk)
2 hk + ν

∫

I

f̃ ∂xhk

(2.71)

En multipliant l’inégalité d’énergie (2.61) par
1

3
on obtient :

1

6

d

dt

∫

I

(

hk u
2
k +

h2
k

F 2
r

+ β (∂xhk)2
)

+
1

3

∫

I

α0(hk)u
2
k +

1

3

∫

I

α1(hk)hk |uk|3

+ ν

∫

I

hk(∂xuk)
2 =

1

3

∫

I

hkf̃ uk

(2.72)
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En ajoutant (2.72) à (2.71,) on obtient :

3

2

d

dt

∫

I

(

hk

(1

3
uk + ν ∂x log hk

)2
+

h2
k

9F 2
r

+ β
(∂xhk)

2

9

)

+ ν

∫

I

α0(hk)uk ∂x log hk

+ ν

∫

I

α1(hk) |uk|uk ∂xhk + ν β

∫

I

(∂2
xhk)

2 + ν

∫

I

(∂xhk)
2

F 2
r

+
1

3

∫

I

α0(hk)u2
k

+
1

3

∫

I

α1(hk)hk |uk|3 ≤ ν

∫

I

hk (∂xuk)
2 +

1

3

∫

I

f̃(hk uk + 3 ν∂xhk).

(2.73)

Remarquons enfin que le terme
∫

I
α0(hk)uk ∂x log hk peut s’écrire, en utilisant l’équa-

tion de conservation de la masse et en intégrant par partie :

∫

I

α0(hk)uk ∂x log hk = −
∫

I

α0(hk)

hk
∂t hk −

∫

I

α0(hk) ∂x uk

= −
∫

I

∂t

(

F0(hk)
)

+

∫

I

α′
0(hk) ∂xhk uk

(2.74)

où F0(hk) est telle que F ′
0(hk) =

α0(hk)

hk
. On obtient donc :

∫

I

α0(hk)uk ∂x log hk = −r0
d

dt

∫

I

log
(

r−1
0 hk α0(hk)

)

+

∫

I

α′
0(hk) ∂xhk uk (2.75)

En injectant cette égalité dans (2.73), nous obtenons bien (2.70). Ceci termine la
démonstration du lemme 2.4.2.

A partir de (2.70), nous pouvons obtenir les deux dernières estimations supplémen-
taires. En effet, intégrant (2.70) entre 0 et t, nous obtenons :

3

2

∫

I

(

hk

(1

3
uk + ν ∂x log hk

)2
+

h2
k

9F 2
r

+ β
(∂xhk)

2

9

)

− ν r0

∫

I

log
(

r−1
0 hk α0(hk)

)

+ ν

∫ t

0

∫

I

α′
0(hk) ∂xhk uk + ν

∫ t

0

∫

I

α1(hk) |uk|uk ∂xhk + ν β

∫ t

0

∫

I

(∂2
xhk)

2

+ ν

∫ t

0

∫

I

(∂xhk)
2

F 2
r

+
1

3

∫ t

0

∫

I

α0(hk)u2
k +

1

3

∫ t

0

∫

I

α1(hk)hk |uk|3

≤ A0 − ν r0

∫

I

log
(

r−1
0 hk 0 α0(hk 0)

)

+
1

3

∫ t

0

∫

I

f̃(hk uk + 3 ν∂xhk),

(2.76)

avec A0 constante liée aux données initiales, indépendante de k. Tenant compte des
termes positifs présents dans le membre de gauche de cette inégalité, nous obtenons :
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3

2

∫

I

hk

(1

3
uk + ν ∂x log hk

)2 − ν r0

∫

I

log
(

r−1
0 hk α0(hk)

)

+ ν

∫ t

0

∫

I

α′
0(hk) ∂xhk uk

+ ν

∫ t

0

∫

I

α1(hk) |uk|uk ∂xhk + ν β

∫ t

0

∫

I

(∂2
xhk)

2

≤ A0 − ν r0

∫

I

log
(

r−1
0 hk 0 α0(hk 0)

)

+
1

3

∫ t

0

∫

I

f̃(hk uk + 3 ν∂xhk).

(2.77)

Contrôlons les termes non positifs apparaissant dans le membre de gauche. On a tout

d’abord :

∣

∣

∣ν

∫ t

0

∫

I

α′
0(hk) ∂xhk uk

∣

∣

∣ ≤ ν

∫ t

0

∫

I

|α′
0(hk) ∂xhk uk|

≤ ν r0 c0 ‖hk‖L2(0,T ; H1(I)) ‖uk‖L2(0,T ;L2(I)).

(2.78)

En effet, nous avons |α′
0(hk)| =

r0 c0
(1 + co hk)2

≤ r0 c0. On a également :

∣

∣

∣
ν

∫ t

0

∫

I

α1(hk) |uk|uk ∂xhk

∣

∣

∣
≤
∣

∣

∣
ν

∫ t

0

∫

I

∂x(α1(hk)) |uk|uk hk

∣

∣

∣

+
∣

∣

∣
ν

∫ t

0

∫

I

α1(hk) ∂x(|uk|)uk hk

∣

∣

∣
+
∣

∣

∣
ν

∫ t

0

∫

I

α1(hk) |uk| ∂x(uk)hk

∣

∣

∣

(2.79)

On a d’après la première estimation démontrée de la proposition 2.4.2, une borne
dans L2(0, T ; L1

per(I)) pour
(

(∂x(hk uk)
)

k
, c’est à dire que l’on a (hk uk)k bornée dans

L2(0, T ; W 1,1
per(I)). On a en dimension un l’injectionW 1,1

per(I) ⊂ L∞
per(I) et donc (hk uk)k

bornée dans L2(0, T ; L∞
per(I)).

Ainsi, puisque ∂x(α1(hk)) = α′
1(hk) ∂x hk et que l’on a |α′

1(hk)| =
2 r1 c0

(1 + c0 hk)3
≤

2 r1 c0, on a pour le premier terme du membre de droite de (2.96) :

∣

∣

∣
ν

∫ t

0

∫

I

∂x(α1(hk)) |uk|uk hk

∣

∣

∣
≤

C ‖∂x hk‖L∞(0,T ;L2(I)) ‖uk‖L2(0,T ; L2(I)) ‖hk uk‖L2(0,T ; L∞(I)).

(2.80)

Nous obtenons donc, puisque 0 ≤ α1(hk) ≤ r1 :
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∣

∣

∣
ν

∫ t

0

∫

I

α1(hk) |uk|uk ∂xhk

∣

∣

∣
≤

C ‖∂x hk‖L∞(0,T ;L2(I)) ‖uk‖L2(0,T ; L2(I)) ‖hk uk‖L2(0,T ;L∞(I))

+ C ‖
√

hk ∂x uk‖L2(0,T ;L2(I)) ‖
√

hk uk‖L∞(0,T ;L2(I)).

(2.81)

Il reste à contrôler les termes ν r0
∫

I
log
(

r−1
0 hk α0(hk)

)

et ν r0
∫

I
log
(

r−1
0 hk 0 α0(hk 0)

)

.
Remarquons que le premier terme se développe de la manière suivante :

−ν r0
∫

I

log
(

r−1
0 hk α0(hk)

)

= −ν r0
∫

I

log hk + ν r0

∫

I

log(1 + c0 hk).

Le terme ν r0
∫

I
log(1 + c0 hk) est toujours positif et ne pose donc pas de problème

particulier. De même, lorsque l’on a hk ≤ 1, le terme −ν r0
∫

I
log hk est positif.

Il reste donc à contrôler le terme
∣

∣ν r0
∫

I
log+ hk

∣

∣ où log+ g est définie par log+ g =
log max (g, 1), ce qui est immédiat puisque l’on a log+ x < x et donc, comme (hk)k
est bornée dans L2(0, T ; L2

per(I)), on a bien (log+ hk)k bornée dans L2(0, T ; L1(I)).

Enfin, en choisissant la donnée initiale telle que log
(

r−1
0 hk 0 α0(hk 0) soit uniformément

bornée dans L1(I), on contrôle le terme −ν r0
∫

I
log
(

r−1
0 hk 0 α0(hk 0)

)

.

On obtient donc l’inégalité suivante :

3

2

∫

I

hk

(1

3
uk + ν ∂x log hk

)2
+ ν β

∫ t

0

∫

I

(∂2
x hk)

2 ≤ C1

+ C2‖f̃‖L2(0,T ; L2(I))

(

‖hk uk ‖L2(0,T ;L∞(I)) + ‖∂xhk‖L2(0,T ;L2(I))

)

(2.82)

où C1 et C2 sont des constantes indépendantes de k.

L’estimation L2 pour (∂2
x hk)k est immédiate. En remarquant que | ∂x

√
hk|2 =

|∂x hk|2
4hk

=

1

4
hk |∂x log hk|2, on obtient bien l’estimation supplémentaire sur (

√
hk)k.

Ceci termine la démonstration de la proposition (2.4.2).

2.4.3. Estimation supplémentaire sur hkuk. Une estimation supplémentaire
est nécessaire afin d’obtenir de la compacité sur hkuk. Cette propriété va en effet s’avé-
rer nécessaire au passage à la limite dans les termes non-linéaires du problème appro-
ché. Nous cherchons ici à obtenir de la compacité sur (hk uk)k. Notons que dans [51], la
compacité est obtenue sur (

√
hk uk)k. On introduit l’opérateur de translation τη, η ≥ 0,

défini par τη(u)(t, x) = u(t + η, x) et on va chercher à estimer (τη(hkuk) − hkuk) i.e.
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chercher une propriété d’équicontinuité en temps dans un espace ad hoc. on a la pro-
position suivante :

Proposition 2.4.3. Il existe une constante C > 0 indépendante des données telle que
∥

∥

∥

∥

τη(hk uk) − hk uk

∥

∥

∥

∥

L∞(0,T−η; (W 1,∞
per (I))′)

≤ Cη
1

3 (2.83)

Preuve.

Soit ψ ∈ Vk indépendant du temps. L’équation (2.60) permet d’écrire :
∫

I

(

τη(hkuk)(t) − hkuk(t)

)

ψ =

∫

I

∫ t+η

t

∂t(hkuk)

=

∫ t+η

t

∫

I

(

−α0(hk)uk − α1(hk)hk | uk | uk − 1

F 2
r

hk∂x hk + β hk ∂
3
x hk + hk f̃

)

ψ

+

∫ t+η

t

∫

I

(

−hk u
2
k − 3ν hk ∂xuk

)

∂xψ

(2.84)

Evaluons chaque terme :

•
∣

∣

∣

∣

∫

I

(hku
2
k) ∂xψ

∣

∣

∣

∣

≤ ‖hku
2
k‖L

3
2 (I)

‖∂xψ‖L3(I)

≤ g1(t)‖∂xψ‖L3(I)

où g1(t) = ‖hk(t)uk(t)
2‖

L
3
2 (I)

. En effet, on a les estimations suivantes :

(h
1

3

k ) borné dans L∞(0, T ; L∞
per(I)),

(h
1

3

k uk) borné dans L3(0, T ; L3
per(I)),

(h
2

3

k u
2
k) borné dans L

3

2 (0, T ; L
3

2
per(I)).

La fonction g1 est donc bornée indépendamment de k dans L
3

2 (0, T ).

•
∣

∣

∣

∣

ν

∫

I

hk ∂xuk ∂xψ

∣

∣

∣

∣

≤ ‖h
1

2

k ‖L∞(I)‖h
1

2

k ∂xuk‖L2(I)‖∂xψ‖L2(I)

≤ g2(t)‖∇ψ‖L2(I)

où g2(t) = ‖hk(t)
1

2 ‖L∞(I)‖hk(t)
1

2 ∂xuk(t)‖L2(I). Comme
(

‖hk(t)
1

2 ‖L∞(I)

)

k
et

(

‖hk(t)
1

2 ∂xuk(t)‖L2(I)

)

k
sont bornées respectivement dans L∞(0, T ) et L2(0, T ), g2 est

donc bornée indépendamment de k dans L2(0, T ).

•
∣

∣

∣

∣

∫

I

α0(hk)uk ψ

∣

∣

∣

∣

≤ r
1

2

0 ‖α0(hk)
1

2 uk‖L2(I)‖ψ‖L2(I)

≤ C‖α0(hk)
1

2 uk‖L2(I)‖∂xψ‖L2(I)

≤ g3(t)‖∂xψ‖L2(I)
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où g3(t) = C‖α0(hk)
1

2 uk(t)‖L2(I) est bornée indépendamment de k dans L2(0, T ).
.

•
∣

∣

∣

∣

1

F 2
r

∫

I

hk ∂xhk ψ

∣

∣

∣

∣

≤ ‖hk ∂xhk‖L2(I)‖ψ‖L2(I)

≤ C‖hk ∂xhk‖L2(I)‖∂x ψ‖L2(I)

≤ g4(t)‖∂xψ‖L2(I)

où g4(t) = C‖hk(t) ∂xhk(t)‖L2(I) est L∞(0, T ).

•
∣

∣

∣

∣

∫

I

α1(hk)hk |uk|uk ψ

∣

∣

∣

∣

≤ C‖α1(hk)
2

3 h
2

3

k |uk|uk‖
L

3
2 (I)

‖ψ‖L3(I)

≤ g5(t)‖∂xψ‖L3(I)

où g5(t) = C‖α1(hk)
2

3 hk(t)
2

3 |uk(t)|uk(t)‖
L

3
2 (I)

est L
3

2 (0, T ).

Pour le dernier terme, on a en intégrant par partie :

−β
∫

I

hk ∂
3
x hk ψ = β

∫

I

∂2
x hk ∂x(hk ψ)

= β

∫

I

hk ∂
2
x hk ∂xψ + β

∫

I

∂2
x hk ∂xhk ψ,

et donc :
∣

∣

∣

∣

ε β

∫

I

hk ∂
3
x hk ψ

∣

∣

∣

∣

≤ ‖hk ∂
2
x hk‖L2(I)‖∂xψ‖L2(I) + ‖∂xhk ∂

2
x hk‖L1(I)‖ψ‖L∞(I)

≤ C‖hk ∂
2
xhk‖L2(I)‖∂xψ‖L2(I) + C‖∂xhk ∂

2
xhk‖L1(I)‖∂xψ‖L∞(I),

et
∣

∣

∣

∣

ε β

∫

I

hk ∂
3
x hk ψ

∣

∣

∣

∣

≤ g6(t)‖∂xψ‖L∞(I),

où g6(t) = C‖hk(t) ∂
2
x hk(t)‖L2(I) +C‖∂xhk(t) ∂

2
x hk(t)‖L1(I). On a les estimations sui-

vantes :

(

hk ∂
2
x hk

)

k
borné dans L2(0, T ; L2

per(I)),
(

∂xhk ∂
2
x hk

)

k
borné dans L2(0, T ; L1

per(I)),

et g6 est donc bornée indépendamment de k dans L2(0, T ).

Finalement on obtient :

∣

∣

∣

∣

∫

I

(

τη(hkuk)(t) − hkuk(t)

)

ψ

∣

∣

∣

∣

≤
(
∫ t+η

t

g(s)ds

)

‖∂xψ‖L∞(I),

ou encore
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∣

∣

∣

∣

∫

I

(

τη(hkuk)(t) − hkuk(t)

)

ψ

∣

∣

∣

∣

≤
(∫ t+η

t

g(s)ds

)

‖ψ‖W 1,∞(I),

où g est bornée dans L
3

2 (0, T ) indépendamment de k. Comme on a de plus :

∫ t+η

t

g(s)ds ≤
(∫ t+η

t

|g| 32
)

2

3

η
1

3

il vient :

‖τη(hkuk)(t) − hkuk(t)‖(W 1,∞
per (Ω))′ ≤ η

1

3 ‖g‖
L

3
2 (0,T )

soit

‖τη(hkuk) − hkuk‖L∞(0,T−η; (W 1,∞
per (I))′) ≤ Cη

1

3 .

Ceci termine la démonstration de la proposition 2.4.3.

Corollaire 2.4.1. Soit E un espace de Banach. Pour 1 ≤ q ≤ +∞ et 0 < σ < 1, on
définit les espaces de Nikolskii N σ

q (0, T ; E) par :

Nσ
q (0, T ; E) = {f ∈ Lq(0, T ; E), ∃C > 0, ‖τη(f) − f‖Lq(0,T−η; E) ≤ C ησ}.

On a alors l’estimation suivante :

(hkuk)k est bornée dans N
1

3
∞(0, T ; (W 1,∞

per (Ω))′).

2.4.4. Convergence et compacité. Nous disposons à présent de tous les outils
nécessaires pour pouvoir passer à la limite dans le problème approché (2.20). Etudions
les convergences et les propriétés de compacité qui découlent des estimations obtenues
précédemment.

On utilise dans cette partie les théorèmes suivant d’Aubin-Lions et de J.Simon
[157] pour obtenir des convergences fortes :

Théorème 2.4.4 (Aubin-Lions). Soient B0 ⊂ B1 ⊂ B2 trois espaces de Banach. On
suppose que l’injection de B1 dans B2 est continue et que l’injection de B0 dans B1

est compacte. Soient p, r deux réels tels que 1 < p, r < +∞. Pour T > 0, on note

W =

{

v ∈ Lp(0, T ; B0),
∂v

∂t
∈ Lr(0, T ; B2)

}

.

Alors l’injection de W dans Lp(0, T ; B1) est compacte.

Preuve.

Voir [22]
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Théorème 2.4.5 (J. Simon). Soient B0, B1, B2 trois espaces de Banach avec B0 ⊂
B1 ⊂ B2. On suppose que l’injection de B0 dans B1 est compacte. Alors les injections
suivantes sont compactes :

i) Pour 1 ≤ q ≤ +∞, Lq(0, T ; B0) ∩
{

ψ,
d

dt
ψ ∈ L1(0, T ; B2)

}

→ Lq(0, T ; B1)

ii) Pour 1 < r ≤ +∞, L∞(0, T ; B0)∩
{

ψ,
d

dt
ψ ∈ Lr(0, T ; B2)

}

→ C0([0, T ], B1)

iii) Pour 1 ≤ q ≤ +∞, Lq(0, T ; B0) ∩Nσ
q (0, T ; B2) → Lq(0, T ; B1)

Preuve.

Voir [157]

On utilise également le théorème de continuité des produits dans les espaces de Besov :

Théorème 2.4.6 (B. Hanouzet). Soit Ω un ouvert de R
d. Soient p1, p2, p, m dans

[1,∞] tels que

max
(

1,
p1p2

p1 + p2

)

≤ p ≤ min (p1, p2) et
1

m
=

1

p1
+

1

p2
− 1

p
.

Pour s et t réels on pose σ = min
(

s, t, s + t − n

m
− ε
)

,ε > 0. Alors, sous l’une des

conditions suivantes :

i) s+ t > max
(

0, d(
1

p1
+

1

p2
− 1)

)

ii) s+ t = max
(

0, d(
1

p1
+

1

p2
− 1)

)

et
1

q1
+

1

q2
≥ 1

le produit est continu de Bs
p1,q1

(Ω) ×Bt
p2,q2

(Ω) dans Bσ
p,q(Ω), q = max (q1, q2).

Preuve.

Voir [76]

Nous pouvons maintenant obtenir des propriétés de compacité. Comme (hk)k est bor-

née dans L∞(0, T ; H1
per(I)) et

(

∂hk

∂t

)

k

est bornée dans L∞(0, T ; H−1
per(I)) et que l’on

a les injections H1
per(I) ⊂ L2

per(I) ⊂ H−1
per(I) avec injection compacte de H1

per(I)

dans L2
per(I), la suite (hk)k est compacte dans C0([0, T ], L2

per(I)) d’après le Théorème
(2.4.5). Donc, à une sous suite extraite prés,

hk ⇀ h dans L∞(0, T ; H1
per(I)) faible?,

∂hk

∂t
⇀

∂h

∂t
dans L∞(0, T ; H−1

per(I)) faible,

hk → h dans C0([0, T ], L2
per(I)) fort.
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On a d’après les estimations des propositions 2.4.1 et 2.4.2 une borne L2(0, T ; L2
per(I))

pour (uk)k et pour (α0(hk)uk)k, ainsi qu’une borne L∞(0, T ; L∞
per(I)) pour (α0(hk))k

et (α1(hk))k. On a donc les convergences suivantes :

uk ⇀ u dans L2(0, T ; L2
per(I)) faible,

α0(hk)uk ⇀ g dans L2(0, T ; L2
per(I)) faible,

α0(hk) ⇀ `0 dans L∞(0, T ; L∞
per(I)) faible ?,

α1(hk) ⇀ `1 dans L∞(0, T ; L∞
per(I)) faible ? .

D’autre part, d’après le théorème des accroissements finis, nous avons :

‖α0(hk) − α0(h)‖L2(I) ≤ sup
(

α′
0(h)

)

‖h− hk‖L∞(0,T ;L2(I)), ∀t.
et donc

‖α0(hk) − α0(h)‖L∞(0,T ; L2(I)) ≤ c‖h− hk‖L∞(0,T ;L2(I)),

puisque α′
0(h) est uniformément bornée. On récupère donc de la compacité sur (α0(hk))k

grâce à la compacité obtenue sur (hk)k et la limite est bien celle attendue. Un raison-
nement identique permet également d’obtenir de la compacité dans C0([0, T ], L2

per(I))
pour (α1(hk))k, avec la limite voulue. On a donc les convergences suivantes :

uk ⇀ u dans L2(0, T ; L2
per(I)) faible,

α0(hk) → α0(h) dans C0([0, T ], L2
per(I)) fort,

α1(hk) → α1(h) dans C0([0, T ], L2
per(I)) fort.

Ainsi par produit de convergence fort-faible on a, à une sous suite extraite prés :

α0(hk)uk → α0(h)u dans L1(0, T ; L1
per(I)) fort,

α1(hk)uk → α1(h)u dans L1(0, T ; L1
per(I)) fort,

hk uk → hu dans L1(0, T ; L1
per(I)) fort.

et par unicité de la limite , on a donc :

α0(hk)uk ⇀ α0(h)u dans L2(0, T ; L2
per(I)) faible,

α1(hk) |uk| ⇀ α1(h) |u| dans L2(0, T ; L2
per(I)) faible,

hk uk ⇀ hu dans L2(0, T ; L2
per(I)) faible.

De plus, d’après la proposition 2.4.1 et le corollaire 2.4.1 on a l’ estimation suivante :

(hkuk)k bornée dans L2(0, T ; W 1,1
per(I)) ∩N

1

3

2 (0, T ; (W 1,∞
per (I))′),

avec les injections suivantes :
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W 1,1
per(I) ⊂ L2

per(I) ⊂ (W 1,∞
per (I))′,

l’injection W 1,1
per(I) ⊂ L2

per(I) étant compacte en dimension un. Ainsi, d’après le Théo-

rème 2.4.5, la suite (hkuk) est compacte dans L2(0, T ; (L2
per(I))

2). Comme par ailleurs

elle est convergente vers hu dans L1(0, T ; L1
per(I)) on a :

hk uk ⇀ hu dans L2(0, T ; W 1,1
per(I)) faible,

hk uk → hu dans L2(0, T ; L2
per(I)) fort.

Par produit de convergence fort-faible, il vient :

hk u
2
k → hu2 dans L1(0, T ; L1

per(I)) fort,

α1(hk)hk |uk|uk → α1(h)h |u|u dans L1(0, T ; L1
per(I)) fort.

Par ailleurs, on a une borne pour (hku
2
k) dans L

3

2 (0, T ; L
3

2
per(I)) et donc, à extraction

d’une sous suite près, converge faiblement vers un certain g dans cet espace. Mais,
à nouveau par unicité de la limite dans L1(0, T ; L1

per(I)), la limite g n’est autre que

hu2. De même, comme (hkuk)k est bornée dans L3(0, T ; L3
per(I)) et (uk)k bornée dans

L2(0, T ; L2
per(I)), on obtient une borne dans L

6

5 (0, T ; L
6

5
per(I)) pour (α1(hk)hk |uk|uk)k.

On a donc montré :

hk u
2
k ⇀ hu2 dans L

3

2 (0, T ; L
3

2
per(I)) faible,

α1(hk)hk |uk|uk ⇀ α1(h)h |u|u dans L
6

5 (0, T ; L
6

5
per(I)) faible.

On utilise le théorème de continuité des produits 2.4.6 pour obtenir le corollaire sui-
vant :

Corollaire 2.4.2. Soit I un ouvert de R. Le produit (u, v) 7→ uv est continu de

H1(I) × H−1(I) dans H−1(I) .

Comme (uk)k est bornée dans L2(0, T ; L2
per(I)), (∂xuk)k est bornée dans

L2(0, T ; W−1,2
per (I)). Le produit (hk, ∂xuk) 7→ hk ∂xuk est donc continu de

L∞(0, T ; H1
per(I)) × L2(0, T ; W−1,2

per (I)) dans L2(0, T ; W−1,2
per (I)). Donc, quitte à ex-

traire une sous suite, il vient :

hk ∂xuk ⇀ h∂xu dans L2(0, T ; H−1
per(I)) faible.

De plus, comme (h
1

2

k ∂xuk)k est borné dans L2(0, T ; L2
per(I)) et (

√
hk)k dans

L∞(0, T ; L∞
per(I)) on a une borne dans L2(0, T ; L2

per(I)) pour (hk ∂xuk)k et donc, par
unicité de la limite, converge faiblement vers h ∂xu dans cet espace. On a donc montré :
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hk ∂xuk ⇀ h∂xu dans L2(0, T ; L2
per(Ω)) faible.

On a également le corollaire suivant en dimension un :

Corollaire 2.4.3. Soit I un ouvert de R. Le produit (u, v) 7→ uv est continu de

H1(I) × L2(I) dans L2(I) .

Ainsi le produit (hk, ∂xhk) 7→ hk ∂xhk est continu de L∞(0, T ; H1
per(I)) ×

L∞(0, T ; L2
per(I)) dans L∞(0, T ; L2

per(I)). On obtient donc une convergence vers h ∂xh

dans L∞(0, T ; L2
per(I)) faible ? :

hk∂xhk ⇀ h∂xh dans L∞(0, T ; L2
per(I)) faible ?,

Nous allons enfin nous intéresser aux termes (hk ∂
2
x hk)k et (∂xhk ∂

2
x hk)k qui permet-

tront le passage à la limite pour le terme de capillarité (hk ∂
3
x hk)k. Le premier terme

(hk ∂
2
x hk)k est borné dans L2(0, T ; L2

per(I)). On a par ailleurs les convergences sui-
vantes :

∂2
x hk ⇀ ∂2

x h dans L2(0, T ; L2
per(I)) faible,

hk → h dans C0([0, T ], L2
per(I)) fort,

qui permettent d’obtenir par produit de convergences fort-faible :

hk ∂
2
x hk → h ∂2

x h dans L1(0, T ; L1
per(I)) fort,

d’où par unicité de la limite

hk ∂
2
x hk ⇀ h∂2

x h dans L2(0, T ; L2
per(I)) faible.

Le passage à la limite faible dans le deuxième terme (∂xhk ∂
2
x hk)k nécessite d’obtenir

de la compacité sur (∂xhk)k. Nous l’obtenons grâce au Théorème 2.4.4, puisque l’on a

(∂xhk)k bornée dans L2(0, T ; H1
per(I)) et

(

∂t

(

∂xhk

)

)

k
bornée dans L∞(0, T ; H−2

per(I))

puisque
(

∂thk

)

k
bornée dans L∞(0, T ; H−1

per(I)). Comme l’injection de H1
per(I) dans

L2
per(I) est compacte en dimension un, cela nous donne bien de la compacité sur

(∂xhk)k dans L2(0, T ; L2
per(I)). On a donc par compacité et produit de convergence

fort-faible :

∂xhk → ∂xh dans L2(0, T ; L2
per(I)) fort,

∂xhk ∂
2
xhk → ∂xh ∂

2
xh dans L1(0, T ; L1

per(I)) fort.

Le passage à la limite dans le problème approché 2.20 est donc possible.
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2.4.5. Passage à la limite. Nous allons maintenant vérifier que les fonctions li-
mites obtenues h et u sont bien solutions au sens des distributions du modèle obtenu
en dimension un.

– Equation de conservation de la hauteur d’eau :

Donnons-nous une fonction test φ ∈ D(]0, T [; H2
per(I)) et intégrons la contre

l’équation (2.20) vérifiée par la solution approchée (hk, uk), on obtient après
intégration par parties :

−
∫

]0,T [×I

hk ∂tφdt dx−
∫

]0,T [×I

hkuk ∂xφ(t, x) dt dx = 0.

Les convergences obtenues précédemment permettent de passer à la limite car
on a en particulier :

∂φ

∂t
∈ L2(0, T ; L2

per(I)), et ∂xφ ∈ L2(0, T ; L2
per(I)).

Il vient alors :

∫

]0,T [×I

∂thφ(t, x) dt dx −
∫

]0,T [×I

hu ∂xφ(t, x) dt dx = 0.

– Equation de conservation de la quantité de mouvement :

Soient k ≥ n, θ ∈ C1([0, T ]) θ(T ) = 0 et ψn fixée dans Vn. La solution
approchée construite précédemment vérifie en intégrant par parties :

−
∫ T

0

∫

I

(hkuk)ψn ∂tθ dx dτ −
∫ T

0

∫

I

hku
2
k ∂xψn θ dx dτ

+

∫ T

0

∫

I

α0(hk)uk ψnθ dx dτ +

∫ T

0

∫

I

α1(hk)hk |uk|uk ψn θ dx dτ

+
1

F 2
r

∫ T

0

∫

I

hk ∂xhk ψn θ dx dτ + β

∫ T

0

∫

I

∂2
x hk ∂x(hkψn) θ dx dτ

+ 3ν

∫ T

0

∫

I

hk ∂xuk ∂xψn θ dx dτ

=

∫ T

0

∫

I

hk f̃ ψn θ dx dτ + θ(0)

∫

I

hk
0u

k
0 ψndx.

On développe le terme de capillarité :

∫ T

0

∫

I

∂2
x hk ∂x(hkψn) θ dx dτ =

∫ T

0

∫

I

∂2
x hk ∂xhk ψn θ dx dτ

+

∫ T

0

∫

I

hk ∂
2
x hk ∂xψn θ dx dτ,
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et l’on passe à la limite en k dans chacun des 2 termes.

La fonction test ψn étant fixée, les convergences précédentes permettent de passer
à la limite en k pour obtenir :

−
∫ T

0

∫

I

(hu)ψn ∂tθ dx dτ −
∫ T

0

∫

I

hu2 ∂xψnθ dx dτ +

∫ T

0

∫

I

α0(h)uψn θ dx dτ

+

∫ T

0

∫

I

α1(h)h |u|uψn θ dx dτ +
1

F 2
r

∫ T

0

∫

I

h ∂xhψn θ dx dτ

+ β

∫ T

0

∫

I

∂2
xh ∂x(hψn) θ dx dτ + 3ν

∫ T

0

∫

I

h ∂xu ∂xψn θ dx dτ

=

∫ T

0

∫

I

hf̃ ψn θ dx dτ + θ(0)

∫

I

h0u0 ψndx.

Par combinaisons linéaires de fonctions tests de la forme θ(t)ψn(x), on obtient
que pour tout n ≥ 1 et pour toute fonction test φ ∈ C1([0, T ], Vn) telle que
φ(T ) = 0, on a :

−
∫ T

0

∫

I

(hu) ∂tφdx dτ −
∫ T

0

∫

I

hu2 ∂xφ(τ, x) dx dτ +

∫ T

0

∫

I

α0(h)uφ(t, x) dx dτ

+

∫ T

0

∫

I

α1(h)h |u|uφ(τ, x) dx dτ +
1

F 2
r

∫ T

0

∫

I

h ∂xhφ(τ, x) dx dτ

+ β

∫ T

0

∫

I

∂2
x h ∂x(hφ) dx dτ + 3ν

∫ T

0

∫

I

h ∂xu ∂xφ(t, x) dx dτ

=

∫ T

0

∫

I

hf̃ φ(τ, x) dx dτ +

∫

I

h0u0 φ(0)dx.

La régularité obtenue sur h et u permet ensuite de prolonger par densité l’identité
ci-dessus aux fonctions tests de C1([0, T ],H2

per(I)) telles que φ(T ) = 0. En se
restreignant aux fonctions tests C∞ à support compact en temps dans ]0, T [, on
obtient bien l’équation au sens des distributions.

Ceci termine la démonstration du Théorème 2.1.1
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2.5. Existence d’une solution faible en dimension 2

Le cas de la dimension deux introduit de nouvelles difficultés. Tout d’abord la
forme particulière du terme de diffusion

νdiv
(

hD(u) + (2hdiv u)I
)

où

D(u) =
1

2
(∇u + t∇u)

rend délicate l’obtention des bornes supplémentaires introduites à la proposition 2.4.2.
Plus précisément les identités du lemme 2.4.1 et l’inégalité du lemme 2.4.2 obtenues
dans le cas de la dimension un ne sont plus valables, la présence du terme (2hdiv u)I
ne permettant plus de suivre le même raisonnement que dans le cas de la dimension un.
C’est pour cette raison que le modèle étudié ici est un modèle simplifié dans lequel ce
terme à été négligé. La justification de cette simplification est purement d’ordre tech-
nique, afin de nous permettre d’obtenir les estimations supplémentaires nécessaires au
passage à la limite. De plus la présence des coefficients α0(hk) et α1(hk) ajoute des
difficultés supplémentaires en dimension deux par rapport au modèle étudié dans [51].
En effet en dimension un, l’injection de H1(Ω) dans L∞(Ω) permettait d’obtenir une
borne uniforme en temps en en espace sur (hk)k et permettait de récupérer la régu-
larité sur (uk)k nécessaire au passage à la limite. En dimension deux, on a seulement
l’injection H1(Ω) ⊂ Lp(Ω), ∀p < ∞. Ainsi, la régularité obtenue sur (uk)k via les
termes de friction est beaucoup moins forte et ne permet pas de passer à la limite de
façon simple dans les termes non linéaires. Une hypothèse supplémentaire est donc
faite sur la suite approximante (hk)k, afin de récupérer plus de régularité sur (uk)k.

Proposition 2.5.1. On suppose qu’il existe γ > 0 tel que l’on ai pour tout k :

hk(t,x) ≥ γ pour (t,x) ∈ R
+ × Ω.

Alors nous avons les estimations supplémentaires suivantes :

(1) (uk)k bornée dans L2(0, T ; (H1
per(Ω))2),

(2) (∇
√
hk)k bornée dans L∞(0, T ; (L2

per(Ω))2),

(3) (hk)k bornée dans L2(0, T ; H2
per(Ω)).

Preuve.

Comme dans le cas de la dimension un, ces estimations sont obtenues grâce à une
deuxième inégalité d’énergie, démontrée à l’aide des deux lemmes techniques suivants :

Lemme 2.5.1. Nous avons les deux identités suivantes :

1

2

d

dt

∫

Ω
hk|∇ log hk|2 +

∫

Ω
hk ∇div uk · ∇ log hk +

∫

Ω
hk ∇uk : ∇ log hk ⊗∇ log hk = 0

(2.85)



2.5. Existence d’une solution faible en dimension 2 87

1

2
ν2 d

dt

∫

Ω
hk|∇ log hk|2 + ν

∫

Ω
α0(hk)uk · ∇ log hk + ν

∫

Ω
α1(hk) |uk|uk · ∇hk

+ νβ

∫

Ω
|∇2hk|2 + ν

∫

Ω

|∇hk|2
F 2

r

+ ν

∫

Ω

u⊥
k · ∇hk

Ro
= −ν d

dt

∫

Ω
uk · ∇hk

+ ν

∫

Ω
hk∇uk : t∇uk + ν

∫

Ω
f̃ ∇hk

(2.86)

Preuve du lemme 2.5.1.

La première identité s’obtient en adaptant directement la démonstration effectuée dans
le cas de la dimension un. Elle est effectuée dans [51].

Pour la deuxième identité, on multiplie ensuite l’équation de conservation de la quan-
tité de mouvement par ν∇ log hk pour obtenir :

ν

∫

Ω

(

∂tuk + (uk · ∇)uk

)

· ∇hk + ν2

∫

Ω
hkD(uk) : ∇

(∇hk

hk

)

+ ν β

∫

Ω
|∇2hk|2

+ ν

∫

Ω
α0(hk)uk · ∇ log hk + ν

∫

Ω
α1(hk) |uk|uk · ∇hk + ν

∫

Ω

|∇hk|2
F 2

r

+ ν

∫

Ω

u⊥
k · ∇hk

Ro
= ν

∫

Ω
f̃ · ∇hk,

(2.87)

ou encore, en développant le terme en ν2 :

ν

∫

Ω

(

∂tuk + (uk · ∇)uk

)

· ∇hk + ν2

∫

Ω
hkD(uk) :

(

∇∇hk − ∇hk ⊗∇hk

hk

)

+ ν β

∫

Ω
|∇2hk|2 + ν

∫

Ω
α0(hk)uk · ∇ log hk + ν

∫

Ω
α1(hk) |uk|uk · ∇hk

+ ν

∫

Ω

|∇hk|2
F 2

r

+ ν

∫

Ω

u⊥
k · ∇hk

Ro
= ν

∫

Ω
f̃ · ∇hk,

(2.88)

Multipliant l’identité (2.85) par ν2 et l’ajoutant à (2.88), et en remarquant que l’on a
d’une part

∫

Ω
hk ∇uk : ∇ log hk ⊗∇ log hk =

∫

Ω
hkD(uk) :

∇hk ⊗∇hk

hk

et d’autre part en intégrant par parties :

ν2

∫

Ω
D(uk) : ∇∇hk + ν2

∫

Ω
∇div uk · ∇hk = 0

on obtient :
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1

2
ν2 d

dt

∫

Ω
hk|∇ log hk|2 + ν

∫

Ω

|∇hk|2
F 2

r

+ ν β

∫

Ω
|∇2hk|2 + ν

∫

Ω
α0(hk)uk · ∇ log hk

+ ν

∫

Ω
α1(hk) |uk|uk · ∇hk + ν

∫

Ω

u⊥
k · ∇hk

Ro
= Ik

(2.89)

avec

Ik = −ν
∫

Ω
∂tuk · ∇hk − ν

∫

Ω

(

(uk · ∇)uk

)

· ∇hk + ν

∫

Ω
f̃ · ∇hk.

Réécrivons Ik en tenant compte de l’équation de conservation de la masse et en inté-
grant par partie :

Ik = −ν d

dt

∫

Ω
uk · ∇hk + ν

∫

Ω
uk · ∇∂t hk − ν

∫

Ω

(

(uk · ∇)uk

)

· ∇hk + ν

∫

Ω
f̃ · ∇hk,

= −ν d
dt

∫

Ω
uk · ∇hk − ν

∫

Ω
uk · ∇div (hkuk) − ν

∫

Ω

(

(uk · ∇)uk

)

∇hk + ν

∫

Ω
f̃ · ∇hk,

= −ν d

dt

∫

Ω
uk · ∇hk + ν

∫

Ω
∇uk : t∇uk + ν

∫

Ω
f̃ · ∇hk.

Ceci termine la démonstration de la deuxième identité.

Lemme 2.5.2. Nous avons l’inégalité suivante :

1

2

d

dt

∫

Ω

(

hk |uk + ν∇ log hk|2 +
h2

k

F 2
r

+ β|∇hk|2
)

− ν r0
d

dt

∫

Ω
log
(

r−1
0 hk α0(hk)

)

+ ν

∫

Ω
α′

0(hk)∇hk · uk + ν

∫

Ω
α1(hk) |uk|uk · ∇hk + ν β

∫

Ω
|∇2hk|2

+ ν

∫

Ω

|∇hk|2
F 2

r

+

∫

Ω
α0(hk)|uk|2 +

∫

Ω
α1(hk)hk |uk|3

≤ ν

∫

Ω
hk |∇uk|2 +

∫

Ω
f̃(hkuk + ν∇hk)

(2.90)

Preuve du lemme 2.5.2.

L’égalité (2.86) se réécrit sous la forme suivante :

1

2

d

dt

∫

Ω
hk |uk + ν∇ log hk

∣

∣

2
+ ν

∫

Ω

|∇hk|2
F 2

r

+ ν β

∫

Ω
|∇2hk|2

+ ν

∫

Ω
α0(hk)uk · ∇ log hk + ν

∫

Ω
α1(hk) |uk|uk · ∇hk

=
1

2

d

dt

∫

Ω
hk|uk|2 + ν

∫

Ω
hk∇uk : t∇uk + ν

∫

Ω
f̃ · ∇hk

(2.91)
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En ajoutant l’inégalité d’énergie (2.3.3) à (2.91) on obtient :

1

2

d

dt

∫

Ω

(

hk |uk + ν∇ log hk|2 +
h2

k

F 2
r

+ β|∇hk|2
)

+ ν

∫

Ω
α0(hk)uk · ∇ log hk

+ ν

∫

Ω
α1(hk) |uk|uk · ∇hk + ν β

∫

Ω
|∇2hk|2 + ν

∫

Ω

|∇hk|2
F 2

r

+

∫

Ω
α0(hk)|uk|2

+

∫

Ω
α1(hk)hk |uk|3 ≤ ν

∫

Ω
hk|∇uk|2 +

∫

Ω
f̃ · (hk uk + ν∇hk).

(2.92)

Comme dans le cas de la dimension un on a :

∫

Ω
α0(hk)uk · ∇ log hk = −r0

d

dt

∫

Ω
log
(

r−1
0 hk α0(hk)

)

+

∫

Ω
α′

0(hk)∇hk · uk (2.93)

En injectant cette égalité dans (2.92), nous obtenons bien (2.90). Ceci termine la
démonstration du lemme 2.5.2.

A partir de (2.90), nous pouvons obtenir les deux dernières estimations supplémen-
taires. En effet, intégrant (2.90) entre 0 et t, nous obtenons :

1

2

∫

Ω
hk |uk + ν∇ log hk|2 − ν r0

∫

Ω
log
(

r−1
0 hk α0(hk)

)

+ ν

∫ t

0

∫

Ω
α′

0(hk)∇hk · uk

+ ν

∫ t

0

∫

Ω
α1(hk) |uk|uk · ∇hk + ν β

∫ t

0

∫

Ω
|∇2hk|2

≤ A0 − ν r0

∫

Ω
log
(

r−1
0 hk 0 α0(hk 0)

)

+

∫ t

0

∫

Ω
f̃ · (hk uk + ν∇hk).

(2.94)

avec A0 constante liée aux données initiales, indépendante de k. On a tout d’abord :

∣

∣

∣
ν

∫ t

0

∫

Ω
α′

0(hk)∇hk · uk

∣

∣

∣
≤ ν r0 c0 ‖hk‖L2(0,T ; H1(Ω)) ‖uk‖L2(0,T ;L2(Ω)). (2.95)

On a également :

∣

∣

∣ν

∫ t

0

∫

Ω
α1(hk) |uk|uk · ∇hk

∣

∣

∣ ≤
∣

∣

∣ν

∫ t

0

∫

Ω
∇(α1(hk)) · uk |uk|hk

∣

∣

∣

+
∣

∣

∣ν

∫ t

0

∫

Ω
α1(hk)∇|uk| · uk hk

∣

∣

∣+
∣

∣

∣ν

∫ t

0

∫

Ω
α1(hk) div uk|uk|hk

∣

∣

∣

(2.96)

Nous obtenons donc :
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∣

∣

∣ν

∫ t

0

∫

Ω
α1(hk) |uk|uk · ∇hk

∣

∣

∣ ≤

C ‖∇hk‖L∞(0,T ;L2(Ω)) ‖uk‖2
L2(0,T ; L6(Ω)) ‖hk‖L∞(0,T ;L6(Ω))

+ C ‖
√

hk ∇uk‖L2(0,T ;L2(Ω)) ‖
√

hk uk‖L∞(0,T ; L2(Ω)).

(2.97)

puisque (hk)k est bornée dans L∞(0, T ; H1
per(Ω)) et (uk)k est bornée dans L2(0, T ; H1

per(Ω))

et qu’en dimension deux nous avons l’injection H 1
per(Ω) ⊂ Lp

per(Ω), ∀p <∞.

Enfin, les termes ν r0
∫

Ω log
(

r−1
0 hk α0(hk)

)

et ν r0
∫

Ω log
(

r−1
0 hk 0 α0(hk 0)

)

se contrôlent
comme en dimension un.

On obtient donc l’inégalité suivante :

1

2

∫

Ω
hk|uk + ν∇ log hk|2 + ν β

∫ t

0

∫

Ω
|∇2 hk|2 ≤ C1

+C2‖f̃‖L2(0,T ;L2(Ω))

(

‖hk uk ‖L2(0,T ; L2(Ω)) + ‖∇hk‖L2(0,T ; L2(Ω))

)

(2.98)

où C1 et C2 sont des constantes indépendantes de k. On obtient bien les estimations
supplémentaires sur (∇2hk)k et (∇

√
hk)k.

Ceci termine la démonstration de la proposition (2.5.1).

Comme dans le cas de la dimension un, une estimation supplémentaire est nécessaire
afin d’obtenir de la compacité sur (hkuk)k et de pouvoir passer à la limite dans le
problème approché. Le résultat est similaire à celui obtenu en dimension un :

Proposition 2.5.2. Il existe une constante C > 0 indépendante des données telle que

‖τη(hk uk) − hk uk‖L∞(0,T−η; (W 1,∞
per (Ω))′) ≤ Cη

1

3 (2.99)

Preuve.

La démonstration est identique à celle proposée en dimension un, en adaptant les
majorations aux nouvelles estimations a priori obtenue avec l’hypothèse de positivité
effectuée sur (hk)k.

Corollaire 2.5.1. On a l’estimation suivante :

(hkuk)k est bornée dans N
1

3
∞(0, T ; (W 1,∞

per (Ω))′)

.
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2.5.1. Convergence et compacité. Comme (hk)k est bornée dans L∞(0, T ; H1
per(Ω))

et

(

∂hk

∂t

)

k

est bornée dans

L∞(0, T ; H−3
per(Ω)), la suite (hk)k est compacte dans C0([0, T ], L2

per(Ω)) d’après le
Théorème 2.4.4. Donc, à une sous suite extraite prés,

hk → h dans C0([0, T ], L2
per(Ω)) fort.

On a d’après les estimations de la proposition 2.5.1 une borne L2(0, T ; (Lp
per(Ω))2) ∀p <

∞ pour (uk)k et une borne L2(0, T ; (L2
per(Ω))2) pour (α0(hk)

1

2 uk)k. De plus, on ob-
tient de la compacité sur (α0(hk))k et (α1(hk))k à partir de celle obtenue sur (hk)k,
comme en dimension un. On a donc les convergences suivantes :

uk ⇀ u dans L2(0, T ; (Lp
per(Ω))2) ∀p <∞ faible,

α0(hk) → α0(h) dans C0([0, T ], L2
per(Ω)) fort,

α1(hk) → α1(h) dans C0([0, T ], L2
per(Ω)) fort.

Ainsi par produit de convergence fort-faible et unicité de la limite, on a, à une sous
suite extraite prés :

α0(hk)uk → α0(h)u dans L1(0, T ; (L1
per(Ω))2) fort,

α1(hk)uk → α1(h)u dans L1(0, T ; (L1
per(Ω))2) fort,

α0(hk)uk ⇀ α0(h)u dans L2(0, T ; (L2
per(Ω))2) faible,

α1(hk)uk ⇀ α1(h)u dans L2(0, T ; (L2
per(Ω))2) faible,

hk uk → hu dans L1(0, T ; (L1
per(Ω))2) fort,

De plus, d’après la proposition 2.5.1 on a l’ estimation suivante :

(hkuk)k borné dans L2(0, T ; (W
1,

2p

p+2

per (Ω))2) ∩ L∞(0, T ; (L
2p

p+2

per (Ω))2),

en effet on a ∇(hkuk) = ∇hk uk +
√
hk

√
hk∇uk. Comme (hk)k et (

√
hk)k sont bornées

dans L∞(0, T ; Lp
per(Ω)) ∀p < ∞, (uk)k bornée dans L2(0, T ; (Lp

per(Ω))2) ∀p < ∞ et
(
√
hk∇uk)k bornée dans L2(0, T ; (L2

per(Ω))2), nous obtenons bien les bornes voulues.

En particulier, pour p = 4 et d’après le corollaire 2.5.1 nous obtenons alors l’estimation
suivante :

(hkuk)k est bornée dans L2(0, T ; (W
1, 4

3
per (Ω))2) ∩N

1

3

2 (0, T ; (W 1,∞
per (Ω))′),

avec les injections suivantes en dimension 2 :
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W
1, 4

3
per (Ω) ⊂ L2

per(Ω) ⊂ (W 1,∞
per (Ω))′.

Ainsi, d’après le Théorème 2.4.5, comme l’injection de W
1, 4

3
per (Ω) dans L2

per(Ω) est com-
pacte, nous avons :

hk uk ⇀ hu dans L2(0, T ; (W
1, 4

3
per (Ω))2) faible,

hk uk ⇀ hu dans L∞(0, T ; (L
3

2
per(Ω))2) faible,

hk uk → hu dans L2(0, T ; (L2
per(Ω))2) fort,

et par produit de convergence fort-faible, il vient

hk uk ⊗ uk → hu ⊗ u dans L1(0, T ; (L1
per(Ω))4),

α1(hk)hk|uk|uk → α1(h)h|u|u dans L1(0, T ; (L1
per(Ω))2).

Par ailleurs, comme (hk uk)k est borné dans L∞(0, T ; (L
3

2
per(Ω))2) et (uk)k dans

L2(0, T ; (L6
per(Ω))2) on a une borne pour (hkuk ⊗ uk) et (α1(hk)hk|uk|uk)k dans

L2(0, T ; L
6

5
per(Ω)). Par unicité de la limite dans L1(0, T ; L1

per(Ω)) on a :

(hk uk) ⊗ uk ⇀ hu ⊗ u dans L2(0, T ; (L
6

5
per(Ω))4) faible,

α1(hk)hk|uk|uk ⇀ α1(h)h|u|u dans L2(0, T ; (L
6

5
per(Ω))2).

On utilise le Théorème 2.4.6 pour obtenir le corollaire suivant :

Corollaire 2.5.2. Soit Ω un ouvert de R
2. Le produit (u, v) 7→ uv est continu de

H1(Ω) × H−1(Ω) dans H−1−ε, ∀ε > 0.

Comme (uk)k est bornée dans L2(0, T ; (L2
per(Ω))2), (D(uk))k est bornée dans

L2(0, T ; (H−1
per(Ω))4). Le produit (h,D(u)) 7→ hD(u) est donc continu de

L∞(0, T ; H1
per(Ω)) × L2(0, T ; (H−1

per(Ω))4) dans L2(0, T ; (H−1−ε
per (Ω))4). Donc, quitte

à extraire une sous suite, il vient :

hkD(uk) ⇀ hD(u) dans L2(0, T ; (H−1−ε
per (Ω))4) faible.

On a donc par unicité de la limite :

hk D(uk) ⇀ hD(u) dans L2(0, T ; (L
4

3
per(Ω))4) faible.

On a le corollaire suivant, valable en dimension deux :
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Corollaire 2.5.3. Soit Ω un ouvert de R
2. Le produit (u, v) 7→ uv est continu de

H1(Ω) × L2(Ω) dans H−ε(Ω) ,∀ ε > 0.

Ainsi le produit (hk,∇hk) 7→ hk∇hk est continu de L∞(0, T ; H1
per(Ω)) ×

L∞(0, T ; (L2
per(Ω))2) dans L∞(0, T ; (H−ε

per(Ω))2), ∀ ε > 0. On obtient donc une conver-

gence vers h∇h dans L∞(0, T ; (H−ε
per(Ω))2) ∀ ε > 0 faible ?. Par ailleurs on a :

(hk)k borné dans L∞(0, T ; Lp
per(Ω)) ∀ p <∞,

(

∇hk

)

k
borné dans L2(0, T ; (Lp

per(Ω))2) ∀ p <∞,

et donc, en particulier pour p = 3 , (hk∇hk) bornée dans L2(0, T ; (L
3

2
per(Ω))2)k. On a

donc les convergences suivantes :

hk∇hk ⇀ h∇h dans L∞(0, T ; (H−ε
per(Ω))2) faible ?,

hk∇hk ⇀ h∇h dans L2(0, T ; (L
3

2
per(Ω))2) faible.

Enfin les termes (hk∆hk)k et (∇hk ∆hk)k se traitent comme en dimension un :

(hk)k borné dans L∞(0, T ; Lp
per(Ω)) ∀ p <∞,

(

∆hk

)

k
borné dans L2(0, T ; L2

per(Ω)),

d’où, pour p = 3 par exemple, une borne dans L2(0, T ; L
6

5
per(Ω)) pour (hk ∆hk)k. Par

ailleurs les convergences suivantes :

∆hk ⇀ ∆h dans L2(0, T ; L2
per(Ω)) faible,

hk → h dans C0([0, T ], L2
per(Ω)) fort,

permettent d’obtenir par produit de convergences fort-faible et unicité de la limite :

hk∆hk → h∆h dans L1(0, T ; L1
per(Ω)) fort,

hk∆hk ⇀ h∆h dans L2(0, T ; L
6

5
per(Ω)) faible.

Le passage à la limite faible dans le deuxième terme (∇hk ∆hk)k nécessite d’obtenir
de la compacité sur (∇hk)k. Nous l’obtenons grâce au Théorème 2.4.4 en utilisant les
estimations suivantes, l’injection de H1(Ω) dans L2(Ω) étant compacte :

(∇hk)k borné dans L2(0, T ; (H1
per(Ω))2),

(∂∇hk

∂t

)

k
borné dans L∞(0, T ; (H−4

per(Ω))2) puisque
(∂hk

∂t

)

k
borné dans

L∞(0, T ; H−3
per(Ω)).

On a donc par compacité et produit de convergence fort-faible :
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∇hk → ∇h dans L2(0, T ; (L2
per(Ω))2) fort,

∇hk ∆hk → ∇h∆h dans L1(0, T ; (L1
per(Ω))2) fort.

A partir de ces convergences le passage à la limite est possible, comme dans le cas de
la dimension un.



Conclusion

This first part is devoted to the derivation of a viscous two-dimensional NSW model,
and to the demonstration of an existence result for global weak solutions.

In the first Chapter, the derivation of a new two-dimensional NSW model, including a
particular viscous term, laminar and turbulent friction terms, bed slope source term,
Coriolis effects and capillary effects on the free surface is stressed out. This new model
is obtained following [62] from an asymptotic analysis of the non-dimensional and
incompressible three dimensional Navier-Stokes-Coriolis equations with a large-scale
assumption and hydrostatic approximation in a rotating sub-domain of R

3. The im-
provements brought-up by this study concern first the extension to the two-dimensional
framework, since very few study proposed in the literature are devoted to such two-
dimensional derivations of viscous NSW models. This new two-dimensional model is
consistent with the one-dimensional system previously introduced in [62] since equa-
tions (1.49) degenerate into the system obtained in [62]. The addition of a quadratic
drag term with water depth dependent friction coefficients is consistent with the usual
friction formulation used in oceanographical simulations, namely the Manning-Chezy
formulation.
In the recent article [149] Ferrari and Saleri also uses the main ideas of [62] to derive a
two-dimensional NSW model. However the authors added in [149] a standard viscous
term after deriving the model, and the term does not match the viscous term of [62] in
the degenerated one dimensional case. We emphasize that in the derivation proposed
here, the new viscous term is asymptotically derived from the Navier-Stokes-Coriolis
equations and degenerates into the same term as in [62].
In addition, this derivation can be regarded as a way of justifying from a mathematical
point of view the addition of various source terms, like quadratic friction terms, wind
effects on the free surface, eddy viscosity or even surface tension effects. It is worth
mentioning that these terms are usually added to the NSW models with semi-empirical
approximation.
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96 Conclusion

In Chapter 2, we have established an existence result concerning global weak solu-
tions for the previously derivated model. We have use classical methods in nonlinear
analysis, namely the achievement of a priori estimates in Sobolev spaces and com-
pactness results which allow us to pass to the limit in an approximated problem. The
demonstration proposed here shares ideas between the recent paper of Bresch and
Desjardins [51] and classical studies concerning the non-homogeneous Navier-Stokes
equations [22]. We have made a distinction between the one and two-dimensional
cases. In the one-dimensional case we have obtained a result for the complete model
with strictly positive coefficients. In the two dimensional case, the particular viscous
term is source of trouble and we have studied a simplified model with the same viscous
term as Bresch and Desjardins. Hence, the only differences with their model that re-
main are the friction coefficients which depend on the water depth. These coefficients
lead to poor estimates on the velocity and in this work we have made an assumption
concerning the positivity of the water depth. This enable to obtain a better estimate
on u and therefore to cope with the previous difficulty. However it seems possible to
obtain the same result without such assumption on h. This is actually under study.



Part 2

Numerical resolution





Introduction and
numerical strategy

Shallow water equations and finite volume method

Numerical solutions of hydrodynamic problems offer the possibility of predicting
the behavior of the relevant variables in practical situations. Computational models of
the shallow water equations are well-established tools in many research fields involving
free surface flows, like for instance hydraulic, ocean circulation or coastal engineering.
Many finite difference methods have been first developed to solve these equations in
the one and two dimensional framework. The time integration schemes of these meth-
ods ranges from fully explicit to fully implicit. Concerning fully explicit schemes, we
can refer for instance to the works of Peraire et al. [134]. Currently, implicit or semi-
implicit schemes are more popular than explicit schemes due to their computational
efficiency, since the severe limitation imposed by explicit schemes stability criteria
requires a much smaller time step in the numerical integration than the time step
permitted by accuracy considerations. We can refer for instance to the early model of
Blumberg and Mellor [14] which has been used successfully in numerous application
problems, like general circulation in estuaries for example. This model is based on
an explicit finite difference scheme with the exception that the vertical eddy viscosity
terms are discretized implicitly. Several existing numerical models are based on an
Alternating Direction Implicit (ADI) method or even on semi-implicit methods (see
Backhaus [6] and Casulli [40] for the one-dimensional case, Casulli and Cheng [41]
for two-dimensional simulations). Another popular method is the Leendertse-type
method [104]. A number of difference schemes have been also applied to solve the
depth-averaged equations in tidal current flows using staggered grids, for which the
velocity and the water depth are calculated at different points of the mesh (see for
instance Ponce and Yabusaki [139] or Benque et al. [9]). Finite element methods were
also proposed to solve NSW system, following the methods previously introduced for
the Navier-Stokes equations. We can refer for example to the work of Hervouet [79]
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and its implementation in TELEMAC, to Bermudez et al. [12] or more recently to
[90].
Nevertheless, all these finite difference or finite element methods were suitable for
slowly varying flows but much less powerful for rapidly varying flow problems. In
addition, they provide poor results when they are applied to flow problems which
exhibit discontinuities. Theoretically, they are only able to model subcritical flows,
whereas observations show that in hydraulic or surf zone modeling, supercritical flows
and hydraulic jumps often occur, particularly in the case of high flood flows. In order
to cope with this limitation, authors using finite difference schemes try to construct
empirical formulae which are used in the part of the computational domain where
supercritical flows appear. Another method is to include a large amount of artificial
viscosity to damp the numerical oscillations entailed by the finite-difference method it-
self. From these investigations, it appears that the use of empirical formulae is highly
“problem-dependent” and requires an accurate parameterization. Furthermore, it is
obvious that if the addition of non-physical viscosity enables to preserve the stability
of the model with the regularization process, it significantly reduces the accuracy of
the computed solution when high water depth or velocity gradients are involved. It
is worth mentioning that in some particular cases, even the introduction of very high
artificial viscosity cannot stabilize the model.

However, when viscosity and friction are neglected, the NSW equations on a flat
bottom become a nonlinear system of first-order hyperbolic equations. The numerical
solutions of this kind of system are extensively studied, since they appear in some im-
portant research domain, as aeronautical and aerospace engineering for instance. Ac-
tually, in the 1970s, computational fluid dynamics (CFD) has made dramatic progress,
especially for shock wave capturing capabilities. Lax and Wendroff highlight the suit-
ability of models based on conservation laws and it leads to the introduction and
generalization of central difference schemes, like the Lax-Wendroff scheme or the Mac-
Cormack scheme. The importance of the monotonicity property, first discussed by
Godunov [67], becomes well-established and Harten [77] introduces the more general
notion of Total Variation Diminishing (TVD) schemes in the one dimensional frame-
work. Van Leer in a series of paper [176] suggested various second-order accuracy
Godunov-like schemes and in addition many approximate Riemann solvers like for ex-
ample the solvers of Roe and Osher, which are more computationally efficient than
the initial Riemann solver of Godunov, are developed.

Following these breakthroughs several new methods are gradually proposed in
hydraulic fields. These methods are in most cases adaptations of previous schemes
developed in CFD. These new schemes are able to simultaneously handle calculations
of slowly varying flows as well as rapidly varying flows involving shocks or discontinu-
ities such as those commonly observed in man-made hydraulic structures. Rajar [142]
suggested to extend the Lax-Wendroff scheme to shallow water equations in order to
compute dam-break problems, which become classical benchmarks for supercritical
flows and bore-capturing capabilities. Garçia and Kahawita [61] use the MacCormack
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time splitting scheme to compute two-dimensional solutions of various problems from
hydraulic classical benchmarks to idealized “real-world” problems. Glaister [64] de-
rived a Roe-type approximate Riemann solver for the one-dimensional shallow water
equations, Toro [172] proposed a modified HLL approximate Riemann solver for the
two-dimensional case and Yang and Hsu [185] successfully used the flux vector split-
ting method to solve the dam-break problem.
As an evaluation of numerical fluxes at cells interfaces is needed for the application of
Godunov-type methods, a finite volume formalism seems to be particularly suitable
for the practical implementation, since it uses the conservative form of the equations.
Thus, finite volume methods with shock capturing abilities have come to the fore
because of their suitability for modeling a large range of types of flows; steady or
unsteady, subcritical or supercritical, continuous or discontinuous and its ability to
cope with complex topography. For instance, first and second order accuracy Osher
schemes are used by Erduran and Kutija [54] for flows in channel, the second order
accuracy HLL scheme is used by Mingham and Causon [127] and Hu et al. [82], the
first order HLLC scheme is used by Zoppou et al. [191], the second order Roe scheme
is applied by Alcrudo and Garçia-Navarro in [2] and Hubbard and Dodd in [84]. In
addition several reviews and comparisons can be found in the literature as for example
Zhao et al. in [187] who perform a comparison of accuracy and stability for three
first order approximate Riemann solvers, or Erduran et al. in [55] who compare five
Riemman solvers (Osher, HLL, HLLC, Roe and FVS) in their second order accuracy
version, with classical two dimensional benchmarks.
Concerning the problems of interests, these schemes enable the computation of a large
range of type of flows from the slowly varying tidal flows in coastal engineering to the
rapidly evolving flows of hydraulic fields. For instance, Zhao et al. [187] suggested
simulations of dam-break problems, Hu et al. [83] investigate the computation of
oblique shock wave and transcritical flows, hydraulic jumps are studied by Chippada
[44] and tidal wave propagation by Bermudez [10]. We can also find simulations of
flows in initially dry areas [191].

Discretization of the source terms

In the previous section, we have emphasized the fact that when the viscosity and
the friction terms are neglected, the NSW equations on flat bottom become a nonlin-
ear system of first-order hyperbolic equations. Thus, a large set of methods developed
in CFD can be adapted to the NSW system, and leads to robust solvers and accurate
solutions. Nevertheless, source terms can become of importance in the NSW equa-
tions. For example, the presence of the bed-slope source term is often crucial, since
it enables the model to take into account the variability of the bottom and to handle
complex geometry of basins. The friction terms are also significant, especially when
the layer of water becomes relatively thin. When the NSW equations are adapted to
model avalanche problems, this friction term becomes fundamental, since it enables
the introduction of some non-trivial equilibrium states. The importance of viscous
terms is much debated. Several authors assume that the numerical resolution of NSW
first order hyperbolic models generates enough artificial viscosity to handle properly
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the physical process of dissipation. However, as it has been highlighted in the first
chapter, these viscous terms are formally derived from the three dimensional Navier-
Stokes equations with free surface and are issued from a second order approximation
in the asymptotic expansion. Since these terms naturally arise from the averaging of
Navier-Stokes equations, we consider their introduction in the numerical models as
fully justified. More precisely, it appears from a literature review that these viscous
terms may be required for the computation of several problems whereas they can be
neglected for others. For instance, in coastal engineering numerous models which aim
at modeling macro-tidal circulation naturally include the viscous terms, which are as-
sociated with the Reynolds formulation of turbulence, leading to approximated eddy
viscous terms. Accurate discretizations of these viscous terms with parameterizations
of the eddy viscosity coefficients are often proposed, while the system’s anisotropy
with respect to the vertical and longitudinal scales is taken into account through a
distinction between horizontal and vertical eddy viscosity is introduced (see Levermore
et al.[110] for example). On the contrary, viscosity is neglected in most of the model
used in the computation of hydraulic problems.

Nevertheless, we want to preserve the improvements obtained with the shock-
capturing finite volume methods even in the presence of various source terms. It leads
to the mathematical framework of conservation laws with source terms (see Godlewski
and Raviart [66]). Numerous methods have been suggested to cope with these source
terms, and especially with the bed-slope and friction source terms, but there is es-
sentially two main approaches. The first one is the fractional step method (FSM) or
splitting method. The idea is to split the whole system with flux gradients and source
terms into a pure “advection problem”and a “source problem”, for each time step. The
advection problem is exactly the homogeneous hyperbolic system of conservation laws,
whereas the source problem often resumes to the resolution of a set of ordinary differ-
ential equations. At first sight, this approach may appear unreasonable but it can be
shown that this method is exact in the case of a linear model equation with source term
[170]. The reader is referred to [108], [184] or [112] for a complete description of this
method. Many authors such as Hu et al. [82], Brocchini et al. [27] and more generally
most of the authors introduced in the brief review above, have applied it to take into
account the source terms in their model. The main advantage of this method is its
simplicity since the global discretization is divided into two steps, one for the convec-
tion terms and one for the source terms. It allows to use an accurate method for each
different step. The homogeneous system is solved using an accurate solver designed for
hyperbolic conservation laws and all the benefits of the shock capturing methods are
conserved, while the treatment of the source term is reduced to the implementation
of an ODE solver, which can be of the needed accuracy. In addition, this approach
is one of the very few existing methods which enable to take into accounts viscous
terms, while resolving the homogeneous system with a shock-capturing finite volume
method. For instance, Toro and Brown proposed in [173] a model which relies on the
weight averaged flux (WAF) method and splitting procedure for viscous shocked flows.
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However, it is well-known today that this class of methods gives poor results when
the solution or even a small part of the solution is close to a steady state, especially
for the shallow water equations with bed-slope source terms. Actually, fractional step
methods are not designed to preserve numerical steady states and so, are unable to
accurately compute the convergence towards steady states or at least the evolution of
small perturbations around such states. Furthermore, such methods often induce nu-
merical instabilities and non-physical oscillations when they have to deal with strong
bed slope variations. From these considerations it appears that the use of a coherent
treatment of the whole system is needed, in order to preserve the balance between
flux gradients and source terms. In what follows, we only focus on the balance with
the bed-slope source term since this term is the most relevant term which can lead
to non-trivial steady states in the study of various type of flows. For the study of
avalanches for example, similar considerations are suitable for the friction terms, since
in this particular context, friction and bed-slope source terms can lead together to
non-trivial equilibrium [20].
The ability of a numerical scheme to achieve the exact preservation with respect to time
of discrete steady states and to accurately compute the convergence towards steady
states is directly linked to the way this balance property is preserved at the discrete
level. A method which preserves this balance property and fits all these requirements
is called a well-balanced method.
To cope with this difficulty, numerical computation of source terms in hyperbolic sys-
tems of conservation laws has been recently improved and the discretization of the
bed slope source term has been studied by a large number of authors, like for instance
Priestley in [141], Roe in [146] who shows that for linear systems source terms may
be upwinded in the same way as the flux gradient terms or Leveque and Yee in [109]
who solve a model advection equation with a parameter dependent source term. One
popular approach is to upwind the source term in a way that mimics the discretiza-
tion of the flux gradients, as suggested by Roe in [146] and in the extension of the
Q-schemes introduced by Bermudez and Vasquez-Cendon in [11], [178] and general-
ized for two-dimensional problems in [10]. Other methods are the quasi-steady wave
propagation algorithm of Leveque [107] or the surface gradient method of Zhou et al.
introduced in [190] which is an improvement for the computation of steady states of
the model introduced in [82].
A powerful and elegant approach is to directly solve Riemann problems with piecewise
constant topography. This approach, introduced by Greenberg and Leroux in [72],
[73] and extended later by Gallouet et al. in [57] for linearized Riemann problems
is the more general well-balanced method, since it can preserve all the steady states.
These two methods are detailed in the next chapter. An other recent and extremely
interesting method is the hydrostatic reconstruction method introduced in [3]. This
method, initially proposed with a homogeneous kinetic Riemann solver is very flexible
in practice, since it may be used in conjunction with any homogeneous Riemann solver.
Furthermore, this method can easily preserve the water depths positivity if used in
conjunction with a positivity preserving homogeneous solver. As it will be emphasized
later, this positivity preserving property may be crucial when the numerical model has
to deal with the occurrence or the flooding of dry areas. This positivity preserving
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property is theoretically provided by the original Godunov method for homogeneous
system but seems to be difficult to obtain in a well-balanced framework. This hydro-
static reconstruction, although being able to preserve only steady states “at rest”, will
appear to be a very powerful tool.

The moving shoreline problem

As already exposed, the NSW equations are particularly well-suited for the study
and simulation of a large class of geophysical phenomena. These models are exten-
sively used in the field of coastal engineering and especially for the study of nearshore
flows, in the surf and swash zones. A large part of our numerical investigations will
lie in these research fields. Our goal is to model some important wave properties
which are observable in the surf zone, like the formation and reorganization of peri-
odical bore-like waves, or even phenomena which are generated in the swash zone like
flooding of initially dry area, run-up and run-down processes over sloping beaches and
sometimes overtopping phenomena on arbitrary sloping beaches or coastal structures.
To properly model the run-up process, an efficient treatment of the shoreline, which
is defined as the dividing line between inundated and dry area, is needed. Actually,
wave run-up on a sloping beach is a very complex phenomenon which has been stud-
ied extensively since a few decades. It involves wave shoaling and breaking, reflection,
refraction and nonlinear interactions with the bottom profile. Moreover, flow proper-
ties change rapidly near the shoreline, as the water depth vanishes. The position of
the shoreline is always evolving and we can consider that this position is part of the
computed solution.
Computational models based on the NSW equations have been developed since a few
decades to model wave run-up. Various methods have been suggested in order to cope
with these difficulties but there is essentially two approaches.
The first one relies on coordinate transformations, which generate a map between the
time-varying physical domain and a time invariant computational domain. This class
of method often leads to complex algorithms. The second approach is based on the
use of conservative schemes on a fixed grid and the direct computation of flow proper-
ties is used to compute the shoreline position, without special tracking algorithm. In
particular, the use of a local Riemann solver enables to track the wet/dry interfaces in
the same ways it tracks local discontinuities. Numerical treatments of the wetting and
drying procedure, like a numerical definition of a dry cell, has to be introduced and
the shoreline can then be accurately computed with high resolution bore-capturing
schemes.
Following these ideas, Brocchini et al.[26], [27] have recently use the Weight Aver-
aged Flux (WAF) method introduced by Toro in [171] in a Godunov-like scheme and
Hu et al. have implemented a HLL approximate Riemann solver for the study of
overtopping. For the fully two-dimensional simulation, Hubbard and Dodd [84] have
developed a model using adaptive mesh refinement algorithm and based on the clas-
sical approximate Riemann solver of Roe. All these methods, althought relying on
a fractional step method, provide accurate results. A more detailed study of run-up
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processes and a moving shoreline tracking methods review are performed in Chapter 6.

Numerical strategy

Numerical requirements. We recall that we aim at developing a numerical method
to study the solutions of the following shallow water system :







































∂th+ div (hu) = 0 ,

∂t(hu) + div (hu ⊗ u) + g h∇h =

−α0(h)u − α1(h)h |u|u + µdiv
(

h(∇u +t ∇u) + (2hdiv u)I
)

+βh∇∆h− f(hu)⊥ − g h∇d+ β h∇∆d .

(2.100)

where we have :

α0(h) =
kl

1 +
klh

3µ

and α1(h) =
kt

(1 +
klh

3µ
)2
.

From the previous considerations, we can infer a numerical strategy in order to solve
this system. We must keep in mind that we are looking for a numerical model which
can deal with a large range of applications and in particular with wave propagations in
the surf zone, a process involving waves breaking and generation of bore waves. Hence,
our model should provide shock capturing abilities. As it has been exposed, shock-
capturing finite volume methods relying on one-dimensional Riemann solver, which
can be exact or approximate, appears as an efficient and elegant class of method,
well-suited for many types of flows. Thus, we will investigate the use of such finite
volume method. In addition, as we aim at modeling nearshore flows and especially
the propagation of waves and wave-induced current in the surf and swash zone, and
considering that the topography profile is of dramatic interest in the evolution of these
flows, we must pay attention to the discretization of the bed-slope source term. There-
fore we should use a well-balanced method which enables us to accurately model the
convergence or even the small evolutions around steady or quasi-steady states. On
top of that, it appears that the framework of well-balanced shock-capturing meth-
ods may be well-suited for the simulation of moving shoreline situations. As most
of the reviewed methods used for this kind of problem rely on FSM, the choice of an
adequate well-balanced method can considerably improve the results found in the liter-
ature. Consequently we will investigate the use of various finite volume well-balanced
methods which appear as suitable for our purpose. Moreover, the consequence of
the numerical preservation of the water depths positivity on the accuracy of moving
shoreline prediction will be highlighted with numerical assessments. Finally, concern-
ing the numerical treatment of the remaining source terms, namely the friction, the
viscous and the Coriolis source terms for two dimensional problems, we may develop
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a fractional step method, which can also leads to high order accuracy when used in
combination with a high order time discretization.
The end of this chapter is devoted to a brief introduction of the classical fractional
step method for hyperbolic systems with source terms. Then we introduce the new
splitting algorithm which is applied for the numerical resolution of system (2.100).

Fractional step method. The fractional step method usually consists in splitting,
for a time ∆t, the “advection problem” and the “source problem”. The main conve-
nience of FSM is the fact that one can deploy the optimal existing methods for each
subproblems. The reader is referred to [108], [184] or [112] for a complete description
of the theoretical background.
We first introduce the formalism on a simple nonlinear hyperbolic model :







wt + f(w)x = s(w) , 0 < x < L ,

w(tn, x) = wn.
(2.101)

where w(x, t) ∈ R is the conserved quantity and s(w) stands for the source terms. We
aim at computing the unknown values wn+1 at time t = tn+1 obtained after an evo-
lution of ∆t, knowing the values wn at time t = tn. assuming that the computational
domain [0, L] is discretized into N cells , in a cell-centered finite volume approach.
{wn} stands for the discrete values wn

i at time tn. Introducing an intermediate state
(t∗, w∗), the fractional step method is defined as follows ;

wt + f(w)x = 0 ,

w(tn, x) = wn ,







→ w∗ (2.102)

and then
dw

dt
= s(w) ,

w(t∗, x) = w∗ ,











→ wn+1 (2.103)

The initial condition for the whole problem (2.101) is used as initial condition of the
homogeneous hyperbolic problem (2.108). We introduce w∗ which is the solution of
this homogeneous problem after a time ∆t. w∗ is then used as the initial condition
for the second initial value problem (2.103). This second problem accounts for the
presence of the source term s(w) and is also solved for a complete time step ∆t. The
final solution is then regarded as an approximation of the solution wn+1 of the full
problem (2.101) at time tn+1 = tn + ∆t.
This method can be expressed in the following form, using operators :

wn+1 = S∆tC∆t(w
n) (2.104)

where C∆t can be interpreted as the solution operator for the convection problem
applied over a time ∆t and S∆t as the solution operator for the ordinary differential
equation defined by (2.103).
Each numerical sub-problem (2.108), (2.103) is resolved separately, for a time step ∆t.
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One requires a numerical method to solve the homogeneous conservation law (2.108)
and another numerical method to solve the ordinary differential equation (2.103). This
procedure is first order accurate in time if operator C∆t and S∆t are both first order.
Numerical extension to second order accuracy will be developed later.

Remark 2.5.1. The time step ∆t is imposed by classical restriction both for the
advection step and the source step. Actually, the time evolution of the ODE is often
dictated by the stability time step restriction inherited from the finite volume explicit
solver used for the advection problem. From a practical point of view, the restricted
time step ∆tc used for the resolution of the advection step is computed using the usual
adapted stability criteria. Then a stability analysis of the chosen explicit ODE method
for the source step is performed, leading to a second stable time step ∆ts. Then the
final time step is obviously ∆t = min (∆tc,∆ts). If the ODE method is an implicit
method, there is no stability restriction and the whole problem can be advanced with
∆t = ∆tc.

The extension to nonlinear systems is straightforward and can be expressed as follows,
considering an initial value problem involving n nonlinear equations where W(t,X) is
the vector of conserved quantities with W(t,X) ∈ R

n and X ∈ R
p :







Wt + div (F (W)) = S(W),

W(tn, X) = Wn ,
(2.105)

where S(W) stands for the source terms.
We want to obtain the set of values {Wn+1} at time t = tn+1, knowing the discrete
values {Wn} at time tn. Introducing the intermediate state (t∗,W∗) the fractional
step method is written as follows :

Wt + div (F (W)) = 0 ,

W(tn, X) = Wn ,







→ W∗ (2.106)

and then :

dW

dt
= S(W) ,

W(t∗, x) = W∗ ,











→ Wn+1 (2.107)

This method can be expressed in term of solution operators, with the same notations
as in the scalar case :

Wn+1 = S∆tC∆t(W
n) (2.108)

Application to the viscous shallow water model. Keeping in mind the no-
tation introduced in the previous subsection, we consider here the application of the
FSM to the shallow water system with source terms (2.100). We consider the following
initial value problem in dimensionalized variables :
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

































































∂th+ div (hu) = 0 ,

∂t(hu) + div (hu ⊗ u) + g h∇h =

−α0(h)u − α1(h)h |u|u + µdiv
(

h(∇u +t ∇u) + (2hdiv u)I
)

+βh∇∆h− f(hu)⊥ − g h∇d+ β h∇∆d ,

h(0) = h0,

(

hu
)

(0) =
(

hu
)

0
.

where we have :

D(u) =
1

2
(∇u + t∇u),

and

α0(h) =
kl

1 +
kl h

3µ

and α1(h) =
kt

(1 +
kl h

3µ
)2
.

with kl > 0 et kt > 0. Using the values (hn, (hu)n) at time t = tn, and an intermediate
state (h∗, (hu)∗), we want to compute the new values (hn+1, (hu)n+1) at time t = tn+1.

We introduce here a new splitting procedure which not follows the classical decom-
position into “advection part” and “source part” but is more suitable for our purpose.
As we aim at deriving a well-balanced method which enables the preservation of the
largest class of steady states, we choose to include the bed slope source term in the
first “advection step”, which will be named “hyperbolic step” in the following, suggest-
ing that we are more interested in resolving an hyperbolic problem with bed slope
source term than a pure advection problem. We will introduce in the next chapter
some well-balanced methods which are suitable for the global discretization of this
system and the preservation at the discrete levels of some relevant equilibrium states.
Thus, providing the solution at time tn as the initial condition, we are looking for the
resolution of the following initial value problem :

ht + div (hu) = 0 ,

(hu)t + div (hu ⊗ u) + gh∇h = −g h∇d ,

h(tn) = hn ,

(hu)(tn) = (hu)n.



































→ (h∗, (hu)∗) (2.109)

This first step yields to an intermediate numerical state, denoted by (h∗, (hu)∗).
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In a second step, we perform the computation of the solution of the ordinary differential
equation system including the remaining source terms, namely the friction terms, the
Coriolis term and the viscous terms. This source step is solved using a semi-implicit
accurate EDO solver which will be detailed in chapter 5. Injecting the intermediate
state (h∗, (hu)∗) as the initial condition :

ht = 0 ,

(hu)t + f (hu)⊥ + α0(h)u + α1(h)h |u|u =

β h∇∆h+ µdiv
(

hD(u) + (2hdiv u)I
)

+ β h∇∆d ,

h(t∗) = h∗ ,

(hu)(t∗) = (hu)∗ ,



















































→ (hn+1, (hu)n+1)

(2.110)

We obtain from this source step the solution (hn+1 = h∗, (hu)n+1) of the initial value
problem (2.5.1) at time tn+1 = t+ ∆t.

In the next chapter, we recall two elegant and robust well-balanced methods for the
resolution of the hyperbolic step. These methods, based on the direct resolution of an
augmented Riemann problem with a piecewise constant topography, have been proved
to be very powerful and accurate in the computation of a large class of subcritical
steady states and the occurrence of dry area. Nonetheless, numerical investigations
highlight their limitations when one try to deal with moving shoreline problems. To
improve these results, an other up-to-date well-balanced method which is only able to
deal with steady states “at rest” but allows the preservation of the positivity of the
water depth is introduced in chapter 4. Numerical assessments of this method against
one and two dimensional benchmarks involving moving shorelines are proposed. In
chapter 5 we finally introduce the semi-implicit EDO solver used for the remaining
source terms, which can preserve the well-suited properties inherited from the well-
balanced method.





Chapter 3

Numerical resolution of
the hyperbolic system
with bed-slope term

3.1. Governing equations and Finite Volume framework

3.1.1. The Saint-Venant system with bed slope sourceterm. In this sec-
tion we introduce the NSW equations with bed slope source term. The two-dimensional
NSW equations with bed slope source term may be written as follows :

U,t + F (U),x +G(U),y = S(U), (3.1)

with

U =





h
hu
hv



 , F (U) =







hu

hu2 +
g

2
h2

huv






, G(U) =







hv
huv

hv2 +
g

2
h2






,

and

S(U) =





0
−g h dx

−g h dy





where ( ),x (resp. ( ),y) stands for the derivative along the x direction (resp. the y di-
rection), u = t(u, v) is the depth-averaged velocity with u and v the scalar components
in the horizontal x, y directions and h is the local water depth (see Figure 3.1.1). U is
the vector for the conservative variables, F (U) and G(U) stand for the flux functions
respectively along the x and y directions and S(U) represents the bed slope source

111
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0

Figure 3.1.1. Surface elevation, water depth and topography

term with the bed slope ∇d = t(d,x, d,y).

When neglecting the bed-slope source term or when the topography is constituted of
a flat bottom, we obtain the classical homogeneous shallow water system, also known
as the Saint-Venant equations :

U,t + F (U),x +G(U),y = 0, (3.2)

with the same notations. In the next subsection, we introduce the general finite volume
formalism.

3.1.2. Finite volume framework and Riemann solver. The finite volume
method is a class of discretization method which is well-suited for the numerical simula-
tion of conservation laws and especially for hyperbolic conservation laws. This method
has been extensively applied in many domains of engineering, such as fluid mechanics
or heat and mass transfers. Even if we choose to use Cartesian meshes in our studies,
FVM may be applied on unstructured meshes, for arbitrary geometries. Finite volume
schemes are known to be robust in practice and well-suited for any problem involving a
modelization based on fluxes, since local conservativity of numerical fluxes is achieved.
The finite volume method is locally conservative because it is built on a local conserva-
tion relation on each discretization cell, obtained from the integral formulation of the
conservation law. Using the divergence formula, an integral formulation of the fluxes
through the boundaries of the control volume may be obtained. Then, an adapted
discretization of these fluxes need to be found. The reader is referred to [56] for a
detailed introduction of finite volume methods for both hyperbolic and elliptic systems.

A two-dimensional semi-discrete finite volume formulation of system (3.1) is given by :

d

dt
Uij(t) +

1

∆x
(F∗

i+ 1

2
,j
− F∗

i− 1

2
,j
) +

1

∆y
(G∗

i,j+ 1

2

−G∗
i,j− 1

2

) = Sij (3.3)
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where the cell-centered vector of conservative discrete variables is

Uij = t(hi,j , hi,jui,j, hi,jvi,j),

and F∗
i± 1

2
,j
, G∗

i,j± 1

2

stands respectively for the numerical flux functions through the

Γi± 1

2
, j and Γi, j± 1

2

interfaces (see Figure 3.1.2) and Sij represents a discretization of

the source term. To define the finite volume method, we must choose a discretization
method in order to compute the numerical fluxes F∗

i± 1

2
,j
, G∗

i,j± 1

2

and the source terms

Sij.

When the bed slope source term is neglected, the semi-discrete finite volume formula-
tion (3.3) is simplified to obtain the following conservative formulation :

d

dt
Uij(t) +

1

∆x
(F∗

i+ 1

2
,j
− F∗

i− 1

2
,j
) +

1

∆y
(G∗

i,j+ 1

2

−G∗
i,j− 1

2

) = 0. (3.4)

and in the one dimensional framework we have :

d

dt
Ui(t) +

1

∆x
(F∗

i+ 1

2

− F∗
i− 1

2

) = 0. (3.5)

In what follows, we will first focus on this homogeneous conservative formulation, in

the one dimensional framework and briefly recall the formalism of two fundamentals
Riemann solvers which lead to the computation of the numerical fluxes F∗

i± 1

2
,j

and

G∗
i,j± 1

2

. A third and more recent Riemann solver is also introduced, namely the VFRoe

solver, which relies on common ideas and gathers the advantages of the two previous
solvers.

3.1.3. The Godunov scheme. This scheme was first introduced by Godunov [67]
in 1959. It is based on the exact resolution of each local Riemann problem at each
interface between two discretization cells.
Precisely, we consider the hyperbolic homogeneous system (3.2) in the one dimensional
framework and we assume that Un

j ∀j ∈ Z is known. The Godunov scheme constructs

the approximation of the numerical solution at time tn+1 = tn +∆t in two steps. First

we compute the exact similarity solution U∗(
x

t
, UL, UR) of the following Riemann

problem at each interface of the mesh :










Ut + F (U)x = 0 ,

U(x, 0) =

{

UL = (hL, (hu)L) if x < 0
UR = (hR, (hu)R) if x > 0.

(3.6)

In the case of the interface i+ 1
2 between the cells Ci and Ci+1, we have L = i, R = i+1

and the solution of problem (3.6) become U∗(
x

t
, Un

i , U
n
i+1).

Then we define the numerical solution by L2-projection of the exact solution on the
space of constant cell functions :
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Figure 3.1.2. Discretization cell, interfaces (on the left) and numerical fluxes (on
the right).

Un+1
i =

1

∆x

∫ xi

x
i− 1

2

U∗(
x− xi− 1

2

∆t
, Un

i−1, U
n
i ) dx+

1

∆x

∫ x
i+1

2

xi

U∗(
x− xi+ 1

2

∆t
, Un

i , U
n
i+1) dx

(3.7)

Following the previous finite volume formalism, the conservative form of the scheme
may be obtained with th integration of the exact solution on every volume Mi ×
[tn, tn+1]. Since the function ξ → F (U∗(ξ, U, V ) is continuous in ξ = 0, it leads to :

Un+1
i = Un

i − ∆t

∆x
(F (U∗(0, Un

i , U
n
i+1)) − F (U∗(0, Un

i−1, U
n
i ))) (3.8)

The numerical flux F∗
i+ 1

2

at the interface i+ 1
2 is thus defined with :
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FGod
i+ 1

2

= F (U∗(0, Un
i , U

n
i+1)), (3.9)

The main drawback of the Godunov scheme is its computational cost due to the
calculation with iterations (Newton-Raphson iteration method) of the exact solutions
of each local Riemann problem. This computational cost may soon become a trouble
for complex applications on large computational domains with a fine resolution or in
a two dimensional framework.

3.1.4. The Roe scheme. This scheme was first proposed by Roe in [145]. It’s a
Godunov-like scheme also based on the resolution of local Riemann problems (3.6) at
each interface of the mesh but the Riemann problem is linearized around an averaged
state and the Roe scheme is based on the computation of exact solutions of such
linearized Riemann problem. The linearized Riemann problem is defined with the
introduction of a matrix Ã(UL,UR) as follows :















∂tU + Ã(UL,UR)∂xU = 0 ,

U(x, 0) =

{

UL = (hL, (hu)L) if x < 0
UR = (hR, (hu)R) if x > 0.

(3.10)

The matrix Ã(UL,UR) must satisfy the following Roe’s properties :

(1) Ã(UL,UR)) is diagonalizable with real eigenvalues,

(2) F (UR) − F (UL) = Ã(UL,UR)(UL −UR),

(3) Ã(U,U) = ∂UF (U).

These properties ensure the conservativity of the scheme and provide the shock cap-
turing ability of the method since they enable the scheme to recognize isolated discon-
tinuities. The associated numerical flux is defined as follows :

FRoe(UL,UR) =
1

2

(

F (UL) + F (UR) − |Ã(UL,UR)| · (UR −UL)
)

(3.11)

and the conservative form of the scheme is given by :

Un+1
i = Un

i − ∆t

∆x
(FRoe

i+ 1

2

(Un
i , U

n
i+1) − FRoe

i+ 1

2

(Un
i−1, U

n
i )) (3.12)

The Roe scheme may be seen as the generalization of the classical upwind scheme to
nonlinear hyperbolic system, since the linearization may be regarded as a field by field
decomposition.
The main drawback of this scheme is the fact that one must construct explicitly the
linearization matrix Ã(UL,UR) which satisfies the three previous Roe’s properties.
In practice, recovering the second property which ensures the consistency is the more
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laborious task. To this end, Roe proposed to use the vector parameter method [145]
to determine this linearization matrix. But in a general way, it is a painful job and in
the literature we find many authors who suggest the construction of an approximate
linearization matrix which achieves Roe’s condition with a certain order of accuracy.

Remark 3.1.1. An relevant weakness of this scheme is the occurrence of entropy
violation problems. More precisely, the scheme may converge toward non-physical
weak solutions when the Riemann problem has a sonic rarefaction wave which crosses
the considered interface. Several simple methods which enable to fix this problem have
been pointed out (see [108] for instance).

Remark 3.1.2. Another serious problem is the possible occurrence of negative density
values in the case of gas dynamics problems, or negative water depth values in the
case of hydrodynamic problems. A simple and usual numerical trick is to artificially
set to zero all negative values which may arise during the computation (a “clipping
treatment”). This usually prevents the occurrence of numerical instabilities but the
loss of accuracy can be pronounced.

3.1.5. The VFRoe scheme. As exposed before, the determination of a Roe’s ma-
trix which satisfies Roe’s conditions may sometime be a challenging problem. Nonethe-
less, the idea of introducing linearized Riemann problems is a real improvement. To
preserve the benefits inherited from Roe’s idea a new solver has been introduced in
[125], [31], [59]. This scheme, called VFRoe scheme, is inspired by Godunov and
Roe schemes and does not require any analytical computations or construction of lin-
earized matrix fulfilling Roe’s condition. Following Roe’s idea, this scheme relies on
the solution of linearized Riemann problems and as in Godunov scheme, the numerical
flux is defined as the physical flux function computed at the interface solution of the
approximate Riemann problem :

FV FRoe(UL,UR) = F (UV FRoe(0,UL,UR) (3.13)

where UV FRoe(0,UL,UR) is the solution of the linearized Riemann problem (3.10)
with

Ã(UL,UR) = ∂UF (Ũ) with Ũ = Ũ(UL,UR). (3.14)

This leads to a conservative scheme for any linearization matrix Ã(UL,UR). It is
worth mentioning that this matrix does not necessary verify the second Roe’s relation.
Actually, the flux is obviously consistent for any value of Ũ, as for the Godunov
scheme, since we have :

UV FRoe(0,U,U) = U => F V FRoe(U,U) = F (U).

We compute the eigenvalues and the left and right eigenvectors of Ã(UL,UR), since
the Jacobian of the physical flux function F (U) is diagonalizable. Let us denote

by (λ̃k)k=1...p the eigenvalues of this averaged linearized matrix and by ( l̃k)k=1...p and
(r̃k)k=1...p the associated left and right eigenvectors. The exact solution of the Riemann
problem (3.37) is defined as follows :
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UV FRoe(
x

t
, UL, UR) = UL +

∑

x
t
>λ̃k

(t̃lk · [U]RL ) r̃k,

= UR −
∑

x
t
<λ̃k

(t l̃k · [U]RL ) r̃k ,
(3.15)

where [U]RL = UR − UL. The numerical flux is then defined as previously exposed,
using the physical flux function :

FV FRoe(UL,UR) = F (UV FRoe(0,UL,UR). (3.16)

Thus, considering the Riemann problem at the interface i+ 1
2 we obtain

FV FRoe
i+ 1

2

(Ui,Ui+1) = F (UV FRoe(0,Ui,Ui+1)

and it yields the following conservative scheme :

Un+1
i = Un

i − ∆t

∆x
(F (UV FRoe(0, U

n
i , U

n
i+1)) − F (UV FRoe(0, U

n
i−1, U

n
i ))) (3.17)

The stability of the VFRoe scheme in the scalar case is studied in [125].

Remark 3.1.3. As for the Roe scheme, this scheme may suffer in particular case of
entropy violation problems. Sonic entropy corrections can be introduced (see Masella et
al. [125]) to cope with this limitation. This entropy fix is detailed in the next section,
with the study of the well-balanced VFRoe-ncv scheme.

Remark 3.1.4. Occurrence of negative water depth values can be observed, as for the
Roe scheme. In this special case, the numerical flux cannot be computed. We will see
in the next chapter a method based on a symmetrizing change of variables introduced
in [57] for the shallow water system which leads to the “preservation” of water depth
positivity, without any numerical tricks.

3.2. Well-balanced methods

3.2.1. Main ideas. We give here a brief description of the main ideas concerning
the well-balanced numerical treatment of the bed slope source term. Then, we present
with more details, in the one-dimensional case, two well-balanced methods proposed
in the literature, namely the Exact Well-Balanced Riemann solver of Greenberg and
Leroux [72], [73] and the well-balanced VFRoe-ncv solver introduced by Gallouët et
al. in [57].
Keeping in mind the semi-discrete finite volume formulation 3.3, we develop how it
is possible to obtain a numerical approximation of the whole system with bed slope
source term which provides the preservation of discrete steady states. Moreover our
scheme must be able to compute accurately convergence towards steady states. A
relevant instance is the run-up and reflection of a solitary wave on a sloping beach,
which is studied in the third part of this study. After the complete reflection, the mean
water level settles back to its initial value and the model must be able to accurately
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compute this convergence.
in the more general case, and in the one dimensional framework, the steady states
which must be preserved are exactly the functions h(x) and u(x) satisfying :







hu = Cst,
u2

2
+ g(h + d) = Cst.

(3.18)

Among these steady states, the steady states at rest play an important part in the
study of nearshore flows over sloping beach, since small variations around such states
often occur. Preserving such states would already be an important improvement when
compared to FSM. Those states are defined by :

{

u = 0,
h+ d = Cst.

(3.19)

The reason for the generation of errors caused by the use of FSM in the computation
of such steady states is well-established today. It is due to the imbalance between flux
gradients and the bed slope source term and FSM may introduce discretization errors
which are greater than the signal itself. The competition between the convection term
and the bed-slope source term can be highlighted when we consider that steady states
are a particular kind of solutions of system (3.1) which are independent of time. In
the one-dimensional case, system (3.1) reduces to the following balance equation :

F (U),x = S(U). (3.20)

The solutions of system (3.20) are important since they are often obtained as limits
when time tends to infinity of the solutions of system (3.1). Thus, the ability of a
numerical scheme to accurately compute the convergence towards a steady state is
directly linked to the way this balance property is preserved at the discrete level.
Therefore, we focus on the necessity to treat the flux gradient and the source term as
a whole to achieve the exact preservation with respect to time of discrete steady states,
the ability to compute small evolutions around such steady states and the convergence
towards them.
To numerically preserve this balance, several alternative methods have been introduced
in the literature. One popular approach, first suggested by Roe [146] is to upwind
the source term in the same way as the fluxes, as in the extension of the Q-schemes
introduced by Bermudez and Vasquez-Cendon in [11], [178] and generalized for two-
dimensional problems in [10]. But this method has only been introduced for Roe’s
scheme or Van Leer Q-scheme and is not easy to generalize to other Riemann solver.
Other ways are the early quasi-steady wave propagation algorithm of Leveque [107]
or the surface gradient method of Zhou et al. introduced in [190] or the method
proposed by Jin [88] but these methods are highly “problem-dependent” and quite
heavy in practice. Approaches based on central schemes are proposed by Kurganov
and Levy [100] and Russo [147]. An efficient and elegant approach is to directly solve
Riemann problems with piecewise constant topography, adding a third equation for
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the variable describing the topography. This approach, introduced by Greenberg and
Leroux in [72] and extended later by Gosse [68] with the well-balanced flux vector
splitting scheme and Gallouët et al.[57] for linearized Riemann problems is the more
general well-balanced method, since it is able to preserve the largest class of steady
states. This method is briefly detailed in the next subsection.

Remark 3.2.1. Note that in the two-dimensional framework, the definition of the
subcritical steady states is more complicated. However, our numerical approach will
rely on one-dimensional Riemann solver, even in the two-dimensional framework.

3.2.2. The Exact Well-Balanced Riemann solver. We want to emphasized
here the early idea of Greenberg and Leroux [72] with their Exact Well-Balanced
Riemann solver and briefly detail the formalism of the method in the one-dimensional
case. Greenberg and Leroux proposed to approximate the topography with a piecewise
constant function. Then, considering the topography as a variable, they added an
equation describing the evolution of d in order to obtain a Riemann problem with a
piecewise constant topography. We obtain the following augmented Riemann problem :







Ut + F (U)x = Sx(U) ,

U(x, 0) =

{

(dL, hL, (hu)L) if x < 0
(dR, hR, (hu)R) if x > 0

(3.21)

where

U =





d
h
hu



 , F (U) =







0
hu

hu2 +
g

2
h2






, Sx(U) =





0
0

−g h d,x



 .

Note that this Riemann problem is not the one-dimensional Riemann problem associ-
ated with system (3.1) since we have replaced the smooth topography by a piecewise
constant topography. The source term −ghd,x is reduced to a sum of Dirac masses
occurring on each interface. This problem has three eigenvalues : u− c, 0, u+ c where
c =

√
gh. The fields induced by the u − c and u + c waves are Genuinely NonLinear

fields whereas the field induced by the 0 eigenvalue is linearly degenerated.
The computation of the solution relies on the generalization of the results obtain for
the one dimensional Riemann problem on a flat bottom.

Analysis of the homogeneous Riemann problem. This subsection is devoted to the re-
calling of fundamental relations concerning the classical Riemann problem on a flat
bottom and the characterization of the shock waves and rarefaction waves that may
arise, using the Rankine-Hugoniot relation and the conservation of Riemann invariant.

We first analyze the occurrence of rarefaction wave, following the introduction
proposed in [106]. Assuming that the solution is regular in the case of the occurrence
of a rarefaction wave, h and u can locally be considered as monotonic function with
respect to x. We can therefore eliminate the x coordinate between these two functions
and obtain a relationship of the form u = u(h). Of source this approximation is only
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locally relevant but it is enough for our purpose. From this, the one dimensional NSW
equations without bed slope source term can be expressed in the following matricial
form :

(

1 hu′ + u
hu′ + u u2 + 2huu′ + gh

)

·
(

h,t

u,t

)

=

(

0
0

)

(3.22)

We obtain a linear system and as non-uniform and unsteady solutions may naturally
arise, the matrix can not be singular. It leads to the following relation :

hu
′2 − g = 0. (3.23)

The solutions of this ordinary differential equation are :

u± 2
√

gh = Cst (3.24)

We have obtain two quantities β− = u− 2c and β+ = u+ 2c which remains constant
along the rarefaction wave. These two quantities are exactly the Riemann invariants
and we verify that we have :







β−,t + (u− c)β−
,x = 0,

β+
,t + (u+ c)β+

,x = 0.
(3.25)

Thus, the classical result concerning the conservation of the Riemann invariants across
a rarefaction wave has been recovered.

For the characterization of shock wave, we use the Rankine-Hugoniot relation which
is expressed by the following jump relations across the discontinuity x = x(t) :

∆(hu) = ẋ∆(h) and ∆(hu2 + g
h2

2
) = ẋ∆(hu) (3.26)

where ẋ is the derivative of x with respect to time and thus represents the speed of
the discontinuity and ∆Φ = Φ+ − Φ− for an arbitrary variable Φ with Φ+ and Φ−

the respective states at each side of the discontinuity. Algebraı̈c manipulations of
these two jump relations in order to eliminate ∆(hu) yield the following jump relation
between ∆u and ∆h :

∆u = ±
√

g(h+ + h−)

2h+h−
∆h (3.27)

From this, the entropy condition enables us to predict the apparition of a shock wave
or a rarefaction wave. A rapid investigation of the convexity or the concavity of the
associated flux function yields to the characterization of the two genuinely nonlinear
waves.
Hence, to connect a state U = (h, u) to a state Ul = (hl, ul) through the u− c wave,
we have the following relations :

u =















ul − 2(
√
gh −

√
ghl) if h < hl,

ul − (h− hl)

√

g
h+ hl

2hhl

if h > hl.
(3.28)
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A rarefaction wave occurs when h < hl and a shock wave occurs when h > hl. Similarly,
to connect a state U = (h, u) to a state Ur = (hr, ur) through the u+ c wave we have
the following relation :

u =















ur + 2(
√
gh −

√
ghr) if h < hr,

ur + (h− hr)

√

g
h+ hr

2hhr
if h > hr.

(3.29)

A rarefaction wave occurs when h < hr and a shock wave occurs when h > hr. To
resume, for the u − c wave, decreasing values of h with respect to the x coordinate
lead to a rarefaction wave, whereas increasing values of h generate a shock wave. For
the u+ c wave decreasing values of h lead to a shock wave whereas increasing values
generate a rarefaction wave.

The Riemann problem with a piecewise constant topography. We are interested here in
the computation of the exact solution of the Riemann problem (3.21) with a bottom
step. The idea introduced by Greenberg and Leroux is to solve first the regularized
Riemann problem obtained when substituting the step by a ramp. The solution for
the ramp is obtained by considering all the interactions between shock waves and
rarefactions arising from the left and the right side of the considered interface. Then,
considering the limit in which the ramp angle increases to 90◦, the solution for the
step is obtained.
Thus, we consider the case of the following bottom profile :

dε =































dg for x ≤ 0,

dg −
x

ε
(dg − dd) for 0 ≤ x < ε,

dd for x ≥ ε.

(3.30)

where the states (dg, hg, ug) and (dd, hd, ud) are known and ε is a positive parameter.
The solution is constructed for each value of ε and afterwards, we study the limit of
vanishing ε. This topography is shown on Figure 3.2.1.

We can observe that two Genuinely NonLinear fields also compose the solution of this
new Riemann problem, which are the same as in the homogeneous case. Consequently,
relation (3.28) and (3.29) are still meaningful and can be used to link the states UL

and U− through the u − c wave and the states UR and U+ through the u + c wave.
Hence, to connect a state Ul to a state U through the u−c wave, we have the following
relations :
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Figure 3.2.1. Regularized bed slope for the construction of the Riemann problem
solution in the Exact Well-Balanced Riemann solver.































d = dl,

u =















ul − 2(
√
gh−

√
ghl) if h < hl,

ul − (h− hl)

√

g
h+ hl

2hhl

if h > hl.

(3.31)

and to connect a state U to a state Ur through the u+ c wave we have the following
relation :































d = dr,

u =















ur + 2(
√
gh−

√
ghr) if h < hr,

ur + (h− hr)

√

g
h+ hr

2hhr
if h > hr.

(3.32)

Therefore, it only remains to derive relations between the two states U− and U+

which are separated by the ramp.
Assuming that the solution is regular, we consider equations (3.22), adding the bed
slope source term :

(

1 hu′ + u
hu′ + u u2 + 2huu′ + gh

)

·
(

h,t

u,t

)

=

(

0
−gh(dr − dl)/ε

)

(3.33)

Details are not provided here but it can be shown that the associated solution wave
is necessary a stationary wave. Thus, when the ramp becomes vertical, it generates
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a stationary contact discontinuity. A few additional relations are derived through the

stationary wave. First, introducing the quantity ψ =
u2

2
+ g(h + d) which is defined

at each side of the ramp, it can be proved that through the stationary wave we have
conservation of the discharge and of the previously introduced quantity ψ. Thus, two
states U− and U+ verify through the stationary wave :







(hu)− = (hu)+

ψ− = ψ+
(3.34)

Finally, it appears that except when a stationary shock wave occurs, the two states at
each side of the ramp must be either both subcritical or both supercritical. Therefore,
this last relation enables the determination of only one possible solution satisfying all
the above requirements. This solution is still reliable when the ramp increases towards
a step.

Remark 3.2.2. It is worth mentioning that the quantity ψ has already been introduced
in the characterization of the steady states (3.18). In [57], Gallouët et al. proposed,
in the framework of their VFRoe-ncv class of methods, a change of variable involving
ψ which leads to the preservation of the largest class of steady states.

Gathering these results, the construction of the solver is performed using dichotomy
and Newton iterative methods in a complex algorithm which must also take into ac-
counts all the specific situations that may arise, like for instance the occurrence of
stationary shock or sonic rarefaction, the resonance phenomenon when a genuinely
nonlinear field is superposed with the stationary contact discontinuity or even the oc-
currence of dry area which implies the resolution of the Riemann problem (3.21) with
a dry state. This complete algorithm is not exposed here but can be found for instance
in [151] and [43].

To update the values of Un, instead of computing the interface value needed to eval-
uate the numerical fluxes across the interface, we may compute the values at each
side of the stationary contact discontinuities, denoted by Ui+ 1

2

(0−, Ui, Ui+1)) and

Ui− 1

2

(0+, Ui−1, Ui)) where Ui+ 1

2

(
x

t
, Ui, Ui+1) is the exact solution of the Riemann

problem (3.21) provided by the Exact Well-Balanced Riemann solver. The semi-
discrete formulation becomes in this context :

d

dt
Ui(t) +

1

∆x
(F (Ui+ 1

2

(0−, Ui, Ui+1)) − F (Ui− 1

2

(0+, Ui−1, Ui))) = 0 (3.35)

Note that the source term only contributes to the computation of the exact solu-
tion Ui+ 1

2

(x
t
, Ui, Ui+1) and does not appear explicitly in the expression of the semi-

discrete scheme (3.35).
The solver based on this method is extremely robust and accurate. It enables the
preservation of all steady states. Numerical benchmarks involving hydraulic jumps
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with a supercritical/subcritical smooth transition over a parabolic obstacle and gen-
eration or even flooding of dry zones over varying bottom [43] have proved the ability
of the solver to deal with dry zones. This solver has been implemented in industrial
and hydraulic models.

3.2.3. The well-balanced VFRoe-ncv scheme. The resolution of exact Rie-
mann problems at each interface of the mesh can rapidly become a drawback. Fur-
thermore, the Exact Well-Balanced Riemann solver is far more expensive than a usual
Godunov method since the computation of the exact solution of the Riemann problem
(3.21) is not straigthforward and various cases must be analyzed. Actually, when the
grid becomes finer, especially for two-dimensional problems, the computational cost
becomes a dilemma. To improve this limitation, Gallouët et al. proposed in [57] a
class of VFRoe scheme also relying on the Riemann problem with a piecewise con-
stant topography (3.21). As in the homogeneous case, they compute exact solutions

U∗
i+ 1

2

(
x

t
, Ui, Ui+1) of a linearized Riemann problem, instead of directly solving prob-

lem (3.21).
Their second idea is to use symmetrizing non-conservative variables. This change of
variable entails the preservation of the water depth positivity in the flat case [58]
without any clipping treatment (no a posteriori numerical treatment needs to be im-
plemented to deal with negative water depth, as in the Roe’s original method for ex-
ample). The VFRoe solver with non-conservative variable is called VFRoe-ncv solver.
To emphasize the whole treatment of flux gradient and source term, we will refer to
this solver in the sequel as the “well-balanced VFRoe-ncv solver”. An homogeneous
VFRoe-ncv solver will also be introduced in the next chapter.

Formalism. Following [57], we introduce briefly the formalism of the VFroe-ncv solver
for the one-dimensional NSW system which can be divided into three steps :

• First, we write the initial system under a non-conservative form, with the
change of variable W(U) = (d, 2c, u) where c =

√
gh. The inverse change of

variable is denoted U(W). It raises the following new Riemann problem :















W,t + Cx(W)W,x = 0 ,

W(x, 0) =

{

WL = W(UL) if x < 0,
WR = W(UR) if x > 0,

(3.36)

where Cx(W) is called the convection matrix.

• Then, the Riemann problem (3.36) is linearized, averaging the convection
matrix. It reads :
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













W,t + Cx(W̃)W,x = 0 ,

W(x, 0) =

{

WL = W(UL) if x < 0,
WR = W(UR) if x > 0,

(3.37)

where the averaged convection matrix is defined with W̃ =
WL + WR

2
.

• Third, we introduce eigenvalues (λ̃k)k=1...p of the averaged convection ma-

trix Cx(W̃) and associated left and right eigenvectors, respectively noted

(̃lk)k=1...p and (r̃k)k=1...p. The exact solution of the Riemann problem (3.37)
is defined as follows :

W∗((
x

t
)−, WL, WR) = WL +

∑

x
t
>λ̃k

(t l̃k · [W]RL ) r̃k,

W∗((
x

t
)+, WL, WR) = WR −

∑

x
t
<λ̃k

(t l̃k · [W]RL ) r̃k ,
(3.38)

where [W]RL = WR − WL. The exact solution W∗
i+ 1

2

(
x

t
, Wi, Wi+1) of the

linearized Riemann problem (3.37) with L = i and R = i+1 can be computed
using (3.38) and we can thus recover the solution in terms of conservative
variable, using the inverse change of variable :

U∗
i+ 1

2

(
x

t
, Ui,Ui+1) = U(W∗

i+ 1

2

(
x

t
, Wi,Wi+1)). (3.39)

Finally, the numerical fluxes are computed using F∗
i+ 1

2

= F (U∗
i+ 1

2

). The two values

W∗((x
t
)−, WL, WR) and W∗((x

t
)+, WL, WR) are equal when x/t 6= λ̃k. The cases

x/t = 0 which is needed for the computation of the numerical flux corresponds to
a discontinuity and as for the exact Riemann solver, we have to compute the values
of the solution at each side of the interface, since the solution provides a stationary
contact discontinuity located at the interface. These values are then injected into the
finite volume formulation (3.35).
Note that this scheme differs from Roe’s flux-difference splitting method since Roe’s
scheme do not take F∗

i+ 1

2

= F (U∗
i+ 1

2

) but relies on a direct approximation of the flux

function F∗
i+ 1

2

, using the averaged values of Roe and the projection on eigenvectors of

the averaged Jacobian matrix.
This scheme is easier to implement than the Exact Well-Balanced Riemann solver
and provides accuracy for a large number of tests. It has been validated, in its one-
dimensional and “second order” accuracy in space and time version, against bench-
marks involving a dam-break over dry bed [32], the exact preservation of a flow at
rest over a parabolic obstacle, subcritical and transcritical flows over a bump or even
the occurrence of dry zone by a double rarefaction wave over a step [57]. This scheme
has high bore-capturing abilities [125], is less diffusive than the FSM for problems
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involving varying topography [57], and is able to preserve a large class of steady state,
depending on the chosen change of variable. Furthermore, the computational cost is
far less expensive than for the exact solver (between 10 and 100 times lower).

Application to the shallow water system with bed slope source term. Let us introduce
the application of this formalism to the special case of the two dimensional NSW
equations with bed slope source term, for a practical implementation. We perform
the following change of variable (h, hu, hv) → (2c, u, v). As emphasized in [58], this
change of variable leads to a symmetrical convection matrix and enables to handle
properly the occurrence of dry areas in the flat bttom case. As shown in [57], the well-
balanced VFRoe-ncv scheme also benefits from this good behavior in several cases.
Following the previous idea of Greenberg and Leroux, the topography is described by
a piecewise constant function and we add the partial differential equation concerning
d, leading to the Riemann problem with piecewise constant topography (3.21). We
obtain :























∂td = 0 ,
∂th+ div (hu) = 0 ,

∂t(hu) + div (hu ⊗ u) + g h∇h+ g h∇d = 0 ,

(d, h, hu)(x, 0) =

{

(d
L
, hL, (hu)L) if x < 0

(d
R
, hR, (hu)R) if x > 0

(3.40)

The change of variables W(U) = t(d, 2c, u, v) leads to :























∂td = 0 ,
∂t(2c) + u · ∇(2c) + cdiv (u) = 0 ,

∂tu + c∇(2c) + (u · ∇)u + g∇d = 0 ,

(d, 2c,u)(x, 0) =

{

(dL, (2c)L,uL) if x < 0
(dR, (2c)R,uR) if x > 0

(3.41)

The convection matrix Bx(W) and By(W) respectively associated with the x and y
directions are given by :

Bx(W) =









0 0 0 0
0 u c 0
g c u 0
0 0 0 u









et By(W) =









0 0 0 0
0 v 0 c
0 0 v 0
g c 0 v









(3.42)

The eigenvalues respectively associated with B1(W) and B2(W) are :

λx
1 = 0 , λx

2 = u− c , λx
3 = u , λx

4 = u+ c

and

λy
1 = 0 , λy

2 = v − c , λy
3 = v , λy

4 = v + c
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Note the occurrence of a zero eigenvalue, which is linked to a stationary contact dis-

continuity located at the interface
x

t
= 0, as in the previous solver where the exact

solution is computed. This eigenvalue is linked to the presence of the topography
discontinuity and introduces a jump of the numerical flux across it.

Let us introduce ΩR
x and ΩR

y , which stand for the right eigenvectors matrix respectively
in the x and y directions :

ΩR
x (W) =









u2 − c2 0 0 0
gc 1 0 1
−gu −1 0 1

0 0 1 0









and ΩR
y (W) =









v2 − c2 0 0 0
cg 1 0 1
0 0 1 0

−gv −1 0 1









The left eigenvectors matrix ΩL
x and ΩL

y are thus given by :

ΩL
x (W) =

1

2













2

u2 − c2
g

(c− u)
0

g

(c+ u)
0 1 0 1
0 −1 0 1
0 0 2 0













and

ΩL
y (W) =

1

2













2

v2 − c2
g

(c− v)
0

g

(c+ v)
0 1 0 1
0 0 2 0
0 −1 0 1













Using these eigen-elements and using relations (3.38) we can develop the expressions
which link the various possible states through the three possible types of wave associ-
ated with the three eigenvalues. We begin with the numerical fluxes in the horizontal
x direction. The solution of the linearized Riemann problem, composed of the two
states W∗(0+,WL,WR) and W∗(0−,WL,WR) at each side of the stationary contact
discontinuity verify :

W(0+,WL,WR) = W(0−,WL,WR) +
( [d]RL

2(ũ2 − c̃2)

)















ũ2 − c̃2

c̃g

−gũ
0















(3.43)
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A state W is linked to a state Wa through the u− c wave by the relation :

W = Wa +
( g

2(c̃ − ũ)
[d]RL + [c]RL − [u]RL
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)
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(3.44)

Two states W and Wb verify through the u+ c wave :

W = Wb +
( g

2(c̃ + ũ)
[d]RL + [c]RL +

[u]RL
2

)
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(3.45)

and we have the relation which links two states W and Wc through the contact
discontinuity associated with the u wave :

W = Wc + [v]RL


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
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0
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
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



(3.46)

Similar relationships are deduced for the horizontal fluxes in the y direction, at the

interface defined with
y

t
= 0. It yields :

W(0+,WL,WR) = W(0−,WL,WR) +
( [d]RL

2(ṽ2 − c̃2)

)


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









ṽ2 − c̃2

c̃g

0

−gṽ















(3.47)

through the stationary wave,
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Figure 3.2.2. Four possible wave patterns in the solution of the linearized Riemann problem.
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through the v − c wave,

W = Wb +
( g

2(c̃+ ṽ)
[d]RL + [c]RL +

[v]RL
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through the v + c wave and

W = Wc + [u]RL
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(3.50)

through the contact discontinuity associated to the v wave.



130 3. Numerical resolution of the hyperbolic system with bed-slope term

u−c u+c

U U U
L R

U(0 −) U(0 +) ❖

x

t

0

u
Contact discontinuity

Figure 3.2.3. Solution of the linearized Riemann problem in the (x, t) plan, in the
case of a subcritical flow. The stationary contact discontinuity is plotted with a
dashed line. The waves associated to the eigenvalues u − c, u, u + c are plotted in
large solid line.

Using these expressions, we are able to compute the solution of the linearized Riemann
problem, for all the possible patterns shown in Figure 3.2.2. For instance, for the case
of a subcritical flow in the x direction, as illustrated on Figure 3.2.3, we aim at finding
the values of U(0−) and U(0+) in order to compute the associated numerical fluxes,
knowing the values of UL and UR. Therefore, the state UL is linked to U(0−) by
relation (3.44) whereas U∗ is calculated from the state UR using (3.45). It remains to
compute the state U(0+) which is linked to U∗ through the contact discontinuity by
relation (3.46).

Remark 3.2.3. It is worth mentioning that if some suitable properties concerning
the preservation of the water depth positivity are exposed in [58] for the VFRoe-ncv
homogeneous solver with the change of variable W(U) = (2c, u, v) (see the next chapter
for details), this is no more the case for the well-balanced VFRoe-ncv scheme, when
the topography is varying. However, in practice, the change of variable W(U) =
(d, 2c, u, v) for the well-balanced scheme seems to inherit these properties in several
cases and can lead to an efficient treatment for the occurrence of dry areas over varying
topography, as shown in the “Vacuum occurence by a double rarecfaction wave over a
step” test shown in [57]. We will see in the following numerical assessments that it is
not always the case.

Remark 3.2.4. The change of variable W(U) = (d, 2c, u, v) leads to a scheme which
is able to maintain steady states at rest (3.19). Another change of variable W(U) =

(d, hu, ψ), where ψ =
u2

2
+g(h+d), proposed in [57] in the one dimensional framework

enables the preservation of all subcritical steady states (3.18) but this change of variable
is not inversible.
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Remark 3.2.5. Analyzing relation (3.43), it appears that the discharge computed
through the stationary contact discontinuities is discontinuous. Hence, the scheme is
no more conservative and following [57], a new finite volume approximation is in-
troduced for the computation of the flow in the water depth’s conservation equation,
which enables to recover the conservativity. For the sake of simplicity, this new ap-
proximation is introduced in the one-dimensional case, the generalization to the two
dimensional case being straightforward :

hn+1
i = hn

i − ∆t

∆x

(

(

(hu)+
i+ 1

2

+ (hu)−
i+ 1

2

)

2
−

(

(hu)+
i− 1

2

+ (hu)−
i− 1

2

)

2

)

(3.51)

Remark 3.2.6. As for the VFRoe scheme, the VFRoe-ncv solver can produce non-
physical weak solutions in the special case of the occurrence of a sonic rarefaction
wave which crosses the interface. Therefore a sonic entropy correction must be added
in order to converge towards the relevant physical solution, that is the solution which
verifies the entropy condition. These special cases occur when either

uL − cL < 0 and uR − cR > 0 (3.52)

for a u− c sonic rarefaction or when

uL + cL < 0 and uR + cR > 0 (3.53)

for a u + c sonic rarefaction. In order to fix this problem, we have introduced an
intermediate state Wm which ensures that the scheme is still consistency, following
the correction proposed in [125] and adapting this idea to the VFRoe-ncv scheme with
topography. Then, the states at each side of the discontinuities are set equal to Wm

if one of the condition (3.52) and (3.53) is verified. In practice this entropy fix gives
good results.

Remark 3.2.7. When the topography is not flat, we can observe from expression
(3.43) that in the case of vanishing u− c or u+ c eigenvalues, the numerical flux can
take infinite values. In practice this situation is not usual but when these eigenvalues
take very small values, this appears as an obvious limitation of the method. In the
next section, for the numerical assessments for moving shoreline problems, we exhibit
a test for which this limitation can generate large instabilities.

3.3. Numerical considerations

3.3.1. Boundary conditions. For the first validations of these first order accu-
racy schemes we have implemented three different boundary conditions, which are first
order accurate. Classically, fictitious cells are introduced around the computational
domain in order to define values at the boundaries (see Figure 3.3.1). The interface
fluxes through the external boundaries of the computational domain are thus com-
puted using the states imposed in the fictitious cells, defining a well-posed boundary
Riemann problems.

It leads to the following boundary conditions :
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Figure 3.3.1. Sketch of the computational domain with the surrounding fictitious cells

Non-slip reflective solid boundary condition. The non-slip boundary condition aims
at modeling the presence of a solid wall. The fixed non-slip and reflective boundary
condition is given by :

hN+1 = hN , u′N+1 = −u′N , v′N+1 = −v′N (3.54)

where N denotes the last cell inside the computational domain, N + 1 the fictitious
cell outside of the computational domain and u′ and v′ are the component of velocity
u respectively normal and tangential to the boundary.

Transmissive boundary condition. This boundary condition corresponds to the Neu-
mann boundary condition in the framework of finite difference methods. The fictitious
cells are overwritten with the solution values in the cells of the computational domain
along the boundary. It provides a simple absorbing boundary condition, efficient
for outflows configurations. Therefore, transmissive boundary conditions also called
“transparent boundaries” are specified with :

hN+1 = hN , u′N+1 = u′N , v′N+1 = v′N (3.55)

with the same notations.

Inlet generating boundary condition. For the study of some hydraulic phenomena we
need for instance to force the value of the water depth at a specific boundary, where
incoming flows are observed. In other problems, we need to specify the discharge at
the outflow boundary. More generally, the kind of boundary conditions that must be
applied at the inflow and outflow boundaries when we want to obtain a well-posed
problem are well-known and mainly depend on the nature of the flows, subcritical or
supercritical. For supercritical flows, we must specify both wave profile and currents
at the inflow boundary whereas no information is needed at the outflow boundary. For
subcritical flows, only one information is required at inflow and outflow boundaries.
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The second information may be computed using characteristic theory and the con-
servation of the Riemann invariants. In the special case of transcritical flows, which
appears in some hydraulic problems, the boundary condition may be adaptive and
must produce the corresponding number of information. This kind of boundary con-
ditions can be derived from relations (3.28) and (3.29), considering the special case of
Riemann problems with a dry state and depending on the occurrence of a rarefaction
or a shock wave. The effective implementation requires the use of Newton-Raphson
procedures in order to solve analytically these Riemann problems with a dry state.
The eventually time-dependent nature of the flow (subcritical or supercritical) can
be tested with the evaluation of the Froude number at the considered boundary and
this leads to an adaptive boundary condition which is able to cope with the various
configurations. Since our goal is not to reproduce here the whole set of hydraulic
benchmarks which has been extensively used in order to validate the previously intro-
duced well-balanced methods (see [43], [57]), we won’t focus here on the description of
such specific boundary conditions, even if in practice we have effectively implemented
them in order to allow a complete assessment of our numerical implementations. We
refer the reader to [103] or [151] for a more detailed description of these boundary
conditions.
We only focus here on the description of a simple generating boundary condition for
subcritical flows, which allows us to force the value of the water surface profile at the
inflow boundary and generates the motion. The corresponding value of the velocity at
the inflow boundary is computed using the characteristic theory and the conservation
of the Riemann invariants. This choice is mainly motivated by the fact that such a
condition is needed in most of the cases that will be studied in the third part of this
study. In this third part, nearshore hydrodynamic will be investigated and for this
purpose, we need to generate water waves at the seaward boundary, the other bound-
aries being often transparent or periodic.

Assuming that the flow is subcritical at the boundary and that values of the
solution are known at time tn, we impose the value of water depth hn+1 at time tn+1

at the fictitious boundary cell, where hn+1 = h0 + ηn+1
i with h0 the still water depth

and ηi the amplitude of the forced incident wave. Our goal is then to compute the
corresponding value of the velocity u′n+1, where u′ is the component of velocity normal
to the boundary. The outgoing Riemann invariant β− = u′ − 2c is constant along the

line C− defined with
dx

dt
= u′ − c and c =

√
gh. Therefore, the unknown velocity

u′ can be calculated (see Figure 3.3.2). The initial location of point R, which stands
for the location of the outgoing characteristic at time tn, is not known a priori. This
location is obtained by integrating the following characteristic trajectory :

d β−

dt
= S along

d x

dt
= u− c. (3.56)

where S accounts for the bed-slope. It leads the following equation for dR :

dR = (u
′n − cn)∆t+ S∆t (3.57)
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Figure 3.3.2. Sketch of the derivation of the inlet generating boundary condition

where u
′n and cn are interpolated between the fictitious boundary cell and the first

interior cell of the last time step. This yields an implicit equation which can be solved
easily with Newton-Raphson method. Once the location of point R is found, the
velocity u

′n+1 can be obtained by :

u
′n+1 = β− + 2cn+1 + S∆t (3.58)

where cn+1 =
√

ghn+1.

Remark 3.3.1. This approach can be also applied when the discharge is imposed at the
inflow boundary. In such situation, the water surface profile at the boundary becomes
the unknown. The extension to outflow boundaries, using the Riemann invariant β+

is straightforward.

Remark 3.3.2. In this approach we have neglected the possible reflected waves which
may be generated if the bed-slope is steep or if the non-slip reflective solid bound-
ary condition is applied at the outflow boundary. Therefore, this boundary condition
should be applied when a physical set of data, which takes into accounts both incident
and reflected waves, is used to force the motion or when we can reasonably assume
that no consequent reflected waves are generated. An extension which enables to deal
with reflected waves, allowing them to exit the computational domain with very small
reflection is introduced in the next chapter.

3.3.2. Numerical treatment for the shoreline. We emphasize here that no
special clipping treatment is used (i.e. we don’t artificially set to zero non-physical
negative values of the water depth). In addition, no special tracking method is used
to compute the position of the shoreline and only the direct computation of flow
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properties is used.
As specified in the second section for the Exact Well-Balanced Riemann Solver, we
introduce a distinction between wet and dry cells. In dry cells, the water depth h is
less than a specified threshold value hmin, which can be a very small number. For such
cells, the water depth is forced to be hmin, since hmin may be seen as the numerical
definition of the zero water depth, and the velocity is set to zero. Then, we compute
the shoreline by solving Riemann problems at the interfaces between wet and dry
cells, which generates no further difficulties. During the computation of the new flows
properties at the next time step by resolving Riemann problems on flat bottoms, no
distinctions are made between wet and dry cells since the VFRoe-ncv solver is robust
enough to deal with the three possible configurations (wet/wet, wet/dry and dry/dry).
In practice, we have defined hmin = 10−20m. This value has been used for all the test
cases presented in the next section. We emphasize that the two schemes, namely the
Exact Well-Balanced and the well-balanced VFRoe-ncv solvers, are sensitive to the
definition of this value: a change of the value hmin can slightly modify the results in
some special situations.

3.3.3. Numerical stability. Explicit schemes are far more easy to implement than
implicit schemes, which require the resolution of large systems of equations at each
time step. But the counterpart is that they need a careful selection of the time step to
fulfill stability requirements. Thus, the time step needs to be restricted in such a way
that no interaction is possible between waves from different cells during each time step.
This restriction can result in expensive computations. Courant, Friedrichs and Lewy
[49] defined a stability criterion for fully explicit schemes given by CFL < 1 where
CFL is known as the Courant number. Different authors propose different definitions
for this number, leading to different time step restrictions. We choose here to define
the time step as follows :

∆t ≤ CFL
min (∆x, ∆y)

max i,j(|ui,j| + ci,j)
(3.59)

where c =
√
gh. The maximum is evaluated over all the possible values of (i, j) in

the computational domain. For each studied case, a numerical analysis relying on this
stability criterion enables us to choose the maximum time step which prevents us from
the occurrence of noise in the numerical solution.

3.4. Numerical assessments

This section is devoted to the numerical validation against several classical test cases.
We have implemented the two previously detailed solvers, namely the Exact Well-
Balanced solver and the well-balanced VFRoe-ncv solver in a Godunov-like scheme,
in a two dimensional framework and first order accuracy original version. Three tests
are performed here : the classical one-dimensional dam-break over a dry bed, the
preservation of a steady state at rest and a classical test for moving shoreline problems.
These tests are presented to assess the ability of our model to compute propagating
fronts, to deal with the occurrence of dry area, to preserve discrete steady states and to
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Figure 3.4.1. The dam-break problem on a flat bottom for h∗
0 = 1. Comparison

between numerical results for both two well-balanced solver (solid lines) and analyti-
cal solution (dotted lines) for a) the water height h∗ and b) the discharge Q∗ = (hu)∗

at different times t∗ = 0.0, t∗ = 0.03, t∗ = 0.07, t∗ = 0.14, t∗ = 0.21 and t∗ = 0.26.

accurately capture moving shoreline. Besides, a large set of hydraulic benchmarks have
been performed to assess our own implementation : subcritical flow, transcritical flow
with shock and supercritical flow over a bump, drain on a non-flat bottom, vacuum
occurrence by a double rarefaction wave over a step, flow in stairs or even flooding
of initially dry area. Most of these tests have already been performed in [59] for the
VFRoe-ncv scheme or in [43] for the Exact Well-Balanced scheme. Thus we don’t
show these results here.

3.4.1. The one-dimensional dam-break problem. We study here the evo-
lution of an idealized one-dimensional dam-break problem on a flat bottom. The
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VFRoe-ncv scheme has already been validated in its second order accuracy version
against this useful test case in [57]. A dam is initially located in the middle of the
domain and the initial flow condition is given as a mound of water at rest of height h0

upstream the dam and a dry zone downstream. The dam is removed instantaneously
at t = 0. It raises a simple super-critical rarefaction wave. We have the classical
Ritter’s solution [161] which reads in dimensionless form :

h∗ =
1

9

[

2 − x∗

t∗

]2
, u∗ =

2

3

[x∗

t∗
+ 1
]

. (3.60)

We use the scales h0, c0 =
√
gh0 and t0 = c0/g in order to obtain respectively non-

dimensionalized length, velocity and time. Values of ∆x∗ = 0.01 and CFL = 0.9 have
been used for this test.
It is worth noting that the results provided by the two well-balanced solvers are similar,
with a double computational time for the Exact Well-Balanced solver. We can observe
on Figure 3.4.1 a quite good agreement between the analytical solution and numerical
results provided by the two solvers. The front is accurately captured with a little
discrepancy. The two schemes seem to be much diffusive, owing to the first order
accuracy. As it has been emphasized in [57], the speed of convergence of the VFRoe-
ncv scheme is the same as the one provided by Godunov’s scheme with a less expensive
computational cost. These results can be considerably improved with a second order
extension, using a MUSCL reconstruction. This method is detailed in chapter 4.

3.4.2. Preservation of a steady state at rest. The initial condition of this
test is a flow at rest. The topography is an arbitrary sloping beach, along the whole
domain which is constitued of a 10m long channel. We impose h + d = max(d, 0.18)
and u = 0 as an initial condition on the whole domain. As expected both VFRoe-
ncv and Exact Well-Balanced solver preserve exactly this steady state, even for large
values of time. The fractional step method is unable to maintain such steady states
and oscillations are generated at the shoreline, since the slope of topography induces
small convection.

The velocity remains zero for both well-balanced schemes whereas large oscillations are
observable near the shoreline for FSM. It appears with this test that the use of a well-
balanced method is fundamental for problems involving initially fixed shoreline which
is perturbed after a short time by an incoming wave. This is a commonly observed
situation in nearshore hydrodynamics, where waves are propagating from the seaward
boundary towards the shoreline. These problems are addressed in the third part of
this study.

3.4.3. A numerical test for moving shoreline problem. Considering the
good behavior of this two solvers, they seem to be well-suited for the study of nearshore
flows over varying bottom and we investigate here their application to moving shoreline
problems. Hence, they have been tested against an analytical benchmark for run-up
simulations, namely the Carrier and Greenspan’s periodic solution [35]. A detailed
description of this test case is given in the next chapter and we only say here that
this solution represents a monochromatic wave which is let run-up and run-down on
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Figure 3.4.2. Preservation of a steady state at rest. Numerical results for both
Exact Well-Balanced Riemann solver and well-balanced VFRoe-ncv solver: a) the
water depth and b) the velocity are plotted versus the x coordinate for t = 500 s.

a plane beach. It is a classical benchmark used to assess for the ability of numerical
model to deal with moving shoreline.
In Figure 3.4.4 we can observe the comparison between the numerical results provided
by the Exact Well-Balanced Riemann solver and the analytical solution for different
time values during the first half period of the evolution. An inaccuracy in the compu-
tation of the shoreline becomes obvious after a short time. The use of a finer grid does
not enable us to improve this. Actually, it appears from numerical investigations that
if tests involving steep beach slopes may be successfully computed, the use of slowly
varying bottom can lead to non-physical solutions. Nonetheless, we must emphasize
the extreme robustness of this solver, since we have been able to compute this solution
for a large number of period without any amplification of these small perturbations.
We must also notice that this Exact Well-Balanced Riemann solver has appeared to
be extremely sensitive to the threshold value hmin, since large instabilities can be
generated if this value is greater than 10−6m.

Concerning the well-balanced VFRoe-ncv solver we can see on Figure 3.4.5 little
spurious oscillations which propagate from the initial position of the shoreline. With
the use of a refined grid near the shoreline, we are able to compute an accurate solution
during one complete period. For larger values of time, distortions become too impor-
tant. These non-physical oscillations may be justified by the fact that this scheme is
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Figure 3.4.3. Preservation of a steady state at rest. Numerical results for the
fractional step method: a) the water depth and b) the velocity are plotted versus
the x coordinate for t = 500 s.

not defined in the particular case of vanishing eigenvalues λ̃k [57], as exposed in the
previous section. In this particular context, the associated Froude number is equal
to unity and we can verify with the help of the analytical solution that this situation
can effectively occur two times during a period. Another possible explanation may be
the fact that if the VFRoe-ncv solver on flat bottom with the symmetrizing change of
variable is “positivity preserving”, this property is not rigorously extended to the well-
balanced version with topography, even if several numerical cases involving wetting
and drying processes over varying bottom have been accurately computed in [57].
It appears from these numerical investigations that even if these two well-balanced
schemes have been proved to be accurate and robust in several cases involving wetting
and drying processes over varying topography, they fail to provide accurate results
for moving shoreline problems. The use of adaptive refinement methods or even nu-
merical filters [152] may help to improve them and to smooth the non-physical os-
cillations. However, these two solvers definitively fail when we try to validate them
against two-dimensional benchmarks on Cartesian meshes. That’s why we present in
the next section a new model which combines the “positivity preserving” property of
the VFRoe-ncv solver on flat bottom and the well-balanced properties provided by the
recent reconstruction method introduced in [3].
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Chapter 4

Improvement of the
accuracy at the
shoreline

4.1. The hydrostatic reconstruction method

This chapter is devoted to the introduction of a two-dimensional “second order” bore-
capturing and positivity preserving well-balanced model suitable for the computation
of moving shoreline problems.

We propose here to use the recent “hydrostatic reconstruction”method introduced
by Audusse et al. in [3] in order to achieve well-balanced properties and to improve
the inaccuracies observed with the previous methods. This method has been validated
in [3] with a classical test case involving bore (a constant discharge transcritical flow
with shock over a bump) and with a quasi-stationary case first proposed by Leveque
in [107] which consists in computing small perturbations around a steady state at
rest on varying topography. Actually, as the NSW equations is initially derived with
the hydrostatic approximation, the name “hydrostatic reconstruction” has no really
physical meaning and stands for the fact that this reconstruction is performed from
the study of nearly static flows (i.e. flows with very small Froude number). Note
that this method has been recently generalized for two-dimensional simulations on
unstructured meshes in [4]. Whereas the original method was combined with a kinetic
homogeneous positivity preserving solver, we choose here to use the VFRoe-ncv solver
for homogeneous system. As introduced in the previous section, this solver is able
to deal with the occurrence of dry zone [58]. Furthermore, this solver is robust and
more easier to implement than the kinetic scheme. The reconstruction method of
Audusse et al. and the well-balanced discretization of the source term are also simple
and efficient ways to obtain preservation properties for steady states “at rest”. In this

141
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chapter we describe briefly the VFRoe-ncv solver for homogeneous system for the two-
dimensional NSW equations and we recall how we can obtain a well-balanced scheme
with the reconstruction method proposed in [3]. Then we describe a “second order”
MUSCL reconstruction and second order accuracy suitable boundary conditions. This
chapter ends with extensive numerical assessments in the one and two dimensional
case, especially for moving shoreline problems.

4.2. The homogeneous “positivity preserving”
VFRoe-ncv solver

We give here a description of the numerical method used for the computation of F∗
i± 1

2
,j

and G∗
i,j± 1

2

. The computation of the F∗
i± 1

2
,j

fluxes is developed in details, the exten-

sion for the G∗
i,j± 1

2

fluxes is straightforward. As exposed in [58], the symmetrizing

change of variable W(U) = (2c, u, v), where c =
√
gh, enables us to obtain a prop-

erty concerning the positivity of the water depth. Actually, it can be proved that this
choice of variables leads to positive values of h at each side of the considered interface,
for each Riemann problem. This property does not imply a priori that the computed
averaged cell’s values remain also positive. Yet, in practice, we have never encountered
any situations leading to negative values of the water depth and this scheme seems to
be far more reliable for such problems than the classical Roe scheme. Therefore, in
the following, this property of the (2c, u, v)-VFRoe-ncv scheme will be regarded as a
positivity preserving property, even if it cannot be proved in the same satisfying way
as for the Godunov or the kinetic schemes.

The solver described here is actually a simplified form of the well-balanced VFRoe-
ncv solver described in the previous chapter, since the topography has not been taken
into account. However the formalism is similar. Departing from the following Riemann
problem in conservative variables :















∂th+ div (hu) = 0 ,
∂t(hu) + div (hu ⊗ u) + g h∇h = 0 ,

(h, hu)(x, 0) =

{

(hL, (hu)L) if x < 0
(hR, (hu)R) if x > 0

(4.1)

we obtain the following Riemann problem in non-conservative variables, at each inter-
face :















∂t(2c) + u · ∇(2c) + cdiv (u) = 0 ,
∂tu + c∇(2c) + (u · ∇)u = 0 ,

(2c,u)(x, 0) =

{

((2c)L,uL) if x < 0
((2c)R,uR) if x > 0

(4.2)

This system can be written in the following matrix form :
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W,t + Cx(W)W,x +Cy(W)W,y = 0, (4.3)

Cx(W) =





u c 0
c u 0
0 0 u



 and Cy(W) =





v 0 c
0 v 0
c 0 v



 , (4.4)

where Cx(W) and Cy(W) are the symmetric convection matrix respectively in the x
and y direction.

The Riemann problem (3.36) becomes, with this choice of symmetrizing variables :















W,t + Cx(W)W,x = 0,

W(x, 0) =

{

((2c)L, uL, vL) if x < 0
((2c)R, uR, vR) if x > 0.

(4.5)

This Riemann problem is then linearized around the averaged value W̃ =
WL + WR

2
.

The eigenvalues of the linearized convection matrix Cx(W̃) are

λ̃1 = ũ− c̃, λ̃2 = ũ, λ̃3 = ũ+ c̃,

where c =
√
gh. If we denote by ΩR and ΩL respectively the matrix of right and left

eigenvectors associated with these averaged eigenvalues, we may write :

ΩR =





1 0 1
−1 0 1
0 1 0



 and ΩL =





1
2 0 1

2
−1

2 0 1
2

0 1 0



 .

Then, using Equation(3.38), the relation between a state W and a state Wa through
the ũ− c̃ wave may be written :

W = Wa +
(

[c]RL − [u]RL
2

)











1

−1

0











, (4.6)

the relation to connect a state W to a state Wb through the ũ+ c̃ wave is given by :

W = Wb +
(

[c]RL +
[u]RL
2

)











1

1

0











, (4.7)

and the relation between two states W and Wc through the contact-discontinuity
associated with the ũ wave is :
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W = Wc + [v]RL











0

0

1











. (4.8)

From a practical point of view, using these relations, the exact solution of the linearized
Riemann problem (3.37) which is needed for the implementation of the VFRoe-ncv

solver is given by the sign of the eigenvalues λ̃k. Actually, only two cases are distin-
guished :

• If λ̃1 > 0 or λ̃3 < 0, then the flow is super-critical and we recover a classical
upwinding. The interface value is defined as follows :

W∗
i+ 1

2
,j

=

{

Wi if λ̃k > 0 ∀k
Wi+1 if λ̃k < 0 ∀k. (4.9)

• If λ̃1 < 0 and λ̃3 > 0 then the flow is subcritical and we use relations (4.6) or
(4.7) to obtain the interface values. We obtain :

c∗
i+ 1

2
,j

= c̃− 1

4
(ui+1,j − ui,j), (4.10)

and

u∗
i+ 1

2
,j

= ũ− (ci+1,j − ci,j). (4.11)

The value of v∗
i+ 1

2
,j

is obtained from the sign of λ̃2, using the relation

(4.8). For λ̃2 > 0 we take v∗
i+ 1

2
,j

= vi whereas for λ̃2 < 0 we may choose

v∗
i+ 1

2
,j

= vi+1 We can finally recover conservative variables, using the inverse

change of variable and then compute the numerical fluxes F∗
i+ 1

2
,j
.

Similar expressions result for F∗
i− 1

2
,j

and G∗
i,j± 1

2

. For the G∗
i,j± 1

2

fluxes, the eigen-

elements (λ̃k)k=1,2,3, (̃lk)k=1,2,3 and (r̃k)k=1,2,3 are related to the averaged convection

matrix Cy(W̃). We have obtained a fast solver, easy to implement, with bore-capturing
abilities and able to deal with dry zone without any ”clipping” treatment.

Remark 4.2.1. Remark that we have also implemented an Exact Riemann solver
relying on the resolution of relations (3.28) and (3.29) for the rarefaction and shock
waves, with newton-Raphson method. We have observed that the computational time
was between five and ten times greater than with the linearized scheme, without any
significant improvement of the results.
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4.3. Discretization of the source term

In this section we briefly recall how to obtain a well-balanced scheme satisfying the
preservation of steady states at rest using the reconstruction method proposed in [3].
This method is compatible with the VFRoe-ncv solver on flat bottom exposed in the
previous section and thus, also ensures the positivity of the water depth.
The first step is to built an effective reconstruction of the values on each side of the
mesh interfaces, taking into account the variations of the bottom and the balance
obtained for flows with very small Froude number, which are considered as “static”
flows. We define interface topography values di+ 1

2
,j as follows :

di+ 1

2
,j = max(di,j , di+1,j) (4.12)

Then, the reconstruction of the water height on each side of the considered interface,
which must be positivity preserving, is defined as follows :

hi+ 1

2
−,j = max(0, hi,j + di,j − di+ 1

2
,j), hi+ 1

2
+,j = max(0, hi+1,j + di+1,j − di+ 1

2
,j)

(4.13)
and we deduce from it the complete reconstructed values on each side of the interface :

Ui+ 1

2
−,j =







hi+ 1

2
−,j

hi+ 1

2
−,j ui,j

hi+ 1

2
−,j vi,j






, Ui+ 1

2
+,j =







hi+ 1

2
+,j

hi+ 1

2
+,j ui+1,j

hi+ 1

2
+,j vi+1,j






. (4.14)

Note that only the values of the water height are reconstructed and used in the ex-
pressions of the momentum.
These reconstructed values are used instead of Ui,j and Ui+1,j to compute the inter-
face solution with the VFRoe-ncv solver on flat bottom. More precisely, the numerical
flux function F∗

i+ 1

2
,j

is defined as follows :

F∗
i+ 1

2
,j

= F (U∗
i+ 1

2
,j
(0, Ui+ 1

2
−,j Ui+ 1

2
+,j)). (4.15)

where U∗
i+ 1

2
,j
(0, Ui+ 1

2
−,j Ui+ 1

2
+,j) is the interface value computed with the VFRoe-

ncv solver on flat bottom, using the new reconstructed values Ui+ 1

2
−,j and Ui+ 1

2
+,j

at each side of the considered interface.
In the mean time, the numerical source term discretization Si,j is discretized and
distributed to the cell interfaces, using the reconstructed values of the water height.
It gives :

Sx
i,j = Sx

i+ 1

2
−,j

+Sx
i− 1

2
+,j

=







0
g

2
h2

i+ 1

2
−,j

− g

2
h2

i,j

0






+







0
g

2
h2

i,j −
g

2
h2

i− 1

2
+,j

0






. (4.16)
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This choice is motivated by a balancing requirement for nearly hydrostatic flows, with
vanishing velocity (see [3] and [20]). A similar discretization can be obtained for the
y direction.
Then, the two dimensional semi-discrete finite volume formulation may be written as

follows :

d

dt
Uij(t) +

1

∆x
(F−

i+ 1

2
,j
− F+

i− 1

2
,j
) +

1

∆y
(G−

i,j+ 1

2

−G+
i,j− 1

2

) = 0 (4.17)

with left and right numerical fluxes through the Γi± 1

2
, j and Γi, j± 1

2

interfaces are defined

as follows :

F−
i+ 1

2
,j

= F∗
i+ 1

2
,j

+ Sx
i+ 1

2
−,j

= F (U∗
i+ 1

2
,j
(0, Ui+ 1

2
−,j Ui+ 1

2
+,j)) +







0
g

2
h2

i,j −
g

2
h2

i+ 1

2
−,j

0






,

(4.18)

F+
i+ 1

2
,j

= F∗
i+ 1

2
,j

+ Sx
i+ 1

2
+,j

= F (U∗
i+ 1

2
,j
(0, Ui+ 1

2
−,j Ui+ 1

2
+,j)) +







0
g

2
h2

i+1,j −
g

2
h2

i+ 1

2
+,j

0






,

G−
i,j+ 1

2

= G∗
i,j+ 1

2

+ S
y

i,j+ 1

2
−

= G(U∗
i,j+ 1

2

(0, Ui,j+ 1

2
− Ui,j+ 1

2
+)) +







0
0

g

2
h2

i,j −
g

2
h2

i,j+ 1

2
−






,

(4.19)

G+
i,j+ 1

2

= G∗
i,j+ 1

2

+ S
y

i,j+ 1

2
+

= G(U∗
i,j+ 1

2

(0, Ui,j+ 1

2
− Ui,j+ 1

2
+)) +







0
0

g

2
h2

i,j+1 −
g

2
h2

i,j+ 1

2
+






.

We have obtained a very compact formulation of the flux functions, relying on the
previous homogeneous VFRoe-ncv solver, taking into account the variations of to-
pography and able to preserve positivity. As shown in the following, this scheme is
robust, allows us to deal easily with wetting and drying phenomena and provides solid
foundations for an accurate computation of the moving shoreline.
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4.4. Second order accuracy: an adapted MUSCL
reconstruction

The previous well-balanced scheme is derived from a Godunov “first-order” method in
space and time and as seen in the previous chapter, the one order accuracy VFRoe
scheme is much diffusive. Thus, we aim at constructing a numerical scheme that has
the following properties :

• i) a higher order of accuracy in smooth parts of the solution,

• ii) the production of numerical solutions which are free from non-physical
oscillations,

• iii) a higher resolution of discontinuities with less diffusion in solutions in-
volving strong variations,

• iv) the preservation of the mass conservation property inherited from the first
order finite volume method,

• v) the preservation of the discrete steady states “at rest”,

• vi) the preservation of the positivity of the water depth, as in the first order
method.

To obtain more accurate results and to increase the rate of convergence, classically
linked to the mesh size, we use the method proposed in [3] and generalized for a two-
dimensional reconstruction on unstructured meshes in [4]. This method is based on
a linear reconstruction on each cell, providing more accurate values on both sides of
each interface, using the method introduced by Van-Leer in [176], namely the MUSCL
method (Monotonic Upwind Scheme for Conservation Law). Note that the formalism
of this method has been introduced in a homogeneous framework and so the bed slope
source term naturally induces modifications in the linear reconstruction. The method
used here relies on the classical three steps of the MUSCL method, namely a construc-
tion of the gradients in each cell, a linear extrapolation of the variables and a limitation
of the slopes in order to preserve the extrema and to ensure the total variation dimin-
ishing property. But in the presence of source terms, a linear reconstruction of the
topography d must be added. This reconstruction is not straightforward and must be
deduced from the reconstruction of h+ d to preserve the well-balanced properties (ie
to preserve the steady states at the discrete level), whereas a cell-centered source term
is needed to preserve the consistency. In addition, for two-dimensional reconstruc-
tion on unstructured meshes, a correction inspired from [138] is also needed. In the
following, we recall some basic and important results concerning Total Variation Di-
minishing and Monotonicity Preserving schemes. Then we introduce the formalism of
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the MUSCL method in a simple scalar one dimensional case, the extension to systems
being straightforward. Finally we detail the modification induced by the bed slope
source term and introduced the “second order” well-balanced scheme issued from the
hydrostatic reconstruction method.

4.4.1. Total Variation Diminishing schemes. It is well-known that high-order
schemes produce spurious oscillations in the vicinity of large gradients. On the other
hand, the class of monotone methods do not produce any spurious oscillations but
monotone methods are at most first order accurate. One way of resolving this prob-
lem is to use monotonicity preserving schemes. In particular, for the one dimensional
case, the use of Total Variation Diminishing methods (TVD) appears as an efficient
solution.

Définition 4.4.1. A scheme is said to be Monotonicity Preserving if whenever the
data Un

i is monotone the solution set Un+1
i is monotone in the same sense: if Un

i is

monotone increasing, thus Un+1
i is also monotone increasing and if Un

i is monotone

decreasing, thus Un+1
i is also monotone decreasing.

Next we introduce the notion of total variation :

Définition 4.4.2. If Un
i is a discrete mesh function, the total variation of Un is

defined as :

TV (Un) =
∑

i

| Un
i −Un

i−1 | (4.20)

and the Total Variation Diminishing property is introduced as follows :

Définition 4.4.3. A scheme is said to be a Total Variation Diminishing (TVD)
scheme if

TV (Un+1) ≤ TV (Un), ∀n

An important result which links TVD and Monotonicity Preserving schemes for
nonlinear conservation laws is given by the following theorem :

Theorem 4.4.1. The set Stvd of TVD schemes is contained in the set Smpr of mono-
tonicity preserving schemes :

Stvd ⊆ Smpr.

Proof.

See [77] for instance.

The most useful class is the class of TVD schemes which are far more convenient for the
proofs of convergence. Therefore we will focus on constructing a TVD method which
achieves the previous required properties. To this end, use is made of the classical
MUSCL reconstruction method with slope limiters which is a common and easy way
to obtain a formal extension to second order accuracy.
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Figure 4.4.1. The piecewise linear MUSCL reconstruction for three computing cells.

4.4.2. The “second order” reconstruction for homogeneous system.
Classically, a “second order” extension is obtained by computing the fluxes from lim-
ited linear reconstructed values on both sides of each interface rather than cell-centered
values (see [107] for instance). These new values are obtained in three steps :

• (i) the computation of the gradients used for the linear reconstruction in each
cell,

• (ii) The linear extrapolation of the initial piecewise constant data set,

• (iii) the limitation procedure in order to obtain the TVD property.

For our purpose, we choose to applied the classical minmod reconstruction. In the
case of a scalar function U ∈ R, the three steps of the reconstruction applied to the
cell Ci where the piecewise constant function takes the value Ui are defined as follows :

Ui,l = Ui −
∆x

2
∇Ui , Ui,r = Ui +

∆x

2
∇Ui, (4.21)

where Ui,r and Ui,l stand respectively for the linear reconstructed value at i+ 1
2− and

i− 1
2+ (see Figure 4.4.2) and the slope gradient ∇Ui is defined with

∇Ui = minmod
(Ui − Ui−1

∆x
,
Ui+1 − Ui

∆x

)

(4.22)

and
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∆
Figure 4.4.2. Piecewise linear MUSCL reconstruction. Definition sketch of the
boundary extrapolated values Ui,l and Ui,r

minmod (x, y) =



















min (x, y) if x, y ≥ 0

max (x, y) if x, y ≤ 0

0 otherwise

(4.23)

where we have assumed that the space discretization step ∆x is constant for the sake
of simplicity.

Remark 4.4.1. This reconstruction is conservative, since we have :

Ui,l + Ui,r

2
= Ui (4.24)

Remark 4.4.2. It appears that the values Ui−1, Ui and Ui+1 of the data at cells
Ci−1, Ci and Ci+1 are needed for the computation of the gradient ∇Ui used in the
reconstruction of the data in the cell Ci. This remark will be useful when we will
discuss the topic of adapted boundary conditions.

Therefore, to compute the numerical fluxes at an interface Γi+ 1

2

the initial data at each

side of this interface used for the resolution of the local Riemann problem become Ui,r

and Ui+1,l instead of Ui and Ui+1. In other words, if the first order numerical flux
F (UL, UR) is given, the associated second order in space scheme is given by :

Un+1
i = Un

i +
∆t

∆x
(Fi+ 1

2

− Fi− 1

2

) (4.25)

with

Fi+ 1

2

= F (Un
i,l, U

n
i+1,l) (4.26)
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instead of Fi+ 1

2

= F (Un
i , U

n
i+1) in the first order scheme.

4.4.3. A “second order” well-balanced extension for the hydrostatic
reconstruction method. This previous method is the classical MUSCL limited
reconstruction, usually used in the framework of homogeneous systems of conservation
laws. In our case, the presence of the bed-slope source term induces some modifica-
tions if we want to achieve the preservation of the discrete steady states and of the
positivity of the water depth. These modifications, detailed in [3] and [20] for the
one dimensional case and in [4] for the two-dimensional case are briefly recalled here
in the one-dimensional case. The first difference which is emphasized is that a linear
reconstruction of the topography d(x, y) is needed, although it is a data. This recon-
struction must be deduced from the reconstruction of h + d to preserve the steady
states at the discrete level. Considering that among the three quantities h, h+ d and
d, only two need to be reconstructed, since the last one is a combination of the other
two. In practice, we begin performing the linear reconstruction of Ui and obtain the
second order accuracy values Ui,l and Ui,r. In a second step we perform a similar
reconstruction for the quantity (h+ d)i, leading to (h+ d)i,l and (h+ d)i,r. From this,
we can obtain the reconstructed values for the topography with :

di,l = (h+ d)i,l − hi,l, and di,r = (h+ d)i,r − hi,r. (4.27)

As emphasized in [3], this choice is the only way to ensure the preservation of the
steady states (3.19) and the positivity of the water depth at a wet/dry interface si-
multaneously. In addition, considering the reconstruction of h + d, it is obvious that
the steady states at rest are preserved in the case of a wet/wet interface.
The second difference that needs to be highlighted is the addition of a cell-centered
source term Sci. This additional source term is needed to ensure the consistency (see
[3]). Gathering all these considerations, it yields the following “second order” well-
balanced and positivity preserving scheme, which is exposed in the one-dimensional
case for the sake of clarity :

d

dt
Ui(t) +

1

∆x
(F−

i+ 1

2

− F+
i− 1

2

) = Sci (4.28)

with left and right numerical fluxes through the Γi± 1

2

interfaces defined as follows :

F−
i+ 1

2

= F∗
i+ 1

2

+ Sx
i+ 1

2
−

= F (U∗
i+ 1

2

(0, Ui+ 1

2
−, Ui+ 1

2
+)) +

(

0
g

2
h2

i,r −
g

2
h2

i+ 1

2
−

)

,
(4.29)

F+
i+ 1

2

= F∗
i+ 1

2

+ Sx
i+ 1

2
+

= F (U∗
i+ 1

2

(0, Ui+ 1

2
−, Ui+ 1

2
+)) +

(

0
g

2
h2

i+1,l −
g

2
h2

i+ 1

2
+

)

,

with
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Ui+ 1

2
− =

(

hi+ 1

2
−

hi+ 1

2
− ui,r

)

, Ui+ 1

2
+ =

(

hi+ 1

2
+

hi+ 1

2
+ ui+1,l.

)

(4.30)

The hydrostatic reconstruction is now defined as follows :

hi+ 1

2
− = max(0, hi,r + di,r − di+ 1

2

), hi+ 1

2
+ = max(0, hi+1,l + di+1,l − di+ 1

2

) (4.31)

with

di+ 1

2

= max(di,r, di+1,l) (4.32)

The cell-centered source term Sci is finally defined as follows :

Sci =

(

0

g
hi,l + hi,r

2
(di,l − di,r)

)

. (4.33)

Besides, it is worth noticing that a correction inspired from [138] is needed for two-
dimensional reconstruction on unstructured meshes in order to preserve the mass con-
servation property, since the classical MUSCL method is only relevant in the one
dimensional framework. On Cartesian meshes, we don’t need to perform such correc-
tion, since the conservativity is recovered for each direction (see Remark 4.4.1).

Remark 4.4.3. The idea of taking into account the topography variations in the
MUSCL reconstruction is not new and was already introduced in Gallouët et al. [57]
for instance. In order to perform the most complete numerical investigations, we have
also implemented second order versions of the well-balanced VFRoe-ncv scheme and
of the Exact Well-Balanced Riemann solver introduced in the previous chapter, using
the method proposed in [57]. This method also uses the MUSCL formalism but the
way the well-balanced properties are preserved relies on a limitation on h + d in the
reconstruction of h. Precisely, when the topography is not flat, the limited slope for
the reconstruction of the water depth h is computed from a first limitation on the vari-
ations of h + d. In addition, a second limitation is performed. Keeping in mind that
the Exact Well-Balanced Riemann solver is able to preserve a larger class of steady
states than the steady states at rest, the associated linear limited reconstruction must
inherit of this property. The method proposed in [3] becomes inadequate since it only
preserves the steady states at rest. We recall that considering the quantity ψ defined
by :

ψ =
Q2

2h2
+ g(h+ Zf ), (4.34)

the largest class of steady states is defined by :
{

hu = Cst

ψ = Cst

The idea introduced in [57] is to build a reconstruction which does not modify these
states. To achieve this goal, the conservative variables h and hu are linearly recon-
structed using the classical minmod limitation described above. Then, a TVD-like
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property is imposed on ψ :

0 ≤| ψi − ψi,l |≤
| ψi − ψi,l |

2
,

0 ≤| ψi,r − ψi |≤
| ψi,r − ψi |

2
.

(4.35)

where the value of ψi,l and ψi,r are obtained from the reconstructed values of h and hu.
If this condition is not fulfilled, the slope ∇hi is set to zero. Note that the reconstruc-
tion of hu is not modified and is performed classically, whereas the reconstruction is
performed on the velocity u in the method introduced in [3].

In practice, this method gives very good results, since all the subcritical steady states
preserved by the first order method are not modified. But for our purpose, that is
the study of moving shoreline problems, we recover the inaccuracies exhibited for the
first order method. These discrepancies may even be amplified by this reconstruction
process.

Remark 4.4.4. The second order accuracy of these reconstructions is justified in a
weak sense (see Proposition 2.26 of [20]). Even if the rate of convergence is (∆x)2 in
the weak sense, if we measure the error in strong norm, we observe that it converges
to 0 with a slower rate as shown in the next section.

Remark 4.4.5. A simple extension towards an ENO second order scheme [20] has
been recently implemented. But at this date we have not studied the effective improve-
ment in accuracy.

4.4.4. Second-order accuracy in time. The second-order accuracy in time is
usually recovered using one of the following approaches, namely the Hancock two
stages time integration method [177], the predictor-corrector method proposed by
Hirsch [81] or even the Heun scheme, which is a second order Runge-Kutta method.
We choose here to use the Heun scheme as proposed in [20] or [57]. If we write
the second-order method in space with the one-step classical Euler upwind scheme as
follows :

Un+1 = Un + ∆tΦ(Un) (4.36)

where Φ in a nonlinear operator which stands for the fluxes difference in the two
directions x and y, therefore the second-order scheme in time and space is given by :

Ũn+1 = Un + ∆tΦ(Un),

Ũn+2 = Ũn+1 + ∆tΦ(Ũn+1),

Un+1 =
Un + Ũn+2

2

(4.37)

If this method does not theoretically modify the CFL restriction [20], we have notice
in practice that for a same problem the CFL for the second-order accuracy simulation
should be smaller than in the first order case.
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Figure 4.4.3. Propagation of a Gaussian wave in a rectangular channel. Compari-
son between analytical solution and numerical results obtained with first and second
order methods at time t = 14 s.

4.4.5. Assessment of the second order reconstruction. The SURF−SVWB
model has been extensively tested and successfully validated against numerous hy-
draulic cases involving bores and preservation of steady states “at rest”, as for the first
order well-balanced schemes in the previous chapter. For the sake of clarity we don’t
show these results in this work but all these cases have been successfully performed and
both the well-balanced property and the positivity preserving property inherited from
the first order method are preserved. We show in this subsection the improvements
obtained by the second order reconstruction for the simple test of the propagation of
a Gaussian wave and the previously introduced dam-break over a dry bed problem in
one and two dimension.

Propagation of a Gaussian. This simple test enables to demonstrate the improvement
in accuracy and numerical diffusion obtained with the “second order” reconstruction.
In this test a Gaussian wave propagates along a one dimensional channel over a flat
bottom. The ratio between the gaussian’s amplitude to the still water depth is chosen
to be 0.01 and the test is run for 20 s. We have used 500 cells and the CFL is set
equal to 0.8.

On Figure 4.4.3, it is obvious that the “second-order” version of the scheme is far less
diffusive than the first order version. In addition, we will show in the next section
that the rate of convergence of the “second order” scheme is increased compared to the
classical first order method.
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Figure 4.4.4. The dam-break problem on a flat bottom for h∗
0 = 1. Comparison

between numerical results provided by the SURF−SV WB model (solid lines) and
analytical solution (dotted lines) for a) the water height h∗ and b) the discharge
Q∗ = (hu)∗ at different times t∗ = 0.0, t∗ = 0.03, t∗ = 0.07, t∗ = 0.14, t∗ = 0.21
and t∗ = 0.26.

The one-dimensional dam-break problem. This test is the same as the one introduced
in chapter 2 for the validation of the Exact Well-Balanced solver and the well-balanced
VFRoe-ncv solver. We show here the improvement in the shock capturing ability ob-
tained by the second order reconstruction. We use the scales h0, c0 =

√
gh0 and

t0 = c0/g in order to obtain respectively non-dimensionalized length, velocity and
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time. Values of ∆x∗ = 0.01 and CFL = 0.9 have been used for this test, as in chapter
3.
We can observe on Figure 4.4.4 a very good agreement between the analytical solution
and numerical results provided by the SURF−SVWB model. The front is accurately
captured without any discrepancy. The “second order” scheme is far less diffusive, es-
pecially in the upper part of the solution, where the improvement is very significant. A
comparison with the results proposed in [27] shows that SURF−SVWB may provide
a slightly more accurate computation of the propagating front. The computation of
the discharge seems to be also more accurate than the results provided by the WAF
method.

Remark 4.4.6. This test has also been performed with the Exact Well-Balanced solver
using the “second order” reconstruction method proposed in [57]. The results are im-
proved in the same way and are similar to those presented here.

The two-dimensional oblique dam-break problem. We study in this test the evolution of
a mound of water which is suddenly released from an initial position such as the front
of the water propagates with an inclination of 45◦ with respect to the boundaries of
the computational domain. The base of this domain is a [−0.5, 0.5]×[−0.5, 0.5] square.
With this test we validate our model in the case of a two-dimensional propagation and
study the effect of the Cartesian mesh on the oblique propagation. Flow properties
computed on the central cross-section orthogonal to the propagating front (the x∗ = y∗

plane) are compared to the one-dimensional analytical solution, assuming that the
effects induced by the boundaries can be neglected for this section and for a small
time of evolution. This assumption is clearly not true for the sections close to the
boundary. A comparison with the analytical solution in the direction of propagation
is reported on Figure 4.4.7. A good agreement is observed both for the water height
and the discharge. The front of the numerical solution remains close to the analytical
one during all the computational time but we can observe small under-predictions near
this front for the discharge. As this error has not been observed in the one-dimensional
case, these under-predictions may be due to the two-dimensional treatment of the
fluxes. Values of ∆x∗ = ∆y∗ = 0.008 and CFL = 0.7 have been used for this test.

Remark 4.4.7. This test has also been performed using the “second order” accuracy
version of the Exact Well-Balanced solver. The results are as accurate to those pre-
sented here.
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Figure 4.4.5. The two-dimensional oblique dam-break problem on a flat bottom
for h∗

0 = 1. Numerical results provided by SURF−SV WB. The two-dimensional
profile of the water height is plotted versus the dimensionless space coordinates x∗

and y∗ for: a) t∗=0.0, b) t∗ =0.06, c) t∗=0.15, d) t∗=0.21.

4.5. Boundary conditions

4.5.1. Preservation of the second order accuracy. The use of the MUSCL
reconstruction process induces some modifications in the construction of the boundary
conditions. Actually, as seen previously, the reconstruction of the piecewise constant
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Figure 4.4.6. The two-dimensional oblique dam-break problem on a flat bottom
for h∗

0 = 1. Numerical results provided by SURF−SV WB. The two-dimensional
profile of the water height is plotted versus the dimensionless space coordinates x∗

and y∗ for: a) t∗=0.0, b) t∗ =0.06, c) t∗=0.15, d) t∗=0.21.

data into piecewise linear data makes use of a larger stencil: to construct the piecewise
linear data on cell i, use is made of the values at cells i−1, i and i+1 (see Figure 4.4.1).

Consequently, as we want to preserve the second order accuracy at the boundaries, we
have implemented the following approach, which consists in adding a second line of
fictitious cells around the computational domain previously introduced for the case of
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Figure 4.4.7. The two-dimensional oblique dam-break problem on a flat bottom
for h∗

0 = 1. Comparison between SURF−SV WB numerical results (solid lines)
and analytical solution (dashed lines) for: a) the profile of the water depth h∗ in
the direction of propagation and b) the profile of the discharge Q∗ = (hu)∗ in the
propagation direction at different times t∗ between t∗ = 0 and t∗ = 0.18 with a step
of 0.03.

first order boundary conditions. Let us consider the simple case of a one dimensional
domain where two fictitious cells, namely C0 and C−1 have been added, as illustrated
on Figure 4.5.1.
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Figure 4.5.1. Sketch of the two added fictitious cells for the second order boundary conditions.

The introduction of the new ghost cell C−1 enables us to compute the linearly recon-
structed data on cell C0 relying on the MUSCL algorithm introduced above. This
reconstruction makes use of the data at cells C−1, C0 and C1. The reconstructed C0

data is then used in the computation of the fluxes F 1

2

through the interface between

C0 and C1. It’s a simple and efficient way to preserve the second order accuracy at
the boundaries.
It leads to the following boundary conditions :

4.5.2. Non-slip reflective solid boundary condition. A fixed non-slip and
reflective boundary condition is given by :

hN+1 = hN , u′N+1 = −u′N , v′N+1 = −v′N (4.38)

hN+2 = hN−1 , u′N+2 = −u′N−1 , v′N+2 = −v′N−1 (4.39)

where N and N − 1 denote the last two cells inside the computational domain in the
considered direction, N + 1 and N + 2 two fictitious cells outside of the computa-
tional domain and u′ and v′ are the components of velocity u respectively normal and
tangential to the boundary.

4.5.3. Transmissive boundary condition. Transmissive second order bound-
ary conditions are specified with :

hN+1 = hN , u′N+1 = u′N , v′N+1 = v′N (4.40)

hN+2 = hN−1 , u′N+2 = u′N−1 , v′N+2 = v′N−1 (4.41)

with the same notations.

4.5.4. Periodic boundary condition. Periodic second order boundary condi-
tions are specified with :

hN+1 = h1 , u′N+1 = u′1 , v′N+1 = v′1 (4.42)

hN+2 = h2 , u′N+2 = u′2 , v′N+2 = v′2 (4.43)

4.5.5. Absorbing/Generating non-reflective inlet boundary condition.
When analyzing nearshore circulation using numerical models, it is usual necessary
to limit the computational domain to a small region of interest. This implies intro-
ducing artificial boundaries for the computational region at the opensea boundary,
where flows are allowed to enter or leave the computational domain. The particularity
of such problems lies in the fact that the seaward boundary condition is expected to
provide variables which are upgrading in time, along the cross-shore direction (see the
third part). The flow is assumed to be subcritical and as exposed previously, only one
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information needs to be specified, the second information, concerning currents for in-
stance if the water surface profile is specified, can be recovered using the characteristic
theory and the conservation of Riemann invariants, as exposed in the first order case.
In addition, the long waves which are introduced in the computational domain are
often partially reflected as they propagate towards the shoreline and these reflected
waves may propagate in the cross shore direction toward the seaward boundary, in-
terfering with the incident waves. These reflected waves must be allowed to exit the
computational domain without being re-reflected. From this it appears the necessity
to develop a boundary condition which is able to generate a specified long wave and
simultaneously absorb outgoing waves. Most of the existing literature on the topic
deals with absorbing conditions, sometimes called radiating, non reflective or open
boundary conditions.
The expected boundary condition needs to satisfy the following criteria :

• i) It must guarantee a unique and well-posed solution to the differential prob-
lem,

• ii) The region outside the computational domain can influence the propaga-
tion inside only through the incident waves and through the currents along
the boundary. Therefore, we assume that those currents and incident waves
are known and can be specified,

• iii) Waves propagating out of the computational domain must be allowed to
exit freely with minimal reflection.

To achieve these properties, Kobayashi et al. in [95] propose to use the outgoing
characteristic, as for the previous first order subcritical boundary condition, but in
addition they introduce a linear long-wave relationship between the velocity and the
surface elevation to solve the outgoing problem. This provides an expression for the
reflected waves amplitude which is included in the computation. Neglecting the bottom
slope, once the evaluation of the conserved Riemann outgoing invariant is performed
as exposed in the previous chapter, the required velocity u

′n+1 can be obtained using

u
′n+1 = β− + 2 cn+1 (4.44)

where cn+1 =

√

g h̃ and h̃ = h0 + ηi + ηr. In this expression ηi and ηr are the free

surface elevation of the incident and reflected waves respectively, h0 is the mean water
depth. The free surface elevation of the reflected waves is obtained using the linear

theory which provides the relationships u
′

i =

√

g

h0
ηi and u

′

r =

√

g

h0
ηr. It yields the

following expression for ηr :

ηr = −1

2

h0

g
β− − h0 (4.45)
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Figure 4.5.2. Sketch of the derivation of the absorbing/generating inlet boundary condition.

From this, we impose at the boundary the updated water depth h̃ which takes into
account both incident and reflected waves, and the associated velocity u

′n+1 obtained
from relation (4.44).

A correction is proposed in [82] in order to achieve second order accuracy. The idea is
to add a nonlinear term to the expression of ηr to account for nonlinear interactions
between incident and reflected waves. It gives :

ηr = −1

2

h0

g
β− − h0 +

(
√

h̃−
√
h0)

2

2
. (4.46)

We have obtained an implicit equation, since the value of h̃ is unknown. This sys-
tem can be solved with Newton-Raphson algorithm with low computational cost. As
emphasized in [82], this approach provides second-order accuracy when used in com-
bination with a piecewise linear reconstruction. However no numerical analysis have
been performed in this paper to validate this second order accuracy and we can only
validate this boundary condition with numerical investigations.

Another approach inspired from [48], which also makes use of linear approximation
and leads to quasi similar results in practice, relies on both the incoming β+ and
outgoing β− Riemann invariants (see Figure 4.5.2) and on the resolution of the system
composed by these two invariants in order to obtain the updated values of hn+1 and
u′n+1 at the considered boundary. More precisely, the incoming Riemann invariant
is defined from point L using the given amplitude ηi of the incident wave and the
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corresponding velocity obtained from linear theory. It raises :

β+ = 2
√

g(ηi + h0) +

√

g

h0
ηi. (4.47)

The outgoing Riemann invariant β− is computed as previously from point R with
linear interpolation and Newton-Raphson method, using the conservation along the
u′ − c characteristic. Finally, the system composed by these two invariants is solved.
It yields :

hn+1
A =

1

16g
(β+ − β−)2

u
′n+1
A =

1

2
(β+ + β−)

(4.48)

where A is the point where the boundary condition is applied. This last approach
has been extended in the two dimensional case, for an arbitrary angle of incidence in
[175]. The two approaches above, which share common ideas, have been implemented
and tested.

This benchmark proposed by Hu et al. in [82] to validate their boundary condition
has been performed here in order to compare these two approaches. The geometry for
this test is a one dimensional rectangular channel of 500m with flat bottom. Sinusoidal
waves are generated at the left inflow boundary whereas the right boundary is closed
with a wall, using the no-slip solid reflective boundary condition. The sinusoidal waves
is defined by ηi = 0.5H sin(2Π t/T ) where the wave height H is given by H = 0.04m
and the wave period T is equal to 20.193 s. The corresponding wavelength calculated
with linear theory is 200m. The still water depth at rest is h0 = 10m. The ratio
between the wave height and the still water depth is thus equal to 0.004 and nonlinear
effects can be neglected. Theoretically this configuration will lead to a standing wave
pattern of height 0.8m. This test is performed with 400 cells and the time step is set to
0.05 s. We highlight that any small non-physical reflection at the inlet boundary may
distort the standing wave, since the error will be amplified after several reflections at
the two boundaries. Therefore, the non-reflecting property of the boundary conditions
is seriously tested.

Numerical results are shown on Figure 4.5.3 where time series of the computed water
depth at x = 250m are plotted for a large value of time. It can be observed that
no spurious distortion are generated even for a long time simulation and that the
boundary conditions work reasonably good. However, we have tested both methods :
the method of Hu et al [82] with nonlinear correction and the method using the
evaluation of the two invariants which also relies on the linear theory but without any
nonlinear correction. From our investigations it appears that the improvement linked
to the nonlinear correction of Hu et al. is very small, since the results obtained with
each of these two methods are very similar.
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Figure 4.5.3. Standing wave reflection at a vertical wall. Computed water depth
at x = 250 m during 1500 s.

4.6. Numerical assessments for moving shoreline
problems

In this subsection we only focus on moving shoreline problems in one and two dimen-
sions and highlight the ability of the new well-balanced scheme to accurately compute
the wet/dry interface. We perform a comparison with three important one-dimensional
analytical solutions for waves propagating at a uniform sloping beach. They model the
run-up and run-down of a periodic wave traveling shoreward and being reflected out
to sea, leading to a standing wave (the Carrier and Greenspan’s periodic solution), the
run-up and the asymptotical convergence toward a steady state due to a depression of
the water level at the coastline (the fluid held motionless) which is suddenly released
(the Carrier and Greenspan’s transient solution) and the run-up and reflection of a
solitary wave (the Synolakis run-up solution). In the two-dimensional case, we vali-
date the model against the two important Thacker’s analytical solutions for periodic
oscillating motions with moving boundaries in parabolic basins. The “second order”
in space and time scheme is used for all the test cases presented here. For clarity
numerical results are plotted with solid lines and the analytical solutions with dots.
The grids which are used for the different test cases are uniform, with ∆x = ∆y in
the two-dimensional case.
In order to compare numerical results provided by SURF−SVWB and analytical
solutions use is made of the L2-error defined at the nth time for h and u as follows ;
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ErrL2(h) =
{

∑

i,j(h
n
ij − ha)

2

∑

i,j h
2
a

}
1

2

, (4.49)

ErrL2(u) =
{

∑

i,j

[

(un
ij − ua)

2 + (vn
ij − va)

2
]

∑

i,j

[

u2
a + v2

a

]

} 1

2

, (4.50)

where Ua = t(ha, (hu)a, (hv)a) represents the analytical solution at the appropriate
time.
Time series of theses L2 errors are presented in the sequel for two cases. The L2-
convergence curves for the water height h and the velocity u are also shown for a few
cases. The L2-error is plotted versus the discretization step ∆x in log/log scale at a
given time. Classically, these curves enable us to estimate the rate of convergence of
the scheme.

4.6.1. One dimensional assessments.

The Carrier and Greenspan transient solution. As a first validation of the shoreline
description, the initial water surface elevation is assumed to be depressed near the
shoreline, the fluid held motionless and then released at t = 0. This initial condition
is the upper curve on Figure 4.6.1. Let l be the typical length scale of this specific
problem and α the beach slope. Non-dimensional variables are defined as follows :

x∗ = x/l, ξ∗ = ξ/(α l), u∗ = u/
√

gαl, t∗ = t/
√

l/αg, (4.51)

and the non-dimensional phase speed is given by :

c∗ =
√

(ξ∗ − x∗). (4.52)

Carrier and Greenspan [35] used a hodograph transformation to solve the NSW equa-
tions and obtain an analytical solution, relying on the introduction of the two di-
mensionless variables σ∗ and λ∗ respectively linked to the space and time coordinate.
These variables are defined as follows :

σ∗ = 4c∗, λ∗ = 2(u∗ + c∗). (4.53)

Starting from the one-parameter family of wave-forms at t = 0 :



























ξ∗ = e
[

1 − 5

2

a3

(a2 + σ∗ 2)
3

2

+
3

2

a5

(a2 + σ∗ 2)
5

2

]

,

x∗ = −σ
∗ 2

16
+ e
[

1 − 5

2

a3

(a2 + σ∗ 2)
3

2

+
3

2

a5

(a2 + σ∗ 2)
5

2

]

.

(4.54)

where a =
3

2
(1 + 0.9e)

1

2 and e is a small parameter which characterizes the surface

elevation profile and using some relations between dimensionless ordinary variables,
hodograph coordinates and a potential function depending on this specific problem
Carrier and Greenspan ([35]) obtain the following complete analytical solution given
by :
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(4.55)

where we have set σ∗ = aσ′, λ∗ = aλ′ and then dropped the prime notation. This set
of equations is solved by iterative processes and we use the values of this analytical
solution at the left boundary as the inlet left boundary condition in order to generate
the motion.
During the evolution, the maximum penetration distance reached by the wave occurs

when the coastline velocity is zero. The shoreline rises above the mean sea level of
value e and then the water surface elevation asymptotically settles back to it. We have
performed numerical investigations with the VFRoe-ncv solver on flat bottom and a
fractional step method. It shows that FSM are clearly not suitable for this test case,
since they generate large instabilities as the surface elevation slowly moves toward the
mean level. Thus, this test provides a particularly valuable occasion to test the ability
of the model to compute nearly steady state.

In [35], it is emphasized that e should be less than 0.23 for non-breaking cases and the
results are presented here for e = 0.1. The bottom slope α is taken to be 1/50 and the
initial surface profile (4.54) is imposed in the dimensional case with the length scale
l = 20 m. Values of ∆x∗ = 0.002 and CFL = 0.7 have been used for this test.

In Figure 4.6.2 the analytical and numerical surface elevation are plotted versus the
onshore coordinate for several values of time, in non-dimensional quantities. These
surface elevation profiles have been scaled with the parameter e. The numerical re-
sults are plotted in solid lines and the analytical curves in dashed-dot lines. We see
that the SURF−SVWB model provides excellent agreement with the analytical solu-
tion.
We can see on Figure 4.6.3 the time series of the shoreline surface elevation. The
motion of the instantaneous shoreline is obtained by setting σ = 0 in (4.55). This is
explicitly developed in [35]. We can observe that the shoreline position asymptotically
settles to e and that the SURF−SVWB model provides stability and a good accu-
racy in the computation of this slow convergence. We emphasize that the use of FSM
for this test may lead to instabilities for large values of time since the errors induced
by the discretization may become greater than the variations of the solution. In the
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Figure 4.6.1. The Carrier and Greenspan’s transient solution on a uniform plane
beach. Comparison between numerical results (in solid lines) and analytical solutions
(in dots) for the surface elevation. Profiles of water depth h∗/e are plotted versus
the onshore coordinate x∗, for: a) t∗ = 0s, b) t∗ = 1, c) t∗ = 2 and d) t∗ = 10
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Figure 4.6.2. The Carrier and Greenspan’s transient solution on a uniform plane
beach. Comparison between numerical results (in solid lines) and analytical solutions
(in dots) for the surface elevation. Zoomed profiles of water depth h∗/e are plotted
versus the onshore coordinate x∗, for different values of time t∗ between t∗ = 0 and
t∗ = 1.4.
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Figure 4.6.3. The Carrier and Greenspan’s transient solution on a uniform plane
beach. Comparison between numerical results (in solid line) and the analytical solu-
tion (in dashed-dot line) for the motion of the shoreline. Water surface elevation of
the dimensionless shoreline h∗

s/e is plotted versus the dimensionless time coordinate

t∗.
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Figure 4.6.4. The Carrier and Greenspan’s transient solution on a uniform plane
beach. Time series of the L2-error for : a)h∗ and b) u∗ between numerical results
provided by SURF−SV WB and the analytical solution. The L2-error is plotted
versus t∗ for ∆x∗ = 0.005.

literature, most of the authors use FSM and so, the computation is rarely performed
for large values of time.
For this test, we show on Figure 4.6.4 a) and Figure 4.6.4 b) the time series of the
L2 normalized error between the numerical results provided by SURF−SVWB and
the analytical solution for the water height and the velocity, for the given resolution
∆x∗ = 0.002. For the water height, this error remains small even after the run-up
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when the water level slowly converges toward the mean level. The error on the ve-
locity is much greater than for the water height but remains controlled even for long
times. Actually, this is a drawback which appears for both FSM and well-balanced
schemes and in the literature the authors rarely show error estimations on the velocity.

Remark 4.6.1. We have also implemented a one dimensional variable mesh generat-
ing procedure and applied it to the present case. Numerical investigations show that to
obtain accuracy, we only need to have small discretization steps ∆xi near the shoreline,
while the use of a coarser grid at the inflow boundary don’t modify the quality of the
results and enables to divide by three and sometimes more the total number of cells for
a similar accuracy. But this approach is more difficult to extend in two dimensions.
A possible method is the one suggested in [103].

The Carrier and Greenspan periodic wave solution. In this test, a monochromatic wave
is let run-up and run-down on a plane beach. This solution of the NSW equations
represents the motion of a periodic wave of dimensionless amplitude A∗ and frequency
ω∗ traveling shoreward and being reflected out to sea generating a standing wave on a
plane beach. The previous dimensionless quantities (4.51) and (4.52) are used and the
analytical solution is obtained using the dimensionless hodograph coordinates (4.53).
We obtain for this specific problem :






























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




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





















u∗ = −A
∗ J1(σ

∗) sin(λ∗)

σ∗

ξ∗ =
A∗

4
J0(σ

∗) cos(λ∗) − u∗ 2

4

t∗ =
1

2
λ∗ − u∗

x∗ = ξ∗ − σ∗ 2

16

(4.56)

where J0 and J1 stand for the Bessel functions of zero and first order and the dimen-
sionless frequency ω∗ is equal to one. This analytical solution is frequently used to
validate the ability of the model to deal with run-up and run-down phenomenon and
to study the dynamics of waves near a continental shelf. This expression is valid for
0 ≤ A∗ ≤ 1 and A∗/4 represents the maximum vertical excursion of the shoreline. The
value of this solution at t = 0 is supplied as initial condition and as for the previous
transient case, the analytical variations of the surface elevation at the left boundary
is used as an offshore inlet boundary condition and enable us to generate the motion.
We refer the reader to the original study of Carrier and Greenspan [35] for a complete
description of the solution.

We compute this numerical solution with a dimensionless amplitude A∗ = 0.6, a length
scale l = 20m and a bottom slope α = 1/30. Extensive numerical investigations
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Figure 4.6.5. The Carrier and Greenspan’s periodic wave solution on a uniform
plane beach. Comparison between numerical results (solid lines) and analytical
solutions (in dots) for the surface elevation. Profiles of water surface elevation h∗

are plotted versus the onshore coordinate x∗ for different values of time t∗ between
t∗ = 3T ∗ and t∗ = 3T ∗ + T ∗/2.
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s is plotted versus the dimensionless time coordinate t∗,
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Figure 4.6.7. The Carrier and Greenspan’s periodic solution on a uniform plane
beach. L2-convergence curves for the surface elevation h∗ (in solid line) and the
velocity u∗ (in dashed-dots line) at t∗ = 1.5. log(L2-error) is plotted versus log(∆x)
at t∗ = 1.5.

show that SURF−SVWB is robust enough to deal with a large range of bottom
slope whereas the Exact Well-Balanced Riemann solver or the well-balanced VFRoe-
ncv solver were very sensitive to the bottom slope as it has been emphasized in the
third section. The numerical results provided by SURF−SVWB are compared to
the analytical solution for a significant range of time, in order to be sure that small
instabilities which may eventually be amplified later are not generated.

We show on Figure 4.6.5 the comparison between numerical results and analytical
solution for the surface elevation, for different values of time t∗ between 3T ∗ and
3T ∗ + T ∗/2 where T ∗ is the dimensionless period of the oscillations. Value of ∆x∗ =
0.002 and CFL = 0.7 have been used. for this test. We can observe that the moving
shoreline is accurately computed even after a few periods. We can see on Figure 4.6.6
the time series of the surface elevation at the shoreline, during a few periods. The
accuracy of the results and the robustness of the model are clearly highlighted. A
comparison with the results presented in the literature (see Brocchini et al. [26] or
Prasad and Svendsen [140] for example), shows a more accurate agreement with the
analytical solution for the SURF−SVWB model. Even if we don’t show here the
L2-error curves, we can mention that this error is once again more significant for the
velocity and we stress out that this error is periodical and is only important at the times
of maximum run-up and run-down, when the theoretical velocity vanishes. However,
this error is not amplified and never goes over three per cent during ten complete
periods. We can see on Figure 4.6.7 the L2-convergence curves for the water height
(in solid line) and the velocity (in dot-dashed line). The measured rate of convergence
are above 1.66 for the water height and 1.63 for the velocity.
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Figure 4.6.8. Thacker’s solutions. Topography of the paraboloidal basin.

4.6.2. Two dimensional assessments. Very few analytical solutions are avail-
able for the two-dimensional NSW equations with free moving boundary, involving
run-up and run-down phenomena. In his study [168], Thacker provides a set of two
different classes of solutions corresponding to time-dependent non-linear oscillations
in parabolic basins. The most relevant feature of this set of solutions is that boundary
conditions can’t be used as inlet boundary condition in order to generate the motion
as in Carrier and Greenspan’s solutions for example. As in the one-dimensional cases,
no bore are generated while the water runs-up the sloping sides of the basins. The
motion is oscillatory with a small enough amplitude limit, imposed by the long wave
assumption, and since bottom frictions are not included in the model there is no en-
ergy dissipation.
In the first test, the solution is a radially symmetrical oscillating paraboloid whereas

in the second test the surface remains planar as it oscillates, without any radial sym-
metry. For these two tests, the flow takes place inside a parabola of revolution defined
as :

d(r) = −h0

(

1 − r2

a2

)

(4.57)

on the computational domain [−2, 2] × [−2, 2], where h0 is the depth of water at the
center point for a zero elevation and a is the distance from the center point to the zero
elevation of the shoreline (see Figure 4.6.9).

Thacker’s axisymmetrical solution. The curved solution provides in [168] is given by :
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1
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1

1 −A cos(ωt)

(1

2
ω y A sin(ωt)

)

.

(4.58)

where the frequency ω is given by

ω =
√

(
8g h0

a2
), (4.59)

r is the distance from the center point, r0 the distance from the center point to the
point where the shoreline is initially located (see Figure 4.6.9) and

A =
a2 − r20
a2 + r20

. (4.60)

The analytical solution at t = 0 is supplied as initial condition. The boundary con-
ditions are transmissive but this choice has no further importance since water flows
never reach the boundaries. The depth profile for the basin and the definitions of a, r0

and h0 are shown on Figure 4.6.9. The values used for this numerical test are a = 1,
r0 = 0.8m and h0 = 0.1m. We use ∆x = ∆y = 0.008m and the CFL is set to 0.4.

The centerline initial condition (for y = 0) is shown in Figure 4.6.10 a) together with
comparisons between numerical and analytical results at three different values of time.
These numerical surface elevations are computed after three complete periods T and
these results are in excellent agreement with the analytical solutions. Furthermore,
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Figure 4.6.10. Thacker’s 2D paraboloid solution. Comparison between numerical
results (in solid lines) and analytical solution (in dashed lines) for the centerline free
surface profile. Water surface elevation profiles h are plotted versus the x coordinate,
for y = 0, for a) t=3T and b) t=3T+T/6, where T is the oscillations period

it seems that no spurious oscillations are present near the shoreline even after three
periods.
In Figure 4.6.12, we focus on the run-up and run-down phenomena during an half
period. We can see on this zoom that actually, very small distortions appear in the
intermediates states between the minimum and maximum surface elevation. But these
distortions are small enough to be smoothed during the next numerical iterations and
thus, they don’t propagate.
For this first two-dimensional test, we show on Figure 4.6.14 the L2-error time series
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Figure 4.6.11. Thacker’s 2D paraboloid solution. Comparison between numerical
results (in solid lines) and analytical solution (in dashed lines) for the centerline free
surface profile. Water surface elevation profiles h are plotted versus the x coordinate,
for y = 0, for c) t=3T+T/3 and d) t=3T+T/2, where T is the oscillations period

for the water height and the velocity. As for the one dimensional test, the error on the
water height remains very small during all the computational time. On the velocity
curve we can observe periodic points or errors which are much greater than for the
water height. They correspond to the times at which the velocity vanishes before the
change of sign and may be due to a phase shift between numerical and analytical
data. This error is not amplified and smoothed for long time evolutions. Actually
after ten periods the error always remains under ten per cents. We can also observe
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Figure 4.6.12. Thacker’s paraboloid solution. Zoom of the centerline free surface
profile for the water surface elevation near the shoreline. Analytical (in dots) and
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Figure 4.6.13. Thacker’s paraboloid solution. Time series of the L2-error for h
between numerical results provided by SURF−SV WB and the analytical solution.
The L2-error is plotted versus t for ∆x = ∆y = 0.008.

on Figure 4.6.15 the L2-convergence curves for the water height h and the velocity u.
The rate of convergence is around 1.4 for the water height and 1.2 for the velocity.
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Figure 4.6.14. Thacker’s paraboloid solution. Time series of the L2-error for u
between numerical results provided by SURF−SV WB and the analytical solution.
The L2-error is plotted versus t for ∆x = ∆y = 0.008.
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Figure 4.6.16. Thacker’s planar solution. Centerline initial condition.

Thacker’s planar solution. This test case is perhaps the most difficult for the numerical
model since it involves a wetting and drying procedure on a no radially symetric initial
configuration, unlike the previous test case. The exact periodic solution of the NSW
equations provides in [168] is given by :



























h(x, y, , t) =
η h0

a2

(

2x cos(ω t) + 2y sin(ω t) − η
)

,

u = −η ω sin(ω t),

v = η ω cos(ω t),

(4.61)

where ω =
√

2 g h0/a. The values used for this numerical test are a = 1, η = 0.5m
and h0 = 0.1m.
This exact solution evaluated at t = 0 is used as initial values for the surface elevation
and velocity. The moving shoreline is a circle in the (x, y) plane and the motion is such
that the center of the circle orbits the center of the basin, while the surface remains
planar with constant gradient at any given instant as the water oscillates. For this
test we also use the values ∆x = ∆y = 0.008m and CFL = 0.4.

The numerical results obtained are compared to the analytical solution in Figure 4.6.16.
We can observe an accurate matching between the two solutions, even after a period.
We note a very small distortion near the shoreline, which can be reduced with a finer
spatial discretization. The moving shoreline is accurately computed during several
periods with no signs of spurious oscillations. In order to give an idea of the two
dimensional behavior of the numerical solution, we have plotted on Figure 4.6.18 the
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contours of water depth for both exact and approximate solution at four times dur-
ing a complete period. On Figure 4.6.18 a) we can observe the contours at t = 0 s
whereas Figure 4.6.18 e) shows the same contours after a complete revolution around
the basin. A very tiny distortion can be observed but the contours remain quasi per-
fectly circular during the complete period and these results are more accurate than
those presented by Hubbard and Dodd [84] with their Riemann solver of Roe and their
adaptive refinement procedure. On Figure 4.6.19 a comparison of the contour profiles
for the quantity h+d between t = 0 and t = 2T is possible. These figures enable us to
see how the planar aspect of the water surface is preserved during the computation.
These results are considered as very satisfactory.

It is more difficult to model accurately the velocity. As seen in the previous case
with Figure 4.6.14 the L2-error is always larger for the velocity and we can see on
Figure 4.6.20 that the largest discrepancies are located at the periphery, close to the
moving wet/dry interface and where the water depth is vanishing. We have observed
this behavior for the Carrier and Greenspan’s periodic solution and for the previous
Thacker’s axisymmetrical solution. When compared to the results shown by Hubbard
and Dodd [84], the numerical results for u are considered satisfactory and the results
concerning v seem to be a little more accurate. However these difficulties in modeling
the velocity near the shoreline are not amplified for long time simulations and don’t
seem to disturb the accuracy of the moving shoreline predictions. Therefore, these
results concerning the velocity are considered satisfactory for our purpose.
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Figure 4.6.17. Thacker’s planar solution. Comparison between numerical results
(in solid lines) and analytical solution (in dots). Centerline free surface profiles for
the surface elevation h are plotted versus the x coordinate, for y = 0, at a) t=2T,
t=2T+T/6T, t=2T+T/5T and b) t=2T+T/4, t=2T+T/3, t=2T+T/2.
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Figure 4.6.18. Thacker’s planar solution. Comparison between numerical results
(in solid lines) and analytical solution (in dotted lines). Contours of water depth
for both exact and approximate solutions are shown at a) t=0, b) t=T/4, c) t=T/2
and d) t=3T/4 and e) t=2T.
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Figure 4.6.19. Thacker’s planar solution. Comparison between initial contour
plots for h + d (a): t=0 s), and contour plots for h + d after two periods (b): t=2T)
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Figure 4.6.20. Thacker’s planar solution. Comparison between initial centerline
profiles for the two components (in solid and dashed lines) of the velocity and the
same centerline profile after two complete revolution (in dots).



Chapter 5

Numerical method for
the resolution of the
source terms

In this chapter we detail the discretization of the parabolic step. The remaining source
terms which were not included in the hyperbolic step, namely the friction terms, the
Coriolis term, the capillary effects term and the diffusion terms are discretized here.

Since we have developed an efficient model with particular abilities for the“hyperbolic”
step, it would be useful if this “source” step could preserve the qualities inherited from
the “hyperbolic” step. More precisely :

• i) the “source step” must preserve the positivity of the water depth,

• ii) it must be able to deal easily with the occurrence of dry area,

• iii) it must preserve the steady states “at rest”.

This parabolic step can be viewed as solving a set of ordinary differential equations
where the terms at the right hand side can be evaluated using either the intermediate
values U∗ obtained from the previous hyperbolic step, or the updated values Un+1.
In the first case, the method is fully explicit whereas the second choice lead to a fully
implicit scheme. We choose here to use a semi-implicit method which leads to very
small restrictions on the time discretization step. The discretization of the involved
derivative is performed using centered second order accuracy schemes.

185
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We investigate here the resolution of the following system :

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ht = 0 ,

(hu)t + α0(h)u + α1(h) |u|u =

−(hu)⊥

Ro
+ β h∇∆h+

1

Re
div

(

hD(u) + (2hdiv u)I
)

+ β h∇∆d .

h(t∗) = h∗ ,

(hu)(t∗) = (hu)∗ ,

(5.1)

We aim at computing the new values (hn+1, (hu)n+1) at time tn+1 from the interme-
diate states (h∗, (hu)∗) at time t∗, obtained from the previous hyperbolic time step.
From the equation h,t = 0, it appears that this second step only contributes to the
advancement of the velocity u, since we have hn+1 = h∗. Therefore, system (5.1) can
be expressed in a pseudo non-conservative form as follows :



































hn+1 = h∗,

h∗ ut + α0(h
∗)u + α1(h

∗) |u|u =

− (h∗u)⊥

Ro
+ β h∗∇∆h∗ +

1

Re
div

(

h∗D(u) + (2h∗ div u)I
)

+ β h∗∇∆d .

u(t∗) = u∗ ,
(5.2)

Using a classical upwind Euler explicit scheme for the time discretization, the chosen
semi-implicit discretization is thus defined as follows :

h∗
(un+1 − u∗

∆t

)

+α0(h
∗)un+1 + α1(h

∗)|u∗|un+1 − h∗∇∆h∗

=
((hu)∗)⊥

Ro
+

1

Re
div

(

h∗D(un+1) + (2h∗ div un+1)I
)

+ h∗∇∆d.

(5.3)

As no derivative are involved in the friction and the Coriolis terms, we only have

to develop in details the discretization of the viscous terms
1

Re
div

(

h∗D(Un+1) +

(2h∗ div Un+1)I
)

and the capillary terms. This is addressed in the next sections.

5.1. Centered discretization of the viscous terms

As in the first part, the viscosity tensor D(u) is defined with :
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( i , j )( i−1, j ) ( i+1 , j)

∆

(i+1/2,j)(i−1/2,j)

x(i+1/2,j)x(i−1/2,j)

x(i−1,j) x(i,j) x(i+1,j)

x− ∆x+

∆x

Figure 5.1.1. Discretization sketch in the x direction.

( i , j )

(i , j+1)

(i , j−1)

y( i ,j− 1/2)
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y (i , j−1)

∆

∆

∆

y

y+

y−

(i, j+1/2)

(i, j−1/2)

Figure 5.1.2. Discretization sketch in the y direction.

D(u) =
1

2

(

∇u + t∇u
)

. (5.4)
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Remark 5.1.1. As exposed in the first chapter a turbulent model can be added in
the expression of this stress tensor, leading to eddy anisotropic viscosity. The vertical
eddy viscosity coefficient is recovered in the expressions of the friction coefficients α0(h)
and α1(h), while the horizontal eddy viscosity coefficient is used in the definition of
the Reynolds number. However, it does not modify the following discretization.

In terms of spatial derivation we obtain the following expression :

hD(u) + (2hdiv u)I =
1

2

(

6hux + 4h vy h(uy + vx)
h(uy + vx) 6h vy + 4hux

)

(5.5)

Therefore, the whole term
1

Re
div

(

hD(u) + (2hdiv u)I
)

is developed as follows :

1

Re
div

(

hD(u)+(2hdiv u)I
)

=
1

Re









3 (hux)x + 2(h vy)x +
1

2
(huy)y +

1

2
(h vx)y

3 (h vy)y + 2(hux)y +
1

2
(h vx)x +

1

2
(huy)x









(5.6)

We next develop in details the finite difference derivations of each derivate involved in
this expression. The second order derivatives are approximate with the usual second
order centered discretization. We obtain for an arbitrary quantity α and a derivation
along the x direction :

(

(hαx)x

)

i,j
=

1

(∆x)ij

(

hi+ 1

2
,j(αx)i+ 1

2
,j − hi− 1

2
,j(αx)i− 1

2
,j

)

+O((∆x)2ij)

where (∆x)ij = x(i +
1

2
, j) − x(i − 1

2
, j). This expression is valid for variable space

discretization but for the sake of clarity, and when no confusion is possible, we set
∆x = (∆x)ij in the following. The notation (∆x)ij will only be used when necessary.

The first order derivatives at the locations (i+ 1
2 , j) and (i− 1

2 , j) are given by :

(

αx

)

i+ 1

2
,j

=
αi+1,j − αi,j

(∆x)+ij
+O(∆x+

ij) and
(

αx

)

i− 1

2
,j

=
αi,j − αi−1,j

(∆x)−ij
+O(∆x−ij)

where (∆x)+ij = x(i + 1, j) − x(i, j) and (∆x)−ij = x(i, j) − x(i − 1, j) stand for the

distance between the centers of the cells (i + 1, j) and (i, j) for (∆x)+
ij and between

the cells (i, j) and (i− 1, j) for (∆x)−ij .

As for ∆x we set ∆x+ = (∆x)+ij and ∆x− = (∆x)−ij in the following. This is illustrated
on Figure 5.1.1 for the considered x direction and Figure 5.1.2 for the y direction which
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will be considered hereinafter.

We also define δx = max i,j((∆x)ij , (∆x)
+
ij , (∆x)

−
ij) and the accuracy of the previous

discretization can be expressed in terms of δx which is no more cell dependent.

The complete discretized expression is thus given by :

(

∂x(h∂xα)
)

i,j
' 1

∆x∆x+

(

hi+ 1

2
,j(αi+1,j − αi,j)

)

− 1

∆x∆x−

(

hi− 1

2
,j(αi,j − αi−1,j)

)

(5.7)

The discretization of the derivation along the y expression is obtained in the same
way. We obtain :

(

∂y(h∂yα)
)

i,j
' 1

∆y∆y+

(

hi,j+ 1

2

(αi,j+1 − αi,j)
)

− 1

∆y∆y−

(

hi,j− 1

2

(αi,j − αi,j−1)
)

(5.8)

For the crosses derivatives we have, :

(

∂x(h∂yα)
)

i,j
' 1

∆x∆y

(

hi+ 1

2
,j(αi+ 1

2
,j+ 1

2

−αi+ 1

2
,j− 1

2

)−hi− 1

2
,j(αi− 1

2
,j+ 1

2

−αi− 1

2
,j− 1

2

)
)

(5.9)

and

(

∂y(h∂xα)
)

i,j
' 1

∆x∆y

(

hi,j+ 1

2

(αi+ 1

2
,j+ 1

2

−αi− 1

2
,j+ 1

2

)−hi,j− 1

2

(αi+ 1

2
,j− 1

2

−αi− 1

2
,j− 1

2

)
)

.

(5.10)

Hence, gathering these expressions, we obtain the complete discretization of the diffu-
sion terms at point (i, j), for the scalar velocity component u :
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1

Re

(

3 (hux)x + 2(h vy)x +
1

2
(huy)y +

1

2
(h vx)y

)

'

1

Re

[

( 3hi+ 1

2
,j

∆x∆x+
+

3hi− 1

2
,j

∆x∆x−
+

hi,j+ 1

2

2∆y∆y+
+

hi,j− 1

2

2∆y∆y−

)

ui,j

−
( 3hi+ 1

2
,j

∆x∆x+

)

ui+1,j −
( 3hi− 1

2
,j

∆x∆x−

)

ui−1,j −
( hi,j+ 1

2

2∆y∆y+

)

ui,j+1 −
( hi,j− 1

2

2∆y∆y−

)

ui,j−1

−
(2hi+ 1

2
,j

∆x∆y
+

hi,j+ 1

2

2∆x∆y

)

v
i+ 1

2
,j+ 1

2

−
(2hi− 1

2
,j

∆x∆y
+

hi,j− 1

2

2∆x∆y

)

v
i− 1

2
,j− 1

2

+
(2hi+ 1

2
,j

∆x∆y
+

hi,j− 1

2

2∆x∆y

)

v
i+ 1

2
,j− 1

2

+
(2hi− 1

2
,j

∆x∆y
+

hi,j+ 1

2

2∆x∆y

)

v
i− 1

2
,j+ 1

2

]

(5.11)
Remark that values of the advanced component vn+1 are involved in this expression
which enables the computation of the component un+1.
Similarly, we obtain the following expression for the velocity component v :

1

Re

(

3 (h vy)y + 2(hux)y +
1

2
(h vx)x +

1

2
(huy)x

)

'

1

Re

[

( 3hi,j+ 1

2

∆y∆y+
+

3hi,j− 1

2

∆y∆y−
+

hi+ 1

2
,j

2∆x∆x+
+

hi− 1

2
,j

2∆x∆x−

)

vi,j

−
( 3hi,j+ 1

2

∆y∆y+

)

vi,j+1 −
( 3hi,j− 1

2

∆y∆y−

)

vi,j−1 −
( hi+ 1

2
,j

2∆x∆x+

)

vi+1,j −
( hi− 1

2
,j

2∆x∆x−

)

vi−1,j

−
(2hi,j+ 1

2

∆x∆y
+

hi+ 1

2
,j

2∆x∆y

)

u
i+ 1

2
,j+ 1

2

−
(2hi,j− 1

2

∆x∆y
+

hi− 1

2
,j

2∆x∆y

)

u
i− 1

2
,j− 1

2

+
(2hi,j+ 1

2

∆x∆y
+

hi− 1

2
,j

2∆x∆y

)

u
i+ 1

2
,j− 1

2

+
(2hi,j− 1

2

∆x∆y
+

hi+ 1

2
,j

2∆x∆y

)

u
i− 1

2
,j+ 1

2

]

(5.12)

These expressions are second order accuracy in space. Note that interface values, de-
noted with fractional indices, appear in these expressions. These values are computed
with linear interpolation. For an arbitrary quantity α, the values αi± 1

2
,j and αi,j± 1

2

are obtained as follows :
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αi+ 1

2
,j =

(∆x)i+1,j αi+1,j + (∆x)i,j αi,j

(∆x)i,j + (∆x)i+1,j
, αi− 1

2
,j =

(∆x)i,j αi,j + (∆x)i−1,j αi−1,j

(∆x)i−1,j + (∆x)i,j
,

αi,j+ 1

2

=
(∆y)i,j+1 αi,j+1 + (∆y)i,j αi,j

(∆y)i,j + (∆y)i,j+1
, αi,j− 1

2

=
(∆y)i,j αi,j + (∆y)i,j−1 αi,j−1

(∆y)i,j−1 + (∆y)i,j
.

(5.13)

For the fully two dimensional case, we have implemented the case of Cartesian meshes
with variable discretization step in each direction but without global refinement. This
avoid the difficulty of considering interfaces between cells with different sizes. Conse-
quently, the discretization step ∆x can only vary in the x direction, that is to say that
we have necessarily (∆x)i,j−1 = (∆x)i,j = (∆x)i,j+1, whereas it is possible to have
(∆x)i+1,j 6= (∆x)i,j and (∆x)i,j 6= (∆x)i−1,j . Therefore the linear interpolations on
variable mesh for the αi± 1

2
,j± 1

2

values are given by :

αi∓ 1

2
,j± 1

2

=
(∆y)i,j(∆x)i∓1,jαi∓1,j + (∆y)i,j(∆x)i,jαi,j
[

(∆y)i,j±1 + (∆y)i,j

] [

(∆x)i∓1,j + (∆x)i,j

]

+
(∆y)i,j±1(∆x)i∓1,jαi∓1,j±1 + (∆y)i,j±1(∆x)i,jαi,j±1

[

(∆y)i,j±1 + (∆y)i,j

] [

(∆x)i∓1,j + (∆x)i,j

]

(5.14)

5.2. Centered discretization of the capillary/surface
tension terms

We suggest in this section a simple way to discretize the capillary terms given by
βh∇∆h. This discretization is performed in two steps. In a first step, we compute the
Laplacian of the water depth h. It raises :

(

∆h
)

i,j
=
(

∂2
x h
)

i,j
+
(

∂2
y h
)

i,j

' 1

∆x∆x+

(

hi+1,j − hi,j

)

− 1

∆x∆x−

(

hi,j − hi−1,j

)

+
1

∆y∆y+

(

hi,j+1 − hi,j

)

− 1

∆y∆y−

(

hi,j − hi,j−1

)

(5.15)

with the notations introduced at the previous section. this centered discretization is
second order accuracy in space. In a second step, we perform the following centered
discretization of the remaining gradient :
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(

∇(∆h)
)

i,j
=





(

∂x (∆h)
)

i,j
(

∂y (∆h)
)

i,j



 '











(∆h)i+1,j − (∆h)i−1,j

∆x+ + ∆x−

(∆h)i,j+1 − (∆h)i,j−1

∆y+ + ∆y−











(5.16)

Finally, the nonlinear capillary term is computed with :

(

h∗∇∆h∗
)

i,j
= h∗i,j

(

∇(∆h∗)
)

i,j
. (5.17)

The remaining term h∇∆d is computed following the same idea. We emphasized that
no stability study has been performed for this discretization. It has been implemented
and tested in a few cases to ensure that it does not lead to numerical instabilities.
This is the case for small enough values of the capillary coefficient β.
Another idea which has been investigated is to consider that ∆h as a new artificial
variable, by setting ω = ∆h. Therefore, the capillary term β h∇∆h is written under
the form β h∇ω and the idea is then to upwind this term in the same way as the
convection or the bed-slope source term, while the artificial variable ω = ∆h is re-
covered at each time step by a relaxation method. This second approach is perhaps
more promising since the nonlinear product is taken into account through the upwind
process, as for the convection terms. Nonetheless, these two approaches don’t preserve
the steady states at rest and further investigations are required.

In practice, we do not include the capillary effects in our simulations. This choice
is motivated by several reasons. The first is the fact that for numerous test cases,
especially those for which we have analytical results, the surface tension effects are
not taken into account in the NSW model. Thus, to be consistent with the analytical
solutions, surface tensions effects have been neglected for these cases. The second
reason is that for more realistic cases as those introduced in the third part of this study,
we have performed qualitative comparison with results introduced in the literature
and these results have been obtained with models based on NSW equations without
capillary effects. Another reason is that at this time, we are not aware of realistic
cases which enables us to validate the good“physical behavior”of this discretization. In
addition, as we mainly aim at modeling nearshore hydrodynamic cases, we can wonder
about the effects of surface tension on the considered phenomena. As emphasized by
Peregrine in [136], the clearest effect of surface tension is on steep waves less than
about 10 cm high, leading to an inhibition of both the development of a plunging jet
and the entrainment of air.
To conclude, we can remark that this third order surface tension term can be regarded
as a small weakly dispersive term. An efficient and accurate discretization of this
term can be a first step towards the introduction of realistic dispersive terms into our
NSW model, in order to extend its domain of validity seaward of the breaking zone.
Achieving such an extension could be a far-reaching alternative to the parametrized
Boussinesq-like models which have seen their validity domain extended to the surf and
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swash zone. Hence, a more detailed study of this term seems to be needed and is
under investigations.



194 5. Numerical method for the resolution of the source terms

5.3. Discretization of the parabolic equation

Gathering the previous discretizations of the viscous and capillary terms, we are able
to compute the updated values of the velocity u for this parabolic step. It is convenient
to introduce the following coefficients :
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and
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We also introduce the following coefficients which are involved in the cross derivatives :
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





















































































































































(b1)
u
i,j =

1

4Re
· ∆t

∆x · ∆y
(

−1

2
h∗

i,j+ 1

2

+
1

2
h∗

i,j− 1

2

)

,

(b−1)
u
i,j = −(b1)

u
i,j ,

(b2)
u
i,j =

1

4Re
· ∆t

∆x · ∆y
(

2h∗
i− 1

2
,j

+
1

2
h∗

i,j+ 1

2

)

,

(b−2)
u
i,j =

1

4Re
· ∆t

∆x · ∆y
(

2h∗
i+ 1

2
,j

+
1

2
h∗

i,j− 1

2

)

,

(b3)
u
i,j =

1

4Re
· ∆t

∆x · ∆y
(

−2h∗
i+ 1

2
,j

+ 2h∗
i− 1

2
,j

)

,

(b−3)
u
i,j = −(b3)

u
i,j

(b4)
u
i,j =

1

4Re
· ∆t

∆x · ∆y
(

−2h∗
i+ 1

2
,j
− 1

2
h∗

i,j+ 1

2

)

,

(b−4)
u
i,j =

1

4Re
· ∆t

∆x · ∆y
(

−2h∗
i− 1

2
,j
− 1

2
h∗

i,j− 1

2

)

,

(5.20)

and






















































































































































(b1)
v
i,j =

1

4Re
· ∆t

∆x · ∆y
(

−2h∗
i,j+ 1

2

+ 2h∗
i,j− 1

2

)

,

(b−1)
v
i,j = −(b1)

v
i,j ,

(b2)
v
i,j =

1

4Re
· ∆t

∆x · ∆y
(1

2
h∗

i− 1

2
,j

+ 2h∗
i,j+ 1

2

)

,

(b−2)
v
i,j =

1

4Re
· ∆t

∆x · ∆y
(1

2
h∗

i+ 1

2
,j

+ 2h∗
i,j− 1

2

)

,

(b3)
v
i,j =

1

4Re
· ∆t

∆x · ∆y
(

−1

2
h∗

i+ 1

2
,j

+
1

2
h∗

i− 1

2
,j

)

,

(b−3)
v
i,j = −(b3)

v
i,j

(b4)
v
i,j =

1

4Re
· ∆t

∆x · ∆y
(

−1

2
h∗

i+ 1

2
,j
− 2h∗

i,j+ 1

2

)

,

(b−4)
v
i,j =

1

4Re
· ∆t

∆x · ∆y
(

−1

2
h∗

i− 1

2
,j
− 2h∗

i,j− 1

2

)

.

(5.21)



196 5. Numerical method for the resolution of the source terms

From these values, the discretization of equation (5.3) at point (i, j) yields the following
system, involving the unknown ui,j et vi,j :
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where we have neglected the capillary terms, considering the previous remarks.

Remark 5.3.1. As emphasized in Chapter 3, the chosen time step ∆t for both hy-
perbolic and parabolic steps is defined with ∆t = min (∆tc,∆ts) where ∆tc and ∆ts
are respectively obtained from stability analysis for the “convection” hyperbolic step and
the parabolic “source” step. Moreover, it appears from numerical investigations that
we may choose ∆t = ∆tc since the restriction on the time step derived from our semi-
implicit method is far less constraining than those provides by the hyperbolic stability
requirements.

Since these two equations are coupled, it raises an unsymmetric sparse matrix with
21 non-zero diagonals. This system, which can become very large for fine meshes, is
solved using the UMFPACK solver ([174]). This solver is written in ANSI/ISO C and
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relies on the Unsymmetric-pattern MultiFrontal method and direct sparse LU factor-
ization. This program includes a basic Fortran interface to some of the C UMFPACK
routines which have been slightly modified in order to be suitable for our purpose. The
matrix is represented in compressed column form, which consists of three arrays : Ap,
Ai and Ax. Considering that our matrix is m-by-m with nz entries, the row indices
of entries in column j are stored in Ai(Ap(j) · · ·Ap(j + 1) − 1). The corresponding
numerical values are stored in Ax(Ap(j) · · ·Ap(j + 1) − 1). This program can use the
Level − 3 Basic Linear Algebra Subprograms (BLAS, dense matrix multiply), which
enable to considerably improve its performance.

Remark 5.3.2. This discretization of the source step enable us to achieve the previous
requirements concerning the preservation of the abilities of the well-balanced method
used in the hyperbolic step. More precisely, we highlight the following properties :

• i) the source step preserves the positivity of the water depth since values of h
are not modified,

• ii) this step is able to cope with the occurrence of dry area, since we have pay
attention to avoid any division by h, which could lead to infinite values when
the water depth vanishes.

• iii) this step preserves the steady states “at rest” since values of the velocity
u are not modified by the source step when we have u = 0.

We have implemented the modified UMFPACK interface and the previous dis-
cretization in our SURF−SVWB model in order to enable the resolution of the whole
system (2.5.1). Since analytical solutions of the NSW equations involving friction and
diffusion source terms are not available, the numerical discretization of the whole sys-
tem has been performed using some of the previous test cases. This is addressed in
section 5.5.

5.4. Second order accuracy in time

All the derivatives involved in this parabolic source step are discretized using centered
second order accuracy finite difference schemes. To recover the second order accuracy
in time when solving the complete system with both hyperbolic and parabolic steps,
the Heun scheme introduced in chapter 4 to obtain second order accuracy in time for
the hyperbolic step is extended to the complete system with source terms. We obtain
the following sequence :

(1) First step : hyperbolic problem

Ũn+1
c = Un + ∆tΦ(Un), (5.23)
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(2) First step : source problem

Ũn+1 = S∆tŨ
n+1
c , (5.24)

(3) Second step : hyperbolic problem

Ũn+2
c = Ũn+1 + ∆tΦ(Ũn+1), (5.25)

(4) Second step : source problem

Ũn+2 = S∆tŨ
n+2
c , (5.26)

(5) Final updated state :

Un+1 =
Un + Ũn+2

2
. (5.27)

Remark 5.4.1. We must keep in mind that our “hyperbolic problem” is not the clas-
sical “convection problem”, since this step also takes into account the bed-slope source
term with a well-balanced method, as exposed in the previous chapter. Therefore, this
complete sequence is able to preserve non-trivial steady states “at rest” involving a bal-
ance between flux gradients and the bed slope source term. An extension which aims at
including the friction source terms into the “hyperbolic problem” in order to preserve
non-trivial equilibrium involving friction phenomena is under study.

5.5. Numerical assessments

It is difficult to validate the numerical method implemented for this source step in the
same way as for the hyperbolic step, since we do not have analytical solutions, even in
the one dimensional case, for problems involving friction and diffusion. Nonetheless, we
can partially assess our method with qualitative analyzes. Therefore, we propose here
to perform several previously validated test cases adding some friction and diffusion
effects, in order to observe the induced modifications.
Hence, we present here a one dimensional bore-generating dam-break test and a two
dimensional test using the Thacker’s axisymmetrical solution. This solution is adapted
to our purpose since the motion is not driven by a boundary condition, as in the Carrier
and Greenspan solutions. Moreover we have already study the solution without any
friction or diffusion terms and a qualitative comparison can be performed.

5.5.1. A bore solution. The present test is similar to the previous dam-break
problem with the exception of the non-zero initial heigth hR at the right of the dam
position.
Thus, departing from the following initial condition :

{

h = hL u = 0 for x < 50,

h = hR u = 0 for x > 50,
(5.28)

the flow evolves with the generation of a right moving bore which advances in still
water. The analytical solution is known (see [161] for example).
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We have taken for this test hL = 5m and hR = 3m and the channel is 100m long. To

be consistent with the asymptotic regime introduced in Chapter 1, we set ε =
hL − hR

L
,

leading to ε = 0.02, and we defined the viscosity µ = εµ0 and the friction coefficient
kt = εr1. The laminar viscosity is neglected for this test. In the present test, the vis-
cosity coefficient µ0 varies in the range 0, 20, 50, 100 and the friction coefficient r1 can
take the values 0, 5, 20, 50. We have performed a comparison between the numerical
solution without any friction or diffusion (which is very close to the analytical bore
solution) and on one hand the numerical solution with friction but without diffusion
and on the other hand the numerical results with diffusion but without any friction.
This enables us to clearly analyze the growing and distinct effects of each terms. Nu-
merical results are shown on Figure 5.5.1. These results are considered as qualitatively
satisfactory.

5.5.2. Thacker’s axisymmetrical solution with friction. For this test, the
viscosity is neglected and we only introduce some dissipation with a large enough fric-
tion term. The laminar friction coefficient kl is set to zero and the turbulent friction
coefficient kt is first set to 0.1. Consequently, we only consider here a quadratic friction
law. The results are shown on Figure 5.5.2 where we have plotted on each sub-figure
the numerical solutions with friction and the corresponding analytical solution without
friction at the same time, in order to highlight the decreasing amplitudes. As expected
the friction entails a significant loss of energy and the motion is no more periodical.
The oscillation’s amplitude decreases with respect to time and the free surface profile
slowly settles back to the mean water level. The mass of fluid is conserved. It is worth
noting that the convergence towards the steady state at rest is not perturbed by the
source step, as previously emphasized.

We show on Figure 5.5.4 time series of the free surface oscillations at the center of
the basin (x = 0, y = 0) for different values of kt. We can observe the impact of
this coefficient on the motions, since the steady state at rest is achieved very soon,
approximatively at t = 18 s, for kt = 0.5, the motion being quasi completely inhibited.
For kt = 0.05 and kt = 0.1 the steady state is reached respectively around t = 300 s
and t = 100 s.

5.5.3. Thacker’s axisymmetrical solution with diffusion. For this test, the
friction are neglected and we only introduce some diffusion. Our goal is to compare
qualitatively these results to the previous ones with only the friction. In order to con-
sider the same asymptotic regime as in Chapter 1, the viscosity is defined with µ = εµ0

where µ is set to 100 and ε is linked to the considered problem scales. Precisely, as
the basin dimension are 4 × 4 meters and the oscillations amplitude is nearly 0.04m
we set ε = 0.04/4 = 0.01.

We show on Figure 5.5.4 time series of the free surface oscillations at the center of the
basin (x = 0, y = 0). We can observe that a large diffusion term produces enough
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Figure 5.5.1. A bore solution. Comparison between numerical results without any
friction or diffusion and the numerical results with a) friction and varying r1 and b)
diffusion and varying µ0. The applied values of the relevant coefficients are specified
on top right corners of each figure.

dissipation to rapidly inhibit the motion. However, our goal is only to validate the good
implementation of the previous method. Further investigations are needed in order to
add a relevant anisotropic turbulent model and obtain a significant parameterization
of the involved coefficients.

Remark 5.5.1. Note that it would be interesting in further investigations to compute
numerical Thacker’s solution with only the Coriolis terms, since analytical solutions
provided by Thacker initially include the Coriolis effects.
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Figure 5.5.2. Thacker’s 2D paraboloid solution with friction. Comparison between
numerical results with a kt = 0.1 friction coefficient (in solid lines) and analytical
solution without friction (in dashed lines) for the centerline free surface profile.
Water surface elevation profiles h are plotted versus the x coordinate, at y = 0, for
a) t= 1.2 s, b) t=2.4 s, c) t=4.2 s, d) t=7.8 s, e) t =9.0 s and e) t = 40.0 s
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Figure 5.5.4. Thacker’s 2D paraboloid solution with friction. Time series of the
free surface profile at the center of the basin for different values of the friction
coefficient kt: a) kt = 0.05, b) kt = 0.1, c) kt = 0.5.



Conclusion

In this chapter, we have introduced a numerical method which leads to the resolution
of the two dimensional shallow water model derived in Chapter 1. This method rely on
a fractional step method which splits the complete system into two distinct systems,
namely an hyperbolic system with bed slope source term and a parabolic system which
contains the remaining source terms. The hyperbolic problem is solved using a well-
balanced and shock capturing finite volume method. We have first investigated the
use of the Exact Well-Balanced Riemann solver or Greenberg and Leroux [72] and its
simplified linearized version the well-balanced VFRoe-ncv Riemann solver [57]. These
two solvers rely on the direct resolution of an augmented Riemann problem with piece-
wise constant topography. Numerical investigations have highlighted that even if these
two solvers have been proved to be powerful and accurate for a large range of hydraulic
problems involving occurrence and flooding of dry area, they fail to provide accurate
enough results for classical moving shoreline problems. Consequently, we have investi-
gated the use of the recent “hydrostatic” reconstruction method [3] which can be used
together with any homogeneous Riemann solver. The VFRoe-ncv Riemann solver has
been chosen. This choice is mainly motivated by the fact that suitable properties con-
cerning the non-negativity of the computed water depth have been obtained for this
scheme [58]. An exact Riemann solver has also been tested but the computational
times were almost five to ten times greater than with the VFRoe-ncv without any
significant improvements in the accuracy.

A “second order” accuracy MUSCL reconstruction has also been performed. This
reconstruction preserves the qualities inherited from the well-balanced method. It
raises a fast, robust and accurate bore-capturing well-balanced model, nicknamed
SURF−SVWB, very easy to implement even in the two-dimensional case on unregu-
lar Cartesian meshes, and able to preserve steady states at rest. This model has been
validated against several analytical solutions in situations involving multiple moving
shorelines, strong variations of bed slope and convergence towards steady states. This
scheme introduces very little artificial viscosity and numerical results are in very good
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agreement with the analytical solutions. Nonetheless, as for most Riemann solver, the
velocity seems to be far more difficult to model with precision and further investiga-
tions are needed.

Numerical investigations have shown that the application of well-balanced schemes
for moving shoreline problems is not trivial, since two others schemes which have been
implemented and extensively validated in numerical tests involving occurrence of dry
area and strong bottom variations have failed to provide relevant results. From this,
the SURF−SVWB model appears as an efficient and robust tool which can be of a
great utility for the numerical simulation of run-up and run-down of waves. A com-
parison with a few models introduced in the literature shows that the results provided
by the SURF−SVWB model are at least as accurate as those presented by Brocchini
et al. [26] or Prasad and Svendsen [140] with their fixed grid method and perhaps
even with their moving grid method. Besides, SURF−SVWB enables us to overcome
the problems due to the fractional step method which was used in all these models.
It can also be noticed that SURF−SVWB is able to deal with strong variations of
topography as well as the robust and accurate Exact Well-Balanced Riemann solver of
Greenberg and Leroux and ensures more accurate results for moving shoreline prob-
lems.

In a second step, the source problem involving the Coriolis, friction and viscous
terms is approximated using a semi-implicit time discretization and a centered second
order accuracy finite difference method. It raises an unsymmetrical large sparse matrix
which is solved using an efficient and fast solver. This source step is proved to deal
without problems with the occurrence of dry areas and to preserve steady states at
rest. In the literature, viscous shallow water models with such properties are uncom-
mon. Hence, this model appears as a promising tool for more realistic simulations, as
performed in the third part of this work.

Moreover, relevant absorbing/generating second order accuracy inlet boundary
conditions have been implemented and tested. This type of boundary condition will
be of great utility in the next part where applications to various nearshore hydrody-
namic problems are performed.

It is worth noticing that some overtopping simulations inspired from those sug-
gested in [82] and [84] have also been investigated. The SURF−SVWB model appears
to be stable enough to deal with such extreme situations, which are at the limit of
the domain of validity of the shallow water assumptions. Nonetheless, such problems
require a meticulous assessment using experimental data and need further investiga-
tions.



Part 3
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Introduction

In this third part, we investigate the use of the “second order” accuracy well-balanced
SURF−SVWB model to study some important processes which occur in the nearshore.
We restrict ourselves to the study of breaking or non-breaking solitary or periodic train
of longshore uniform waves of normal incidence.

A major distinction between breaking and non-breaking waves needs first to be
highlighted. Physically, the transformation due to breaking leads to motions of various

Figure 5.5.5. Aerial view of the Truc Vert Aquitanian beach. The cross-shore and
longshore direction are sketched and the intertidal and subtidal zones are indicated
(Castelle [39]).
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kinds and scales, including small-scale turbulence, larger-scale vorticity motions, low
frequency waves and steady flows and is mainly concerned with dissipation process.
On the other hand, non-breaking long waves often lead to large run-up processes,
eventually overtopping phenomena and reflection.
Theoretically, criteria for the onset of breaking of periodic waves have been stressed
out, often as limiting conditions for non-breaking solutions. A relevant example is the
previously introduced analytical solution of Carrier and Greenspan which is only valid
under a non-breaking criteria involving the beach slope, the frequency of the incident
periodic wave and the vertical waterline excursion. It provides a local solution near
the shoreline for perfect reflection of incident periodic waves for gentle beach slopes.
When the critical value is reached, the surface becomes locally vertical. However, this
breaking criteria often predict earlier breaking than those observed experimentally and
Meyer [115] hypothesized that this criteria may represent an intrinsic failure in the
shallow water model rather than physical wave breaking. Hence the definition of a
faithful breaking criteria appears to be a highly empirical and complex topic and the
reader is referred to the papers of Battjes [8], [7] for a comprehensive study.

We finally introduce here on Figure 5.5.5 the definition of the longshore and the
cross-shore directions, and the subtidal and intertidal areas, which are usual termi-
nologies in coastal engineering.

The distinction between breaking and non-breaking waves will lead us in the se-
quel. In the next chapter, we investigate the use of the SURF−SVWB model for the
simulation of the propagation in coastal areas and run-up over various topographies
of one and two dimensional non-breaking solitary long waves, regarded as tsunamis.
In Chapter 7, the propagation of periodic trains of breaking waves in the surf zone is
investigated in the one and two dimensional cases. Wave features and wave-induced
horizontal circulation are studied.



Chapter 6

Simulation of run-up
process

6.1. Tsunamis and run-up models

6.1.1. Tsunamis. Tsunamis are serious natural hazards, which can be generated
by many different mechanisms including submarine earthquakes, landslides or subma-
rine volcano eruptions. Tsunamis that can travel across an ocean and attack a coastal
area far away from the initial generation location are called distant tsunamis, while
tsunamis that are confined near the source are called local tsunamis.
In the deep ocean, tsunami wavelengths are about 100 − 400 km, whereas the average
depth of the Pacific ocean, for instance, is nearly 4 km. Consequently, the long wave
approximation is fully justified for the study of such phenomena and the shallow wa-
ter theory leads to the propagation speed c =

√
gh where h is the water depth and

g the acceleration of gravity. Typical propagation speeds are of order of 700 km/h.
Considering the fact that tsunami amplitudes in deep ocean regions are generally less
than 1m, they often pass unnoticed, masked by the wind generated swell, until they
reach the coastal domain, where the water depth decreases.

When a tsunami propagates over the continental shelf, its amplitude dramatically
increases and its wavelength decreases as the wave shoals. Considering the processes of
refraction, reflection, diffraction and shoaling, the wave may be dramatically distorted
as reaching the shore. A tsunami which is nearly imperceptible in the deep ocean can
see its amplitude becoming large enough to cause serious damages landward.
The nearshore topography and coastline geometry appears as relevant factors with
respect to the devastating feature of a tsunami. The tsunami amplitude can be greatly
enhanced by specific man-made coastal structures, like harbors. This topic has been
investigated by Zelt in [188]. The longshore length of the tsunami may also be an
important feature for the impact on coastal structures.

209
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Many areas in the world are susceptible to tsunami attack. The regions which are
mainly concerned are the seismically active Japanese coast and the Pacific “Ring of
Fire”. But we have seen recently that other regions can also be dramatically devas-
tated, leading to enormous loss of both life and money.

The protection of life and coastal landwards from tsunamis is thus an important
topic. It depends on a reliable understanding of the involved physical processes, in
order to accurately predict the inundated area at a given location knowing the main
features of the incident long waves. As exposed before, the evolution of the tsunami
propagating on continental shelf and reaching the shore is determined mainly by the
nearshore topography, the shoreline geometry and the wave characteristics. The off-
shore topography can also be of significant importance.
Several numerical models have been developed for simulating tsunamis and may be
used to predict the inundated region and the construction of civil defense structures.
These models are mostly based on the NSW equations with various methods for the
discretization and the moving shoreline tracking algorithm. This subject is investi-
gated in the next section. We can mention for example the Cornell model developed
by Liu et al. [117], the PMEL/MOST model by Titov and Synolakis [169], and the
Japanese model by Immamura et al.[85].
It is worth noticing that in the numerical models, idealized and well-defined solitary
waves evolve over constant depth area and then over idealized topography, whereas in
the real phenomenon, the initial wave profile is never known and the wave propagates
over complex topography. Hence, a realistic tsunami simulation model must be able
to predict the complete physical processes of the tsunami including the initial tsunami
generation due to landslides or earthquakes, the propagation of the tsunami in the
open ocean and coastal region, the shoreward run-up of tsunami, causing a coastal
inundation and the convergence towards the steady state at rest after the evacuation
of the wave. Several attempts to model these entire processes have been performed,
with less or more success. For example Gica and Teng [63] used the Cornell propaga-
tion and run-up model with an earthquake model, generating a sea floor quantitative
displacement. More recently, Liu et al. [119] used the Large Eddy Simulation (LES)
approach and the Volume of Fluid (VOF) method to predict run-up due to three di-
mensional sliding masses induced long waves. Yet, a faithful validation of such models
is not always possible, since comparisons between tsunami field data with numerical
prediction is often arduous. For a general survey of tsunami related topics , the reader
is referred to the discussion of Carrier [36].

In this chapter we focus on the propagation of non-breaking solitary long waves in
coastal areas, which can be regarded as a tsunami propagation model, and we study
with attention the induced run-up and run-down processes, using the SURF−SVWB
model. This model may allow the computation of the convergence towards the steady
states at rest after the run-up and the dissipation of residual ringing effects. Hence, a
better estimation of the involved time scales may be provided for more realistic studies.
Moreover, we expect the well-balanced nature of the model to improve the computation
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Figure 6.1.1. Definition sketch of wave run-up over the still water depth.

of the impact of coastal topography on the incident wave. The computation of the
two dimensional effects due to the longshore variations of topography, especially for
wave refraction and diffraction, may also be improved.

6.1.2. The run-up process. The run-up of waves on a sloping beach is an ex-
ceedingly complex phenomenon, involving reflexion, wave shoaling and refraction and
still many aspects are not well-understood. Besides, flow motions near the inundated
region exhibit strong nonlinearity in comparison to the motions away from the shore-
line. Nonetheless, a faithful model for predicting run-up motions is crucial for the
study of forces on coastal structures exposed to ocean environments and the impact
on the coastal area of tsunami or storm waves. For that reason most of the models
which deal with this process are numerical.

Yet, the run-up of breaking and non-breaking waves on sloping boundaries is generally
more difficult to introduce into numerical models than the usual boundary condition
for vertical boundaries where the normal mass flux is zero. Actually, we may have
an intuitive and qualitative idea of the involved processes since for very steep slope
the situation can be compared to the reflection of an incident wave on a vertical wall.
Furthermore, the process of run-down if often far more difficult to predict accurately
since a large part of the information used to compute the shoreline motion comes from
the recently inundated area.
The most critical step in the inundation calculation is the shoreline computation, which
involves a moving boundary between three different phases : liquid, air and solid. For
most numerical problems concerning ocean’s hydrodynamic, the fluid occupies a given
fixed domain. If this domain is not fixed but varies with time in an unknown manner
as the waves swash up and down the beach, the domain of the problem depends of
the solution itself. Accordingly, we can’t determine the domain of the problem and
then the solution and the two have to be found simultaneously. Consequently, one
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of the most relevant challenges faced when modeling nearshore hydrodynamics and
wave propagation in coastal areas is to derive a reliable description of the shoreward
boundary of the domain.

The simplest method is to introduce an imaginary vertical barrier near the bound-
ary which is assumed to be a moving shoreline. The water depth at this barrier is
nonzero and the position of the shoreline is is then approximated by an inland extrap-
olation from the wave height at this barrier. For steep bed slope it could be a reliable
approximation but for gentle bed slopes and large shoreline motion it gives poor re-
sults. Thus more sophisticated methods have been pointed out. There is mainly two
approaches, as previously stressed out in Part 2.

The first category of methods for treatment of the moving shoreline is the use
of coordinate transformations, with Eulerian techniques, on deforming grids. In this
method the real time-varying physical domain is transformed onto a time-invariant
computational domain. As the moving shoreline changes the cross-shore length of the
domain, most of the coordinate transformation schemes change the grid only in the
cross-shore direction. The simplest scheme using this method was suggested by Johns
[87] with a linear mapping of the time-varying domain. Shi and Su [153] proposed
a transformation method in the generalized curvilinear coordinate. Lynch and Gray
[120] proposed a method based on continuously deforming finite elements in which the
finite elements track the shoreline since the basis functions are chosen to be functions
of time. They use this method to compute the propagation and the run-up of waves
on plane beach. Özkan-Haller and Kirby [131] proposed a shoreline transformation
technique using a Chebyshev collocation method for the computation of derivatives in
the cross shore direction. More recently Brocchini , Prasad and Svendsen [26] have
proposed a moving boundary condition method based on coordinate transformation
and a fourth order predictor-corrector scheme. Several of these methods have been
generalized to fully two-dimensional models but they are not particularly easy to im-
plement.
Lagrangian methods have also been proposed in the framework of coordinate trans-
formation schemes. The fluid is represented as a large number of fluid particles that
move with the local fluid velocity and the particles are tracked over the beach slope
in the same way they may be tracked in the offshore region. We can cite the works
of Heitner [78] which were limited to the treatment of plane waves propagating over
linearly sloping beach and have difficulty to model the subsequent run-down problem
for large waves. Shuto [154], [155] used the linear non-dispersive Lagrangian long-
wave equations to study theoretically the run-up of periodic waves on a sloping beach,
while Goto [69] derived a set of nonlinear non-dispersive long wave equations. They
both extended later their model to the fully two dimensional case for the study of
tsunamis [70]. Zelt and Raichlen [188], [189] proposed a finite element model based
on Lagrangian techniques which aims at studying the response of harbors with sloping
boundaries to long waves excitation.
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The second approach is the use of Eulerian methods with fixed grids. The conser-
vation property of the schemes are used to predict the dry cells or nodes, relying on
a specific treatment of the wet/dry interface. Among the many methods which have
been introduced we can cite the early works of Keller and Keller [92] who looked at
the propagation of time harmonic waves through water of slowly varying depth and
derived an expression for the height of a wave at the shoreline involving its offshore
wavelength, the offshore depth and the nearshore beach slope. Yeh and Chou [186]
developed a nonlinear finite difference surge model with complicated algorithm used
to add or remove grid points during run-up or run-down. They obtain a significant
improvement of the results obtained with a model with fictitious vertical wall and
extrapolation. Hibbert and Peregrine [80] used linear extrapolation to describe the
run-up of an uniform bore on a sloping beach. Tanaka et al. [167] introduced a finite
element model which aims at simulating run-up and overtopping. The moving shore-
line was simulated by adding wet elements into the domain as the shore propagated
or by removing dry elements as it receded. The rate of flow into a wet element and
the overtopping flow rate were determined from empirical equations. Kobayashi et
al [95] introduced the IBREAK model, which is actually an improved version of the
model of Hibbert and Peregrine, especially designed for the study of run-up process.
Liu et al. [115] proposed a finite difference model with a complex shoreline-tracking
algorithm and applied it to the run-up over a conical island. Among others we can
mention Titov and Synolakis [169] or Imamura et al. [85] with various treatments of
the wet/dry interface. More recently Brocchini et al [27] and Hu et al [82] suggested
the use of a Godunov-like second order accuracy bore capturing scheme, which rely
on exact or approximated Riemann solver. Most of these models have primarily been
developed with the modeling of tsunami run-up in mind. It is worth mentioning that
all these methods are based on fractional step methods, with all the entailed draw-
backs. Consequently, the method implemented in the SURF−SVWB model in the
well-balanced framework may lead to the computation of accurate run-up solutions
with the possibility of convergence towards equilibrium states at rest.

As already stressed out, exact solutions to nonlinear wave theories are rare, es-
pecially when the fluid boundaries are free to deform with the run-up and run-down
processes of waves on a sloping beach. For that reason, the analytical run-up solu-
tions of Carrier and Greenspan and Synolakis are well-suited solutions to validate the
model’s ability to handle the nonlinear aspects of wave run-up, in the one-dimensional
framework. The results obtained for the Carrier and Greenspan solutions have already
been exposed and in the next section we investigate the Synolakis solution. Relevant
two-dimensional benchmarks involving longshore variations of the topography are also
uncommon. The two-dimensional test suggested by Zelt [188] has been performed by
many authors to validate their model and we investigate it in Section 6.3. Further-
more, good validatory wave basin data are also difficult to find. Thus the test of Liu
et al. [115] seems to become a standard. It is investigated qualitatively in Section 6.4.
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Figure 6.2.1. Definition sketch for the initial condition of the Synolakis’ solution.

6.2. One-dimensional run-up and reflexion of a solitary
wave over a sloping beach

Solitary wave run-up phenomena were investigated experimentally and numerically
by Synolakis in [166]. Although it is well known that solitary waves are not classical
solutions of the NLSW equations, it has been found that for small amplitudes and over
limited distances, the Synolakis solution provides a good model of beach inundation
by a solitary wave. This set of data has been extensively used in order to validate
experimental and numerical models.
In this test, a solitary wave traveling from the shoreward is let run-up and run-down
on a plane beach, before being fully reflected and evacuated from the computational
domain. The topography for this test of wave run-up and reflection is made of a
constant depth area juxtaposed with a plane sloping beach of slope β. The right
boundary condition is transmissive. However, this right boundary is kept sufficiently
far for the toe of the beach in order to prevent any interaction with the water waves
during the run-up process.
The initial condition is a solitary wave, centered at a distance x1 from the toe of the

beach equal to its half wave length :



















h(x, t = 0) =
H

D
sech 2

(

γ(x− x1)
)

u(x, t = 0) =

√

g

D
· h0(x).

(6.1)

where

γ =

√

3H

4D
(6.2)
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and

x1 =

√

4D

3H
arcosh

(

√

1

0.05

)

(6.3)

is the initial position of the center of the solitary wave (see Figure 6.2.1). The initial
amplitude is set to be H = 0.019m, the mean water depth is D = 1.0m and the
beach slope is defined with cot (β) = 19.85. The analytical solution, obtained by the
combination of the Carrier and Greenspan’s hodograph transformation and a Fourier
transform is provided in the original paper of Synolakis [166]. A simplified form is
exposed in [82]. For this test, we have used ∆x = 0.02 and the CFL is set to 0.8.
The numerical results obtained with the SURF−SVWB model are shown in Fig-
ure 6.2.3 for different values of time between the initial condition and the complete
evacuation of the wave from the computational domain. We can perform a qualitative
comparison with the results proposed in [82] and [166] and observe that the moving
shoreline is accurately computed. Moreover, the model is extremely stable, since sev-
eral tests with various beach slopes and wave amplitudes have been performed without
any occurrence of non-physical oscillations. It is worth noticing that no perturbations
are induced in the water surface profile when the wave propagates over the toe of the
beach, as it may occur with a fractional step method.
Time series of the evolution of water height at x = 72.5m are presented in Figure 6.2.2.
We emphasize that after the total reflection of the incident wave, the convergence to-
ward the steady state at rest is accurately computed whereas FSM used in the litera-
ture may be simply unable to provide any valuable results related to this convergence
since non-physical oscillations are generated. For this reason, authors never show the
results for large values of time and only exhibit their results for the run-up process
and sometimes for the subsequent run-down which is far more difficult to model.

Remark 6.2.1. Note that the use of the Exact well-Balanced Riemann solver or the
well-balanced VFRoe-ncv solver for this test leads to unphysical oscillations during the
run-down procedure. These solvers are unable to provide a reliable solution for large
values of time.

6.3. A two-dimensional test for the run-up of large
tsunami waves

6.3.1. Motivations. To further illustrate the abilities of the model in the com-
putation of moving shoreline, a strongly two-dimensional test is performed, which
combines several aspects of importance in the processes of run-up and run-down. This
test involving run-up phenomena in a two-dimensional framework is the test performed
by Zelt in [188] in the course of studying the response of harbors to long wave ex-
citation. It involves the run-up of a large pulse-like wave in a bay with a sloping
bottom. The test geometry combines a curved (sinusoidal) still water shoreline with a
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Figure 6.2.2. The Synolakis run-up solution. Time series of the water height. The
numerical results for the profile of the water height h are plotted versus the time
coordinate t at x=72.5 m.

sloping nearshore bathymetry that merges with a constant depth region offshore (see
Figure 6.3.1).

Such geometry was chosen to demonstrate interaction of different processes that may
influence the shoreline movements. The shoreline is, in plan view, one period of a
sine wave. In [188], Zelt has performed numerical simulations using a Lagrangian
finite element model. There is no analytical solution for this test, but several NSW
models have been tested against the Lagrangian model of Zelt (see [131], [140], [84]
for instance). Here we only test the present model SURF−SVWB in order to obtain
qualitative results and compare the shoreline behavior to other NSW equations solvers
which can be found in the literature. We define the basin topography as :

d(x, y)















h0 − h0

( x− 3L/π

ζ0(y) − 3L/π

)

forx ≤ 3L/π,

h0 forx > 3L/π,

(6.4)

where L is the half width of the bay, h0 is the offshore constant water height and

ζ0(y) = −L
π

cos
(π y

L

)

.

It results in a beach slope of 1:10 at the center of the basin and of 1:5 near the bound-
aries of the longshore direction.
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Figure 6.2.3. The Synolakis run-up and reflection solution. Numerical results
for the profiles of water depth h are plotted versus the onshore coordinate x for:
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the initial condition is the still water depth h0 (see Figure 6.3.1) and at the off-
shore boundary, the incoming wave is supplied as a solitary pulse using the absorb-
ing/generating boundary condition, as follows :

hi(t) = h0 + αh0 sech 2
{

√
gh0

L
χ
(

t +
x

√

gh0(1 + α)

)}

(6.5)

where

χ =

√

3α

4β
(1 + α). (6.6)

The dispersive parameter β is defined by (h0/L)2 and is independent of the solitary
wave. The nonlinear parameter α is the wave height to the offshore water height ratio
H/h0. The shape of the solitary wave depends on the non-linear parameter α and
breaking may occur if α > 0.03 [188]. The values of the velocity at the boundary are
specified using the conservation of the outgoing Riemann invariant along the charac-
teristic as exposed in Chapter 3, assuming that the flow is subcritical.In addition, the
computation is performed assuming that the lateral boundaries are vertical walls. The
geometry of the basin is equivalent to treating a periodic coastline constituted from
bays located between steep structures and so a periodic extension is possible.

Let us now analyze the expecting behavior of the solitary wave during the run-up pro-
cess when the wave amplitude is large enough. The wave may bend towards the lateral
boundaries at each edge of the domain because of refraction. Run-up first occurs at
these lateral boundaries because of the steep slope. While the wave still propagates
shoreward at the center of the bay, where the slope is more gentle, a run-down can
be observe from the lateral boundaries and reflection may tend to direct wave energy
toward the shoreline at the center of the bay. Furthermore, the sloping topography
may help to partially trap energy in the nearshore region. The combination of these
various processes may enhanced the run-up processes at the center of the bay.

For this simulation we take L = 10m and h0 = 1.273m and the position of the flat
section of the topography is at x = 9.55m. This set of values is taken from the sim-
ulation introduced in [84]. In order to highlight the increasing of nonlinear effects
with respect to the incident wave amplitude, three cases are run. For the first run, we
set α = 0.0015, which corresponds to a wave height of H = 0.0025. For the second
run, we choose α = 0.01 and it results in a wave height of H = 0.0127m. For the
third and last case we set α = 0.02 and the corresponding wave amplitude is thus
H = 0.0255m. The choice of these three values prevents the incoming wave from
breaking while propagating from the offshore region toward the coast. The spatial dis-
cretization is defined by ∆x = ∆y = 0.1 and the CFL is set to 0.7. Bed stresses are
assumed to be negligible. Although their importance is difficult to estimate, typical
laboratories studies and various numerical experiments in the literature have shown
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that frictions don’t alter the run-up process more than three per cents [188].

The results of the simulations performed by Zelt in [188] were presented as time series
of the surface elevation of the shoreline in the cross-shore direction at five different
locations along the bay in the longshore direction, respectively y/L = 0, y/L = 0.25,
y/L = 0.5, y/L = 0.75, y/L = 1, where y = ±L denotes the boundaries in the
longshore direction, and as the normalized maximum run-up and run-down in the
cross-shore direction as a function of the longshore location. A first normalization
by H gives a good representation of the absolute magnitude of the shoreline motion
within the bay. The normalization by h0 gives a good representation of the relative
amplitude of the shoreline motion along the shore of the bay. In order to perform a
qualitative comparison, we shows on Figure 6.3.5 time series of the surface elevation of
the shoreline in the cross-shore direction at the five different locations and Figure 6.3.4
shows the maximum run-up and run-down in the cross-shore direction as a function
of the longshore location.
The numerical results provided by the SURF−SVWB model seem to be qualitatively
similar to those presented by Zelt in [188]. We observe a good behavior with respect
to the non-linear parameter α. We describe the results for each run in what follows.

6.3.2. Case α = 0.0015. For the case α = 0.0015 the amplitude of the wave is very
small and nonlinear effects seem to be negligible. As we can observe on Figure 6.3.2
the run-up is tiny and is almost uniform across the bay with a magnitude of nearly
twice the amplitude of the incident wave. This results is close to the expected result
for a small amplitude long wave reflecting on a vertical wall. Actually, for this value
of α, the length scale of the incident wave is very long with respect to the nearshore
sloping region and the sloping beach can be seen as a vertical wall when compared
to the magnitude of the wave. We can observe a small effect of the two-dimensional
geometry of the topography since the run-up is slightly larger at the center of the bay
than near the boundaries. This is due to the small reflection of wave energy toward
the center of the bay. In comparison to the run-up, the run-down is negligible in the
whole domain. As it is emphasized in [188], the topography has a very little impact
on the run-up and run-down processes when the length scale of the incident wave is
greater than the length scale of the sloping region. As for the one-dimensional case
of Synolakis, the convergence toward the steady state at rest is accurately computed.
Note that at this scale, we need to use a finer grid in the cross-shore direction near
the initial shoreline (∆x = 0.05m) if we want to compute accurately the variations of
the water surface.

6.3.3. Case α = 0.01. Figure 6.3.3 shows the effect of increasing the amplitude of
the incident solitary wave beyond α = 0.0015. The effects mentioned in the previous
case become more pronounced, as the run-up and run-down amplitude increase. How-
ever the maximum run-down amplitude does not exceed the maximum run-up. We
observe that the run-up and run-down become far much greater at the center of the
bay. The maximum run-up amplitude along the shore occurs on the first advance of
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222 6. Simulation of run-up process

the shoreline but the maximum run-down amplitude does not necessarily occur on the
first retreat of the shoreline, especially near the lateral boundaries. This phenomenon
is illustrated in the next case, where it seems to be more important.

6.3.4. Case α = 0.02. This case has been used as a benchmark for several models,
as those introduced by Hubbard and Dodd [84], Özkan and Kirby[131] or even Prasad
and Svendsen [140].

On Figure 6.3.4 we can observe the results for α = 0.02. The effects of an increasing in-
cident wave’s amplitude are still obvious. Figure 6.3.5 highlights the two-dimensional
aspects of the run-up and run-down processes when the nonlinear effects become im-
portant. The results have been plotted for values of time between 0 and 60 s to enable
the comparison with other results that can be found in the literature. Figure 6.3.5
also provides time scales concerning these processes at each location in the longshore
direction. Actually a good evaluation of these time scales are of great importance in
coastal engineering for the deployment of warning systems. The amplitudes of the
run-up still increase in the entire bay and the run-down is greatly more pronounced,
with an amplitude of the same order as for the run-up in the center of the bay. The
two-dimensional effects of the topography become important since the run-up ampli-
tude is seriously linked to the location along the longshore direction. Actually run-up
and run-down are clearly enhanced at the center of the bay. This is due to reflections
from the boundaries at each side of the domain which lead to the focusing of wave
energy to the center.
We can also observe persistent oscillations of the surface level even after the forcing
from the incident wave has stopped, which may be due to the trapping of wave energy
along the coast as the topography and the shoreline geometry have an important im-
pact on the response of the basin to the wave forcing (see [188] and [27]). Actually
these oscillations are not exactly the same as those generated by other models in the
literature but here, the well-balanced method ensures that these oscillations are not
the consequences of the drawbacks of the fractional step method usually used.
Concerning the qualitative comparison with the results of Zelt or Kirby et al., we can
observe that our model provides a reasonable simulation of the water surface motion
since a similar general behavior in the time series of the run-up and the maximum
run-up and run-down is observed. The major difference with the results provided by
the Lagrangian model of Zelt is a slight under-prediction of the maximum run-up and
run-down in the center of the bay for the case α = 0.02.

From these qualitative comparisons with the results provided by the finite elements
Lagrangian model of Zelt, we can conclude that the SURF−SVWB model may be
an efficient tool for the study of two-dimensional tsunami propagation over complex
topography and that the two-dimensional complex physical processes involved in these
phenomena may be accurately reproduced. the shoreline tracking method proposed
here is far more simpler to implement than the Lagrangian tracking algorithms of zelt
or Özkan and Kirby, with similar results. Furthermore, even if we have not shown
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Figure 6.3.3. Zelt’s test for the run-up of large tsunami wave. The maximum run-
up and the minimum run-down as a function of the longshore position, for the case
α = 0.01. a) the run-up is normalized by the still water depth h0, b) the run-up is
normalized by the solitary wave amplitude H.
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Figure 6.3.4. Zelt’s test for the run-up of large tsunami wave. The maximum run-
up and the minimum run-down as a function of the longshore position, for the case
α = 0.02. a) the run-up is normalized by the still water depth h0, b) the run-up is
normalized by the solitary wave amplitude H.
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Figure 6.3.5. Zelt’s test for the run-up of large tsunami wave. Time series of the
run-up perpendicular to the shoreline along different longshore locations for the case
α = 0.02. a) y/L=0, b) y/L=0.25, c) y/L=0.5, d) y/L=0.75, e) y/L=1.
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the time series of the surface elevation for large values of time, we emphasize that
the use of the well-balanced method enables to compute the convergence toward the
steady state at rest after approximatively 150 s. This convergence was not possible
for the previous models proposed in the literature. However, we need to validate the
model with more realistic data to assess the real improvements brought up by the
well-balanced method.
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Figure 6.4.1. Sketch of the conical island. a) Top view of the basin and the island.
b) Vertical view in the central cross-section A-A in the longshore direction. This
figure is not to scale.

6.4. Two-dimensional run-up on a conical island

6.4.1. Motivations. During several events involving large tsunami waves, unex-
pectedly large run-up heights were observed in the lee side of small islands. A signif-
icant instance is the event that happened in 1993 on the Okushiri Island of Japan,
a small island of approximately 20 km long and 10 km wide. The tsunami attacked
from the northwestern direction and as the maximum run-up height was observed
along the coastline which faces the tsunami directly, the second larger run-up height
was recorded in the southern region [115].

In order to recover such results with experimental and numerical simulations, Briggs
et al. [25] performed a series of laboratory experiments, at the US Army Engineer
Waterways Experiment Station, for the study of three dimensional tsunami run-up
on an idealized conical island. The experimental basin was 30m wide by 25m long
and the 7.2m-diameter conical island was positioned in its center. The island was
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Figure 6.4.2. Run-up on a conical island. Wave basin topography in the experi-
ment of Liu et al. [115]

62.5m tall and the side slope was 1:4. A sketch of the island and basin geometry
is shown in Figure 6.4.1 and Figure 6.4.2. A directional spectral wave generator was
installed along the x-axis and produced plane solitary waves of specified crest lengths
and heights propagating towards the island. Several height-to-depth ratios were tested
while two water depths were used in the experiments : 0.32m and 0.42m.

Twenty seven wave gages were distributed around the island and maximum vertical
run-up measurements were made at 20 locations around the island. A subset of these
experiments was used as a benchmark test for a number of numerical models, for the
International Workshop on Long Wave Run-up (see Yeh et al. in [118]). In [115], Liu
et al. developed a numerical model based on a finite difference method and validated
it against their set of data. Here, we perform a qualitative comparison between the
numerical results provided by the present model SURF−SVWB and the results which
can be found in the literature [115], [84], [121].
Numerical simulation was performed on a computational domain defined with 0 <
x <, 25 and 0 < y < 30. The initial condition is the flow at rest and at the seaward
boundary x = 0 we input a solitary wave as in the previous section. The velocity is
evaluated by the use of characteristic method within the inlet absorbing/generating
boundary condition. We perform a test of 50 s. Therefore, we focus on the initial
run-up and run-down processes and on the convergence toward the steady state after
the evacuation of the wave from the computational domain.
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We have performed numerical simulation for a value of the nonlinear parameter
α = 0.1 and the longshore length of the incident wave is 30m. Values of ∆x = 0.08
and ∆y = 0.1 have been used and the CFL is set to 0.8. The still water depth is set
to h0 = 0.32m and the ratio H/h0 where H is the wave amplitude is set to 0.1.

6.4.2. Evolution of the water depth. On Figure 6.4.3 we can observe the time
series of the surface elevation at six locations around the island, in order to perform
a qualitative comparison with the results presented in the literature. These locations
correspond to the position of six wave gages, namely gages number 3, 6, 7, 10, 13 and
16. A comparison with experimental measurements are shown in [115], [84] and [121]
for instance. Unfortunately, experimental data were not available for this work and
we can only perform a qualitative comparison with these results. Our results have
been plotted for values of time less than 18 s in order to obtain similar scaled curves
as those introduced in [84] and perform a qualitative comparison.
As far as it can be judged, our SURF−SVWB model provides valuables results since
the general behavior of the shoreline motions at the six locations is close to the curves
introduced in [84]. The expected run-up at the lee-side of the island can be observed
on Figure 6.4.3 e). There is no spurious oscillations and so the predicted results ob-
tained by Liu et al. with the Cornell model [115] seem to be improved. Moreover, as
for the previous test, the convergence towards the steady state at rest is rapidly and
accurately computed, without numerical oscillations.

Moreover, in most cases, the run-up height is larger at the front side of the island
and decreases as the wave moves towards the back of the island. When the length of
the incoming wave in the longshore direction is much larger than the base diameter
of the island, as in our simulations, a serious run-up occurs at the back of the island
because of wave refraction around the island which generates two trapped waves. As
emphasized in [115], in the case ε = 0.1 the maximum run-up experimentally measured
at the lee side is actually of the same order of magnitude than at the front side, but
focused on a small area. Our numerical results agree with this observation as seen on
Figure 6.4.3 and Figure 6.4.9.

6.4.3. The solitary wave evolution. A sequence of snapshot-type figures of the
free-surface profile around the island are presented in Figure 6.4.4, 6.4.5 and 6.4.6. We
observe that the incident solitary wave generates high run-up in the front side of the
island. As the maximum run-up magnitude is reached on this front area, the wave runs
down the inundated area back to the initial waterline while a portion of the refracted
wave propagates around the island towards the lee side, generating two trapped waves
at each side of the island. After a short time, we observe a collision of these two waves
at the lee side, generating the second high run-up. Then, these waves pass through
each other and go further propagating around the island and die gradually. In general,
maximum run-up height is larger at the front of the island and decreases as the wave
moves toward the lee side. After a short time, the water level settles back to the still
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Figure 6.4.3. Run-up on a conical island. Time series of the free surface elevation
at wave gages 3, 6, 7, 10, 13, 16 of the simulation proposed in [115], for a α = 0.1
incident solitary wave.
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water depth.

6.4.4. Evolution of the velocity field. Figure 6.4.7 and 6.4.8 show sequences
of velocity distributions at the back of the island. We can observe that the depth
averaged velocity is greater near the shoreline, whereas the wave celerity is smaller.
The velocity is maximum during the collision of the two trapped waves. We can observe
that the velocities are first in the longshore direction before the collision between the
trapped waves. When the waves collide, the velocities near the shoreline turn into
the cross-shore direction very sharply. This entails the inundation of a focused area.
During the run-down, the velocities turn in the opposite direction, while the trapped
waves still propagate around the island.

6.4.5. Maximum run-up. A sequence of shoreline locations respectively in the
front side and in the lee side of the island are shown in Figure 6.4.9. We can clearly
observe that the inundated area during the run-up is much wider at the front of the
island than in the lee but the maximum amplitudes are similar. At maximum run-up,
which occurs near t = 9 s, almost the entire front half of the island is affected, whereas
the run-up in the lee side is also consequent but floods a smaller area. A possible
explanation is given in [115] and this difference between front and lee side may be due
to the fact that during the run-up phase in the front side of the island, the velocity
field is entirely directed towards the onshore direction and the incident wave attacks
directly the sloping shore. In the lee side, the velocity field is directed towards the
longshore direction before the collision between the trapped waves and, at the time of
collision, alongshore velocities turn suddenly along the onshore direction towards the
island, generating the enhanced and focused run-up at the lee side.

6.4.6. Wave history at the lee-side. Finally we show on Figure 6.4.10, 6.4.11
and 6.4.12 a sequence of snapshots of the free surface motions at the lee side of the is-
land, which aims at illustrating the dynamic of the enhanced run-up. The two trapped
waves propagate around the island and wave crest in the deeper water move faster than
those along the shoreline. The two wave crests meets offshore first, generating a surge
which propagates towards the shore, as the velocities near the shoreline turn into the
onshore direction during the collision. This surge is then enhanced by the collision of
the wave crests along the shoreline leading to a consequent run-up. The run-up gen-
erating by the surge decreases rapidly and the trapped waves still propagate around
the island, with a decreasing amplitude (h), i)).

It appears from this qualitative analysis that our model gives almost as accurate results
as those introduced by Hubbard and Dodd [84] with their model with adaptive mesh
refinement. We recall that we have used a regular mesh with constant discretization
steps in each direction. In addition our moving shoreline treatment is simpler than the
algorithm introduced in [115] in a finite difference context. The maximum run-up at
the lee-side of the island is clearly recovered and the scheme rapidly converges towards
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Figure 6.4.4. Run-up on a conical island. Snapshots of free surface elevation at
different times for a α = 0.1 incident solitary wave: a) t=7.5 s, b) t=9 s, c t=10.5 s.
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Figure 6.4.5. Run-up on a conical island. Snapshots of free surface elevation at
different times for a α = 0.1 incident solitary wave: d) t=12 s, e) t=15 s, f) t=18 s.
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Figure 6.4.6. Run-up on a conical island. Snapshots of free surface elevation at
different times for a α = 0.1 incident solitary wave: g) t = 26 s.

the steady state at rest after the complete evacuation of both incident and reflected
waves from the computational domain.
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Figure 6.4.7. Run-up on a conical island. Snapshots of velocity distribution at the
lee side of the island for α = 0.1 and different times : a) t = 11.0 s, b) t = 11.5 s,
c) t = 12.0 s.
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Figure 6.4.8. Run-up on a conical island. Snapshots of velocity distribution at the
lee side of the island for α = 0.1 and different times : d) t = 13.0 s, b) t = 13.5 s,
c) t = 14.0 s.
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Figure 6.4.9. Run-up on a conical island. Maximum run-up during the simulation :
a) at the lee side of the island; b) at the front side of the island, for a α = 0.1 incident
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Figure 6.4.10. Run-up on a conical island. Snapshots of free surface elevation in
the lee side of the island at different times for a α = 0.1 incident solitary wave: a) t
= 10.0 s, b) t = 11.0 s, c) t = 11.5 s.
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Figure 6.4.11. Run-up on a conical island. Snapshots of free surface elevation in
the lee side of the island at different times for a α = 0.1 incident solitary wave: d)
t = 12.0 s, e) t = 12.5 s, f) t = 13.0 s.
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Figure 6.4.12. Run-up on a conical island. Snapshots of free surface elevation in
the lee side of the island at different times for a α = 0.1 incident solitary wave: g) t
= 13.5 s h) t = 14 s, i) t =14.5 s.



Chapter 7

Simulation of breaking
waves in the Inner Surf
Zone

7.1. Introduction

Wave breaking on beaches is an impressive natural phenomena and surf zone dynamics
is a highly complex topic which deals with waves in the region between the breaker
line on a beach and the shoreline. From the fluid mechanics theories, the surf zone
is characterized by the irreversible transformation, due to breaking, of the motion of
the incident wind-generated waves into motions of various kinds and scales, including
small-scale turbulence, larger-scale vorticity motions, low frequency waves and steady
flows. The spectrum of frequencies involved in these various phenomena is shown in
Figure 7.1.1. The dynamics of this transformation and the induced motions and cur-
rents are the subjects of this introduction.

It is worth mentioning that even if large progress have been made in the understanding
and the modelization of several kind of processes involved in the breaking transforma-
tion, their interactions are still poorly understood. For instance, the great importance
of low frequency motions for the nearshore dynamics has been highlighted by spectral
analysis of observed oscillations and velocity fields and also by the fact that natu-
ral sedimentary coasts often exhibits morphological length scales considerably greater
than the scales of the wind-generated waves [7]. But the understanding of such low
frequency motions are still unsatisfactory. Another relevant example is the observa-
tions of strong interactions between sediment transport, morphological evolution and
flow fields for long time scales [39].
At this day, there is still no model which enables to deal with the complete spectrum

241
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Figure 7.1.1. Energy spectrum of cross-shore velocity in the ISZ. a) sketch of a
typical spectrum illustrating the main hydrodynamic processes, b) measured spec-
trum on Truc Vert beach, Aquitanian coast. OI : “Ondes Infragravitaires”, IC :
“Instabilités du courant moyen”, fp : fréquence pic de la houle (Bonneton [18]).
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of flows from the point of breaking to the shoreline.

Breaking waves. As waves propagate into shallow water, shoaling process leads
the waves heights to increase until the breaking process. As stressed out in [136],
the term “wave breaking” is used to describe the transition from a smooth wave to a
quasi-steady bore-like state rather than to any particular instant within the transition.
This breaking is due to the steepness of the waves which becomes very large as the
depth becomes shallower and an instability is generated as the velocity at the crest
of the wave becomes larger than the velocity at the base. The breaking process is
characterized by a large loss of energy, leading to a decreasing wave height as the
waves propagate towards the shore. Hence the surf zone, which extends from the
point of breaking to the shoreward, is associated with a large dissipation of the wave
energy flux from the offshore into turbulence.
Immediately after the initiation of breaking, a rapid change in the wave shape occurs
over a relatively short distance of 8-10 water depths after the breaker point, in a
region that has been named Outer Surf Zone or “transition region” (Svendsen et al.
[164]). The rapid transition and the specificity of each waves are difficult to describe
and modelize. As a consequence, very few theories concerning this zone are available
and, most of the time the literature is descriptive, based on qualitative observation,
with some attempts to quantify the processes. The reader is referred for instance
to the works of Janssen [86], who mapped the variations of the surface level in this
region using video recordings of fluorescent tracers, or Okayasu [129] who performed
measurements of the velocity using laser Doppler velocimetry.
The way in which the waves break can occur in a continuous gradation of regimes and
mainly depends on the wave characteristics (deep-water wave height, wave period) and
the bottom slope. A qualitative description of the different types of breakers (with
gradual transition) is proposed by Galvin in [60]. There is essentially four different
types of breaking waves, usually classified as collapsing, plunging, surging and spilling,
as shown in Figure 7.1.2.

In spilling breakers, the forward slope at the top of the wave becomes instable and
an increasing mixing of water and air bubbles slides down the front slope from the
crest, traveling with the wave as a surface roller. The spilling breaking process is usu-
ally associated with very gentle beach slope and relatively steep incoming waves. For
plunging breakers, most of the steepening wave’s front overturns and the crest falls
down and plunges down into the water ahead of the wave, as a single mass of water,
generating a splash-up of water which is pushed up. This jet of water propagates
forward and continues the breaking process. Plunging breakers are usually found over
steep beach slopes. For surging breakers, the foot of the steep front becomes instable
and rushes forward, leading to a decreasing water height. No significant disturbance
of the smooth wave profile occurs except near the shoreline. This process is often ob-
served over very steep beach slope and, for instance, on many natural beaches, where
the foreshore is much steeper than the rest of the beach. In the so-called collapsing
breakers, the lower portion of the front face overturns and behaves like a truncated
plunging breaker.
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Figure 7.1.2. Cross-shore profiles of the four main breaker types [60]. The arrows
show the initiation of breaking process.

In special cases where the slope becomes sufficiently steep, the waves stop breaking and
full reflection may occur. Breaking or reflection of solitary waves on uniform slopes
has been studied intensively. We can cite for instance Synolakis [166] who performed
experimental and analytical studies.
Of course, the criteria for onset of breaking are far more complex and one can observed
various breaker type on the same beach at different times, depending on the wind con-
dition or specific swell’s features. It is worth noticing that in most cases plunging or
spilling breakers, or a transition between these two types, occur generally on most
sandy beaches, and in particular on Aquitanian beaches.
Shoreward of the transition region, the wave field changes more slowly and broken
waves are reorganized into quasi-periodic bore-like waves which propagates toward
the shore. This is the so-called Inner Surf Zone (ISZ) or “bore region”, since broken
waves have many features in common with bores in this region. The Inner Surf Zone,
has been the subject of intense studies during the last decades. Until recently, informa-
tions concerning the ISZ were also mostly descriptive and a few models which aim at
understanding and predicting hydrodynamics in this region have appeared. Svendsen
et al. [164] have shown that the wave surface profiles develops a relatively steep front
with a more gently sloping rear side. The shape of the rear side may change from a
concave form towards a nearly linear variation as the waves propagate to the shore,
leading to a characteristic sawtooth shape.
Shoreward of the ISZ , we found the “swash zone” which is intermittently covered and
uncovered by wave run-up on the shore.
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Energy dissipation in the ISZ. The energy dissipation due to breaking on a
sloping beach in the ISZ is often assumed to be equal to the dissipation in a hydraulic
jump or bore height. This method seems to have been first exploited by Le Mehauté
[105].
The energy dissipation is thus modeled on the basis of the classical expression for the
dissipation in a bore connecting two areas of uniform flow, with depths h1 and h2

respectively (h2 > h1), which implies that energy is dissipated at a rate D ′ per unit
span given by (see [102]) :

D′ =
1

4
ρ g

3

2

(h1 + h2

2h1 h2

)
1

2

(h2 − h1)
3. (7.1)

Svendsen et al. [164] stressed out that this relation underestimates the dissipation
in waves breaking on a beach, mainly because the turbulent fluxes of momentum and
energy are neglected. Nonetheless, this relation yields a good order-of-magnitude es-
timation.

Vorticity and turbulence generation. An interesting feature of the ISZ is the
evolution of the velocity field during the breaking process. Actually, two basically
types of motion can be observed during the wave propagation from the offshore to
the shoreline. The first is the essentially irrotational motion during the steepening
and eventually overturning period. The second is the gradual development of large
vortical and turbulent motions during the bore propagation, after the breaking. As
Kelvin’s circulation theorem applied to the shallow water equation leads to the conser-
vation of the potential vorticity (vorticity divided by water depth) along streamlines,
one may wonder how such transition may occur. This is mainly a consequence of
the overturning and the water jet impact or splash-up for plunging breakers and of
the formation of the roller in spilling breakers [7]. Peregrine [135] also stresses out
that non-uniformities in the bed slope may induce non-uniformity in the dissipation
rate through the propagating bores in the ISZ and consequently generate vorticity.
This topic is developed in the next subsection. As time elapses, the initially gen-
erated large-scale and coherent vortex motions degenerate into small-scale motions
with increasing disorder, leading to turbulence. But this source of turbulence is mi-
nor when compared to the acute turbulence generated by plunging or spilling breakers.

Wave breakers induced macro-vorticity. In the nearshore domain, we can
observe important variations of topography which may be natural (like bars gener-
ated by rearrangements of transported bottom sand) or man-made (breakwater heads
for instance). As already stated the propagation of a steep wave over a submerged
structure can lead to the generation of bores of finite length [29]. The variations
of topography modify the incident wave fields, generating waves breaking on these
structures with different intensity on different locations. In the case of coastline with
almost-uniform orientation and uniformly sloping beaches, breakers of finite length are
essentially induced by longshore bars. As shown theoretically in [135], the variation
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of intensity in the breaking phenomenon along the breakwaters generates vorticity
which re-organized in the shape of large-scale horizontal eddies with vertical axis, also
named macro-vortices. This phenomenon is extremely complex, since various pro-
cesses of similar strength are interacting simultaneously.
The mechanism of vorticity generation by breakers of finite length can be highlighted
with some simple analytical results first introduced by Peregrine in [135]. We analyze
the flow in terms of the vorticity ω = ∂xv−∂yu which is the only non-zero component
of the vorticity vector, orthogonal to the plane of motion. Within the NSW assump-
tions, the potential vorticity ω/h is conserved when following a particle of fluid in the
Lagrangian description (water columns). The conservation equation for the vorticity
is :

Dω

Dt
= −ω∇ · v,

where
D

Dt
stands for the Lagrangian derivation, or equivalently

Dω

Dt
=
ω

h

Dh

Dt
. (7.2)

It raises that an increasing of water depth h induces intensification of ω. This phe-
nomenon is true when flow properties are smooth. The discontinuities of water depth
and velocity introduced to model bores are source of energy dissipation and vorticity
generation. These mechanisms are not taken into account in Equation7.2. Actually,
the amount of vorticity generated by the bore is directly related to the depth jump
across the discontinuity. The jump in potential vorticity between locations ’1’ and
’2’ respectively downstream and upstream of a bore moving with front parallel to the
coastline is :

[ω

h

]2

1
=

√

2

gh1 h2(h1 + h2)
∂yED (7.3)

with

ED =
g(h2 − h1)

4h1 h2
. (7.4)

In this expression, ∂yED is the rate of change parallel to the bore front of the energy
dissipated by the bore. This rate is of important magnitude when there is a sudden
variation in flow properties like, for instance, when uniform fronts of waves propagate
over a submerged obstacle and break locally.

Wave-induced mean currents. Wave-induced mean currents are generated partly
by induced mean pressure gradients and partly by induced dissipative processes. The
excess flux of momentum due to waves (the radiation stresses) plays a crucial role in
the generation of horizontal circulation, leading to a set-up of the mean water level and
the generation of wave-induced currents (longshore current, rip current). The set-up
cross-shore gradient in the surf zone appears to be approximatively proportional to
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the bottom slope. Therefore, in the case of normally incident waves, strong three di-
mensional variations of the topography entail variations of the set-up in the longshore
direction and may yield non-uniform longshore motions (wave-induced currents) and
circulation cells (see Chapter 7 for a study of rip currents). Note that in this case, the
current is not directly generated by dissipation-induced shear, like for the large scale
vortical motions previously introduced, but it is an indirect consequence since it arises
from the set-up longshore variations. In a general way, alongshore non-uniformities in
the bed slope and/or incident waves yield longshore non-uniform horizontal circula-
tion. This will be developed in Chapter 7 for the specific case of a rip current over an
idealized ridge and runnel system. Note that these mean coastal currents and more
generally the nearshore circulation are usually simulated using a statistical approach
with time-averaged equations. This is developed in the following.

Numerical models. The classical approach for ISZ-wave modeling is based on the
depth integrated momentum and energy equations time-averaged over a wave period.
Equations of motions are filtered in time with respect to a wave period and this enables
the use of a larger time step and thus to perform simulations over long time (from one
hour to a few months) with a reasonable computational cost. We can cite for example
the models of Wu and Liu [183], Watanabe [180] and more recently Castelle et al.
[38] for the study nearshore sandy bars morphodynamics. The reader is referred to
Svendsen and Petruvu [165] for a more complete review. In such models, wave height
and set-up variations are computed from integral wave properties, such as the energy
flux, the radiation stress and the energy dissipation. These model are relatively sim-
ple and useful for practical applications except in the swash zone. However in some
applications, like for accurate modelization of sediment transport, the prediction of
time-varying quantities, such as the ISZ oscillating velocities or swash oscillations, is
required. In addition these time-varying quantities can be used to compute wave-
averaged values and eventually highlight some processes with more precision.

Several models have been pointed out since the two last decades in order to de-
scribe and simulate the variations of the instantaneous water level and velocity and the
wave motions in the nearshore domain, from the shoaling zone to the shoreline, where
run-up occurs. The most favored approximate model equations for studying nearshore
hydrodynamics are both the NSW equations and the many available Boussinesq-type
equations. In recent years, most of the research was focussed on the latter. Actu-
ally, Boussinesq type equations, in which dispersive effects are modelized, are initially
well-fitted for the modelization of shoaling process. They became far more popular
when it was proved that they could model fairly well breaking waves, with the use of a
roller model and suitable parameterizations to account for dissipation (see Schaffer et
al [150]). From this, several works have stressed out that Boussinesq-like models may
be applied successfully to the surf zone (Madsen et al [123]), including even the swash
zone and the run-up process. We can refer for instance to Kennedy et al. [93]) or to
the recent studies of Cienfuegos et al. [46], [47] who introduced a new breaking wave
parameterization and developed a fourth order accuracy compact finite volume method
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for the Serre equations, including a shoreline boundary condition. However the main
disadvantage of all these methods is that effects of waves breaking are incorporated
into Boussinesq models by means of semi-empirical methods, which imply the use of
many “tunable parameters” and calibration. In addition, the boundary conditions for
the shoreline are often artificial methods. We can refer to the slot method of Madsen
et al. [123] or the extrapolation method of Lynett et al [121] for which extra filtering
procedures are needed to prevent any non-physical oscillations. Hence the stability is
often restricted and the extension to the two-dimensional case is arduous.
On the other hand, it is well-known that every propagating solution of the NSW equa-
tion will steepen, owing to the lack of dispersive effects. Shallow water steepening
can be simply stressed out in the case where a wave is propagating into still water of
constant depth. Each part of the wave travels with the long-wave velocity u +

√
gh

where u is the velocity and h the total water depth. Hence, the higher part of the
wave travels faster. As a consequence, the breaking is predicted too far offshore and
the use of NSW equations is more relevant in the ISZ.
Concerning the swash zone, the NSW equations have been proved to accurately model
wave motions. For instance, Hibbert and Peregrine [80] proposed a numerical simula-
tion of the entire process of bore propagation and run-up. Raubenheimer et al. [143]
showed a good agreement between numerical results provided by the NSW equations
and fields data for wave motions in the swash zone over gentle sloping beach. Com-
putation of the run-up process and moving shoreline has also been extensively studied
using NSW equations, as exposed in Chapter 6.

However, some important remarks concerning the validity of the shallow water
assumptions in the ISZ must be stressed out. We know that NSW equations provide
accurate approximation to flow motions when the vertical acceleration is negligibly
small and when the length scale of the variations of the water surface level or the
mean velocity is large in comparison with the water depth. Hence, any numerical
model based on the shallow water theory must satisfy these assumptions at every
discretized point, including the regions of strong shear flow. But as any propagating
solution of the NSW equations will steepen on its front side , due to the lack of disper-
sion process, the underlying shallow water assumptions break down since turbulence
and vertical variations of the velocity are induced near the bore front. Actually, tur-
bulence and variations in vertical acceleration are strongly localized and it is possible
to distinguish two regions in ISZ broken waves : a thin “wave front” where flow prop-
erties are rapidly evolving and a “regular wave region” where the horizontal velocity
field is nearly vertically uniform and the turbulence intensity is weak [15]. At the
top of the wave front, the plume of water and air bubbles carried with the wave is
called the “roller” region. Experiments from Nadaoka et al. [128] have shown that
turbulence is mainly located in this wave front and the velocity field presents strong
vertical variations (Govender et al. [71]). From these observations it appears that the
assumptions for the NSW equations may be only satisfied in the regular wave region.
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Despite this, numerical models based on finite difference methods and second order
Lax-Wendroff schemes have been pointed out in order to describe waves propagation
in the ISZ. They first rely on the addition of artificial dissipation which prevents the
steepening waves from becoming vertical fronts. The first models were proposed by
Hibbert and Peregrine [80] and Packwood and Peregrine [132]. The difficulty with this
empirical approach is to estimate the appropriate articifial viscosity which introduces
the needed dissipation. Some comparisons with large-scale laboratory measurements
and field data have proved the ability of the NSW equations to model the complex
dynamics of long waves in the nearshore. For instance, Kobayashi and coauthors
(Kobayashi et al. [97], [96], [98], [99]) developed a bore-capturing NSW model, also
based on the Lax-Wendroff scheme with artificial viscosity and highlight its accurate
results in comparison with laboratory ISZ experiments. More recently, Bonneton and
Vincent [179] proposed to use a TVD flux limiter scheme based on a MacCormack
second order scheme. This method introduces a rational way for the estimation of
artificial dissipation. Concerning comparison with data, Raubenheimer et al. [144]
and Bonneton et al. [16], [15] found a good agreement between computed ISZ wave
solutions and field observations on gently sloping beaches and the ability of the NSW
equations to accurately predict wave distortion and energy dissipation of periodic bro-
ken waves in the ISZ is proven. Thus, even though some assumptions of the shallow
water theory may be violated in the ISZ, promising results have been obtained. As
emphasized by Liu et al. [115], this is puzzling.

From these considerations, we will keep in mind that an accurate modelization of
instantaneous and mean wave-induced motions relies on a proper evaluation of the
wave’s energy dissipation due to breaking. This is possible with the use of “second or-
der” accuracy shock capturing finite volume methods based on a local Riemann solver,
which enables the generation and propagation of bores. Thus, these numerical meth-
ods enable the modeling of broken waves without having to directly model turbulent
dissipation, even if the region of initial breaking and the details of breaking are poorly
represented. The energy’s dissipation during the bores propagation is thus taking into
account as an intrinsic feature of the model, with the jump relation imposed through
the bores.
Moreover, as the wave’s energy dissipation during the propagation is closely linked
to the variations of topography, an accurate modelization of the interactions between
flux gradients and bed slopes is crucial. Consequently, the well-balanced method pre-
viously introduced seems particularly well-suited for surf zone modelization.

The first test proposed here is a validation of the ability the SURF−SVWB model to
compute the distortion and the propagation of a periodic train of breaking waves in
the ISZ. It has already been performed by Bonneton [15] with his SURF−SV model.
The second test proposed in this chapter brings out some improvements in the state
of the art in the modelization of two-dimensional circulation in the ISZ, since to our
knowledge there is still no application of the NSW equations to the study of waves-
induced mean currents generation in the surf zone.
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Figure 7.2.1. The wave propagation experiment of Cox. Sketch of the topography
and the computational domain.

7.2. A one dimensional test for breaking wave
propagation in the Inner Surf Zone

In this section we will investigate the ability of our model to accurately compute the
transformation of regular broken waves in the Inner Surf Zone. We show a comparison,
inspired from [15], [17] , between numerical results provided by the SURF−SVWB
model and a set of data based on an experiment performed by Cox [50]. This experi-
ment was carried out in a wave flume of 33m long, 0.6m wide and 1.5m deep. Waves
were generated on a horizontal bottom at a depth of 0.40m, shoaled and broke on a
1 : 35 sloping beach. The wave height at the wave-maker is 0.115m and the period
is T = 2.2 s. Measurements of the surface elevation and velocity were taken at four
locations inside the ISZ.

For this numerical simulation, the seaward boundary condition is located in the ISZ
and is given by time series of water depth measured at the first location L1, using
the inlet generating/absorbing boundary condition, since we assume that the flow is
subcritical in the ISZ. It is worth mentioning that the wave amplitude provided at the
seaward boundary is the physical value, issued from the measurements. Hence, the
possible reflected waves are already taken into account and the inlet boundary condi-
tion only compute the corresponding value of the velocity using the outgoing Riemann
invariant, as exposed in Chapter 3.
The computational domain is discretized by 200 nodes using a horizontal step ∆x =
0.04m and the simulation was run with a constant time step ∆t = 0.01 in order to
compare the numerical results with the experimental set of data. As emphasized by
Peregrine [115], when a uniform train of bores approaches the shore, the solution
settles to a quasi steady state shortly after several bores have climbed up the beach.
Once this steady state has been reached, it yields relatively small shoreline motions.
Hence, the initial condition of steady state at rest leads to a transient period of 200 s
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Figure 7.2.2. One dimensional propagation of breaking waves. Spatial evolution
of the wave train elevation. Comparison between numerical results and the experi-
mental data of Cox for the set-up and the maximum and minimum elevation.

before reaching the steady state, which is not shown in the time series presented in
the sequel. Previous numerical studies by Kobayashi et al. [95] and Cox [50] have
shown that simulations in the ISZ are not much sensitive to the value of the friction
coefficient kt when 0.001 ≤ kt ≤ 0.1 and we choose to use kt = 0.01 in our simulation.

We can observe on Figure 7.2.3 the comparison between computed and measured time
series of the surface elevation at the four locations inside the ISZ. It appears that our
model provides accurate results with small discrepancies. The nonlinear wave distor-
tion is computed and the wave height is accurately predicted. A comparison with
the numerical results shown in [17] with the MacCormack second order scheme high-
lights the same small over-prediction for the maximum wave elevation at the location
x = 1.2m and quasi-similar slight under-prediction for the maximum wave elevation
at x = 2.4m and x = 3.6m. The minimum wave elevations and the periodicity of the
waves are accurately computed . As emphasized in [16], previous simulations based
on Lax-Wendroff schemes for the NSW equations [95] or on Boussinesq models [123]
showed numerical oscillations at the rear of the wave fronts. Our model overcomes
this drawback. In addition, the shock velocity is also accurately computed since there
is no phase shift between numerical results and measurements.
Moreover, we can observe on Figure 7.2.2 numerical results for the wave elevation pro-
file, the maximum and minimum wave elevation and the set-up. The sharped wave
profile and the dissipation due to the breaking are clearly observable. Experimental
measurements are also plotted and as previously stressed the most relevant discrepan-
cies concern the maximum elevation. The set-up is accurately computed.
According to the results presented in [15] and [17], the NSW equations enable a valu-
able description of wave propagation in the ISZ with a good prediction of broken wave
celerity, set-up and an accurate computation of nonlinear wave distortion leading to
the sawtooth shape.
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Figure 7.2.3. One dimensional propagation of breaking waves. Time series of
wave elevation at different locations in the inner surf zone. Comparison between the
numerical model (in dashed line) and experiments by Cox (solid line) at a) x = 0
m, b) x = 1.2 m, c) x = 2.4 m, d) x = 3.6 m.

7.3. Wave propagation over a periodical ridge and runnel
system

On natural beaches, accurate prediction of wave-induced current circulations which
control the nearshore sediment transport, and therefore the morphological changes
in the nearshore, remains an open issue. Particularly, the modelization of longshore
and rip currents behaviour over alongshore non-uniform barred-beaches are important
topics.

Cross-shore variability and magnitude of longshore currents have been investigated
in several studies [45], [101]. Rip currents are other horizontal flow patterns which
can be observed on beaches exhibiting three dimensional topography and exposed to
normal or near-normal incident swells. Such currents are actually strong and narrow
seaward oriented currents, responsible for significant sediment transport [23], mor-
phological changes in the nearshore [156] and for numerous misadventures or even
drowning accidents during the touristic season. In the last decade, field studies have
been performed to improve the knowledge of this flow pattern [23], [122].

As exposed in the introduction, the classical approach for modelling ISZ wave-induced
circulation is based on time averaged over a wave period equations. For instance,
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Figure 7.3.1. Sketched section view of the typical Aquitanian beach with rigde
and runnel system (Castelle [39]).

a study of rip currents on the Aquitanian coast, with extensive comparisons using
fields measurements, has been recently performed by Castelle et al. in [38] and [39].
They have investigated the simulation of wave induced currents and morphodynam-
ics of nearshore sandy bars on the Aquitanian coast beaches. More precisely, they
have highlighted the sensitivity of the horizontal circulation, the generation or rip
and longshore currents generated by ridge and runnel systems and crescentic bars and
the morphodynamic coupling have shown that self-organization mechanisms are re-
sponsible for the formation of ridge and runnel systems in the intertidal domain and
crescentic bar systems in the nearshore zone. Comparison with data collected during
the PNEC 2001 field measurements have shown that the morphological characteristics
of simulated systems are in agreement with observations.
Two-dimensional numerical studies of ISZ mean currents using time-varying BSV mod-
els is still an open issue. Very few studies relying on Boussinesq-like models have been
introduced recently, as for example Sorensen et al. [159] or Chen et al. [42] who
focused on the modelization of rip current. But to our knowledge, the NSW equa-
tions have still not be applied to such two-dimensional problems. Such an approach
may provide a large amount of informations not available with time-averaged models,
especially concerning time-varying quantities, like velocity oscillations, instantaneous
vorticity fields or motions in the swash zone. These time-varying informations may be
of great utility in the modelling of sediment transport for instance.

Actually, the Aquitanian coast beaches exhibit longshore non-uniform multiple bars,
leading to complex horizontal wave-induced currents which behave differently than
those reported in the literature and are poorly understood. The nearshore is charac-
terized by two distinct sand bar patterns : the crescentic bar system in the subtidal
zone and the ridge and runnel system in the intertidal zone. In this study, we mainly
focus on the rigde and runnel system, in which ridges are regularly interrupted by
down-currents oriented runnels, with a mean wave length of about 400m. Of course,
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Figure 7.3.2. Aerial photograph of ridge and runnel systems in the intertidal do-
main, Aquitanian coast (Castelle [39]).

this morphological description slowly evolves in time (rip channel migration is about 3
meters per day during summer) and this order of magnitude is a year-averaged value.
Figure 7.3.2 shows aerial views of a ridge and runnel system on the Aquitanian coast
and Figure 7.3.1 shows a sketched section view of an Aquitanian beach, where the
rigde and the runnel are observable.

Rip cell circulations are controlled by topographic feed-back and are supposed to be
responsible for strong water and sediment exchanges between the surf zone and the
nearshore zone [156]. On the Aquitanian coast, these rip currents occur at each runnel
outlet and their intensity depends on the length, the shape of the system, the offshore
wave conditions and the tide level [38]. The mechanism leading to the generation of
a rip current can be summarized as exposed by Castelle et al. [38]. The main idea is
that longshore variations of the topography are associated with similar variations in
the pressure, due to mean water level changes and hence, lead to longshore pressure
gradients. More precisely, assuming that the incoming wave field is longshore uniform,
waves approaching the bar will break before waves approaching the runnel. Since the
wave-induced set-up in the surf zone varies more or less in proportion to the local
breaker height, the induced set-up in the runnel will then begin further inshore induc-
ing alongshore set-up variations. The longshore pressure gradients associated with this
variation inshore the ridge and runnel system induce an intensification of the longshore
current in the runnel. On the upper part of the beach, the longshore pressure gradients
force the feeder currents. Water convergence inshore the runnel outlet results in the
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Figure 7.3.3. Aerial photograph and corresponding idealized contour plot of the
ridge and runnel system used in our simulations (inspired from Castelle [39]).

formation of a seaward oriented current, a rip current, which balances the water mass
conservation equation inshore the runnel outlet. Observations show that this seaward
flow tends to be narrow and relatively strong but rapidly desintegrates outside the surf
zone.

The study proposed here is inspired from the simulations proposed by Castelle [39].
For our analysis, we have neglected first the tidal variations even if the previous studies
have shown an intense modulation of physical processes. However we have perform
several simulations for various mean water level, in order to highlight the impact of
tidal variations on the wave-induced circulation. Our aim is to study the mean wave-
induced currents in the ISZ, and especially the rip currents, over an idealized ridge
and runnel system, which is characteristic of the Aquitanian coast ridge and runnel
systems. Figure 7.3.3 shows the idealized ridge and runnel topography used for our
simulations.

It is worth mentioning that at this level of analysis, the study will only be qualitative,
since the underlying assumptions of the NSW approximation may be violated in the
offshore area. More precisely, we know that NSW equations are unable to predict accu-
rate shoaling and that the lack of dispersive effects leads to an anticipated steepening
of the solution, with energy dissipation, too far offshore. However, we have chosen in
our study to generate a periodic train of wave offshore of the surf zone, which may
propagate towards the shore. When this train of waves reaches the ISZ and the ridge
and runnel system, the wave shape has change to the characteristic bore-like shape.
Hence, the simulation may be realistic enough in the ISZ. But the computational area
corresponding to the shoaling zone may be regarded as an artificial zone which is
needed to obtain numerical results which are realistic enough in the ISZ. Therefore,
in the following, we only focus on results obtained in an area corresponding to the
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ISZ and we neglect the computation in the initiation area. Such qualitative studies
in the ISZ have been performed for instance by Brocchini et al. [29] for the study of
macro-vortices induced by single breakwaters.
Wave period controls the strength and shape of the rip currents. As emphasized in
[38], longer waves lead to stronger and narrower rip currents, whereas for Tw > 14 s
the rip velocity slightly decreases with increasing wave period. Therefore we set the
wave period at Tw = 12 s. The offshore wave amplitude is the main characteristic con-
trolling the rip velocities, as changes in the breaking patterns control the rip current
characteristics. Our aim is to obtain a large enough bore-like wave amplitude in the
area corresponding to the ISZ, taking into account the energy dissipation which occurs
during all the propagation process. For this purpose, we have set Hw = 1m offshore.
Further investigations seem to be needed to determine optimum offshore amplitude.

For this simulation we use a variable mesh in the cross-shore direction, since the
motions scales are different between the seaward boundary and the shoreline. The
largest cell size is ∆x = 2m near the offshore boundary, while the finest cell size is
∆x = 0.05m near the shoreline. In the longshore direction, the mesh is regular and the
discretization step is ∆y = 1m. It yields a variable Cartesian mesh of 450 cells in the
cross-shore direction and a constant mesh of 380 cells in the longshore direction. The
time step is constant and fixed at ∆t = 0.05 s. The various water depth values used
for the several tests are chosen in order to describe the tidal variations between almost
mid-tide and high-tide. For all the tests, the ridge and runnel system is completely
covered by water. Note that the moving shoreline treatment may theoretically enable
us to simulate with accuracy the flooding and drying of the system. Such situations
will be studied in further simulations.

7.3.1. Wave refraction and set-up. We show on Figure 7.3.5 a contour plot of
the free surface profile over the ridge and runnel system, in order to highlight the wave
refraction induced on one hand by the longshore variations of topography, and on the
other hand by the wave-induced circulation. We can observe that the wave is seriously
refracted while propagating over the runnel, induces longshore variations in the mean
water level. This refraction can also be observed on Figure 7.3.4 where profiles of the
free water surface are plotted at three different locations in the longshore direction.
We have also plotted on the same Figure the three corresponding set-up profiles.
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Figure 7.3.4. Propagation over a ridge and runnel system. Section views of the
the free surface elevation and the corresponding computed set-up in the cross-shore
direction at three locations : a) y = 95.25 m, b) y = 190.5 m, c) y = 285.75 m.
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Figure 7.3.5. Propagation over a ridge and runnel system. Contour plot of the
water surface levels at t=800 s.
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Figure 7.3.6. Wave propagation over a ridge and runnel system. Two dimensional
view of the computed wave-induced mean currents, for hm = 1.5 m (between low-tide
and mid-tide). The maximum mean velocity is about 0.3 m/s.

7.3.2. Wave-induced mean currents. In the sequel hm stands for the value
of water depth over the zero isobath. Figure 7.3.6, 7.3.7 and 7.3.8 show the two di-
mensional mean wave-induced current patterns simulated during a normally incident
swell, for values of water depth hm = 1.5m, hm = 2.0m and hm = 2.5m. Note
that according to [39] the value hm = 2.0m corresponds to mid-tide and high-tide
occurs around hm = 4.0m. The steady state is reached after approximatively 800 s
and the instantaneous velocity field is averaged over a wave period. A narrow seaward
oriented current can be observed at the runnel outlet, associated with a large circu-
lation cell. As suggested by Castelle et al. [38], the maximum of rip velocity occurs
at mid tide. The intensity of this maximum rip velocity then decreases with respect
to the increasing mean water level. We observe that for hm = 1.5m the maximum
mean velocity occurs on the ridge, due to the thin layer of water (see Figure 7.3.6).
The rip velocity is already strong at the runnel outlet with a small space shift when
compared to [38]. The circulation cells observed near the lateral boundary seem to be
more pronounced. On Figure 7.3.7 we observe the maximum rip velocity at the runnel
outlet, according to [38]. Still comparing with [38], the second circulation cell near
the lateral boundary is slightly shifted in the cross-shore direction, towards offshore.
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Figure 7.3.7. Wave propagation over a ridge and runnel system. Two dimensional
view of the computed wave-induced mean currents, hm = 2.0 m (mid-tide). The
maximum mean velocity is about 0.4 m/s.

On Figure 7.3.8 we observe a decreasing velocity field, as the water depth is increasing.
The structure of the circulation cells is conserved. We still observe a slight rip velocity
at the runnel outlet, while the circulation cell near the lateral boundary seems to be
vanishing. All these results are qualitatively similar to those shown in [38] with slight
differences. Note that as in all the previous cases, the velocity at the shoreline seems
to be over-estimated. Nonetheless, observations show that it does not modify the
qualitative behavior of the wave-induced circulation. Note that the maximum value
of the velocity indicated for each figure do not take into account the mean velocities
near the shoreline.

7.3.3. Macro-vorticity generated by longshore topography variations.
In this subsection, we investigate the mechanism of vorticity generation by wave break-
ing over varying topography. It is worth mentioning that field observations and exper-
imental measurements of breaking wave-generated macro-vortices are rare. The first
numerical study relating to vorticity generation by breakwaters has focused on vor-
tex generation on longshore uniform topographies (Buhler and Jacobson [33]). More
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Figure 7.3.8. Wave propagation over a ridge and runnel system. Two dimensional
view of the computed wave-induced mean currents, for hm = 2.5 m. (between mid-
tide and high-tide). The maximum mean velocity is about 0.2 m/s

recently Peregrine [137] has investigated the use of high resolution ENO and CENO
schemes, and numerical studies of topographically-controlled rip-currents based on a
Boussinesq model have predicted vortex shedding on bar edges and the vortices were
shown to advect towards the offshore region (Chen et al. [42]. Brocchini et al. [29],
[30] have performed simulations of wave breaking on single breakwaters using their
scheme based on the WAF method. A similar vortex generation has been computed,
with vortices advected towards the shore. In [29], the limitations of schemes relying
on fractional step methods are highlighting, since spurious vorticity may be generated
on top of the bar-like obstacle before the incident waves have reached the submerged
structure.

We show on Figure 7.3.9 and Figure 7.3.10 contour plots of the vorticity at two ar-
bitrary times during a period. Even if it is not shown here, we stress out that the
periodicity of the motion is recovered in the mechanism of macro-vorticity generation.
We observe the formation of large vortices located at the runnel outlet. Some of the
vortices are advected toward the shore.
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Figure 7.3.9. Wave propagation over a ridge and runnel system. Two dimensional
contour plot of the vorticity field for hm = 2.0 m (mid-tide) at t=800 s.
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Figure 7.3.10. Wave propagation over a ridge and runnel system. Two dimensional
contour plot of the vorticity field for hm = 2.0 m (mid-tide) at t=804 s.





Conclusion

In this third part we have applied the SURF−SVWB model to nearshore hydrody-
namics. We have made a distinction between breaking and non-breaking waves and
suggested to study in Chapter 6 the run-up of long non-breaking waves over two-
dimensional topographies, whereas Chapter 7 is devoted to the study of wave propa-
gation in the Inner Surf Zone.

In Chapter 6, we have performed a short review concerning the propagation of tsunamis
in coastal areas and the main feature of such long waves. We have stressed out that
most of the tsunamis propagation models available around the world rely on NSW
equations. A more complete review of the various run-up models introduced in the
literature highlights that all these models rely on fractional step methods. Therefore,
the SURF−SVWB model seems to be particularly well-suited for such large run-up
simulations.
In order to stress out the ability of the model, we have performed in the following a
few tests, including complex two-dimensional benchmarks with longshore non-uniform
topographies. From qualitative comparisons with other results available in the litera-
ture, it appears, as far as it can be judged, that the SURF−SVWB provides relevant
results, in agreement with the literature. The run-up is accurately computed, even in
two-dimensional cases, without any spurious oscillations at the shoreline as it has been
reported for several other models. It is worth mentioning that the run-down process is
also provided accurately. In the literature, authors often shows the run-up process but
rarely the run-down, since it seems to be the most challenging process for the moving
shoreline boundary conditions.
The wave refraction due to the variations of topography seems also to be accurately
computed. Moreover, the use of the well-balanced method enables to converge to-
wards the steady states at rest after the evacuation from the computational domain
of both incident and reflected waves. This feature is not available in other models. To
our knowledge, there is no model available in the literature which is able to compute
the entire process of tsunami run-up, including the propagation towards the shore,
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the run-up, run-down and the evacuation from the computational domain of all the
ringing oscillations, as the water level settles back to its initial still level. Hence, the
SURF−SVWB clearly improved the state of the art in this class of tsunami propaga-
tion models.

In Chapter 7 we have investigated the numerical simulation of breaking waves
propagation in the Inner Surf Zone. After a one dimensional validation of the ability
of the model to simulate the propagation and distortion of a train of bore in the ISZ, we
have focused on the simulation of wave-induced mean currents generated by breaking
waves and especially on the generation of a rip current over an idealized ridge and
runnel system. This kind of phenomena is usually modelized using depth integrated
momentum and energy equations time-averaged over a wave period. The use of time-
varying BSV model for such problem is still an open issue and in the literature we
only find very few studies relying on Boussinesq-like models. Thus the simulation of
this phenomenon using the NSW equations appears as a novelty. The SURF−SVWB
model gives a good representation of the waves refraction over the ridge and runnel
system, leading to longshore variations in the set-up and hence to a narrow seaward
oriented rip current. The SURF−SVWB model has then been used to compute time-
averaged values of the velocity and these results have been qualitatively compared
with previous studies relying on a time-averaged model and only slight discrepancies
are observable, leading to very satisfactory results. A brief study of the generation of
macro-vortices has also been performed. This subject is also an open issue and needs
further investigations. The improvements which are brought-up by the well-balanced
method are significant, since fractional step methods are unable to compute such small
wave’s features oscillations.



Conclusion et
perspectives

Conclusion

Au cours de cette thèse nous nous sommes attaché à développer des outils du point
de vue de la modélisation tant théorique que numérique, nous permettant d’appréhender
quelques problèmes d’hydrodynamique littorale. En particulier, des éléments de réponses
ont été mis en évidences dans le domaine numérique.

La première partie de cette thèse est consacrée à l’étude théorique d’un modèle de
Saint-Venant bi-dimensionnel particulier. Nous avons conduit la modélisation à partir
des équations de Navier-Stokes tridimensionnelles à surface libre, en effectuant une
analyse asymptotique reposant sur une séparation des échelles spatiales. Nous avons
obtenu un modèle visqueux bi-dimensionnel, intégrant des termes de friction laminaire
et quadratique, un terme de diffusion particulier, un terme classique de Coriolis et un
terme tenant compte des tensions de surface. Un terme de forçage par effet du vent en
surface peut également être introduit. Les nouveautés introduites dans ce travail con-
cernent d’une part l’extension bi-dimensionnelle d’une méthode initialement proposée
dans le cas unidimensionnel et d’autre part une justification asymptotique de tous les
termes sources intégrés au modèle, et plus particulièrement du terme de viscosité. Nous
observons, comme dans le cas unidimensionnel, l’influence du coefficient de viscosité
dans l’expression des coefficients de friction. A notre connaissance, l’unique travail
concernant la dérivation d’un modèle de Saint-Venant bi-dimensionnel par analyse
asymptotique a été introduit très récemment dans [149]. Ce travail n’inclut pas la
dérivation des termes de viscosité.
Nous nous sommes ensuite intéressé à la démonstration de résultats d’existence de so-
lutions faibles globale pour le modèle précédemment dérivé. Un résultat a été obtenu
dans le cas uni-dimensionnel pour le modèle complet. Dans le cas bi-dimensionnel,

265



266 Conclusion et perspectives

nous avons étudié une version simplifiée du modèle, en négligeant une partie du terme
de viscosité. Nous avons également fait une hypothèse forte sur la positivité de la
hauteur d’eau. Ceci nous a permis d’obtenir un résultat d’existence pour ce modèle
bi-dimensionnel simplifié.

Dans la deuxième partie, nous avons décrit l’implémentation d’une méthode de
résolution numérique pour ce modèle bi-dimensionnel. Nous avons obtenu un schéma
équilibre Volume Finis quasi d’ordre deux permettant la capture des discontinuités
isolées. La qualité du traitement de la ligne d’eau a été particulièrement soignée et
la question des conditions aux limites à la fois génératrices et absorbantes au large
a été abordée. Nous avons ensuite présenté une série de validations numériques de
ce modèle en utilisant des solutions analytiques impliquant des phénomènes de run-
up, run-down et des mouvement complexes de la ligne d’eau, à la fois dans les cas
uni- et bi-dimensionnels. Si de nombreux modèles permettant de simuler efficace-
ment les phénomènes de run-up ont été introduits dans la littérature dans le cas
uni-dimensionnel, ils reposent bien souvent sur des algorithmes de suivi d’interface
complexes pour gérer la ligne d’eau. En conséquence, leur généralisation à l’ordre
deux est souvent délicate et les modèles proposant l’étude de phénomènes de run-up
en dimension deux sont plus rares. La comparaison entre les résultats obtenus avec
notre modèle et ceux proposés dans la littérature indique une amélioration significative
de la précision, surtout dans les cas bi-dimensionnels. De plus, à notre connaissance,
aucun schéma équilibre n’avait été appliqué à l’étude de ce type de phénomène et
ce travail apporte donc une réponse efficaces aux problèmes numériques souvent ren-
contrés dans l’étude des phénomènes de run-up d’ondes longues sur des topographies
irrégulières. En particulier, la convergence vers l’état stationnaire au repos ou encore
le calcul précis de faibles oscillations autour de tels équilibres est désormais possi-
ble. Une limitation, observable également sur la quasi totalité des méthodes proposées
dans la littérature, reste la modélisation de la vitesse intégrée selon la verticale, sou-
vent surestimée à la ligne d’eau.

La troisième partie est enfin l’occasion de valider notre modèle numérique sur des
cas plus complexes. Nous nous sommes intéressé d’une part à l’étude du phénomène
de run-up d’ondes longues non déferlantes de type tsunami sur des topographies bi-
dimensionnelles irrégulières. Nos résultats ont été qualitativement comparés avec ceux
introduit dans la littérature et semblent prometteurs. La stabilité et la précision du
schéma nous permettent d’obtenir des résultats très satisfaisants, pour des côuts de
calcul modérés. De plus la convergence vers les états d’équilibre au repos après le
passage de l’onde est une nouveauté dans ce type de problème.
Dans un second temps, nous nous sommes intéressé à l’étude de la propagation d’ondes
déferlantes dans la zone de surf. L’utilisation du schéma équilibre semble particulière-
ment adaptée à la prise en compte des topographies complexes et permet de calculer
la réfraction des vagues se propageant au dessus d’un système de barre/baı̈ne, in-
duisant une focalisation d’énergie, des variations de set-up/set down le long de la côte
et la génération d’un courant sagittal. Nos résultats sont qualitativement comparés
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à ceux obtenus avec un code à modélisation statistique [39] et sont en bon accord.
L’utilisation d’un code de type Saint-Venant nous permet d’avoir accès aux variables
caractéristiques instantanées de l’écoulement, comme par exemple les oscillations de
la vitesse ou le champ de vorticité. Cela permet aussi éventuellement d’obtenir des
valeurs des courants moyens induits par les vagues comme dans le cas d’une approche
statistique. Ce dernier travail constitue une nouveauté puisqu’à notre connaissance,
aucune étude bi-dimensionnelles concernant la génération de courants moyens induits
par les vagues dans la zone de surf n’a été réalisée à partir d’un modèle de Saint-Venant.
Ce type d’étude nécessite en effet un schéma d’ordre élevé et une modélisation très
précise des effets induits par la topographie, les fluctuations du set-up conduisant à la
génération de tels courants étant de très faible amplitude.

Perspectives

Les perspectives et pistes de recherches ouvertes sont nombreuses.

Sur le plan de la modélisation, un projet ambitieux consiste à intégrer à notre
modèle des termes dispersifs “à la Boussinesq” afin d’étendre son domaine de validité
à la zone de levée. En effet, de nombreux travaux sont consacrés depuis une bonne
dizaine d’années à l’extension des modèles de type Boussinesq à la zone de surf interne
et zone de swash, au prix de paramétrisations souvent complexes permettant de bien
modéliser le déferlement et les mouvements de la ligne d’eau [47], [48]. Une autre ap-
proche consiste donc à étendre la validité du modèle de Saint-Venant à la zone de levée
par l’adjonction d’effets dispersifs permettant de prévenir le“raidissement”anticipé des
fronts d’onde. Ceci conduirait à un modèle ayant un vaste champ d’application.

Concernant le résultat d’existence pour le modèle bi-dimensionnel, il semble pos-
sible de lever assez facilement l’hypothèse faite sur la positivité au sens strict de la
hauteur d’eau, par des arguments de compacité adéquats, au prix d’une perte de régu-
larité sur la vitesse. Ce sujet est actuellement à l’étude. La prise en compte du terme
complet de diffusion dans le cas bi-dimensionnel reste une difficulté et d’autres études
semblent nécessaires.

Dans le domaine numérique, nous avons très récemment implémenté une extension
simple de type ENO (Essentially Non Oscillatory) proposée dans [20], afin d’obtenir
un schéma réellement d’ordre deux. La quantification du gain en précision reste à
effectuer. Cette extension peut se révéler utile pour les futures études concernant le
champ de vorticité instantané ou encore la génération des courants moyens.
Les schémas de type équilibre sont toujours un sujet d’étude pour de nombreuses
équipes de recherche et l’intégration d’une méthode permettant la préservation et
la convergence vers la totalité des états d’équilibre subsoniques est envisagée. Une
amélioration de la modélisation des vitesses est également nécessaire.
Dans un autre domaine, la mise en place d’un algorithme de maillage adaptatif perme-
ttant de raffiner automatiquement le maillage cartésien dans certaines zones de fortes
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variations topographiques ou en hauteur d’eau apporterait un gain certain en temps de
calcul et en précision, nous permettant de déployer des grilles très fines dans les zones
d’intérêts. Des collaborations sont actuellement envisagées pour parvenir à ce résultat.

Enfin, dans le domaine de la zone de surf, de nombreux champs d’investigation
sont considérés. Tout d’abord l’étude de la macro-vorticité générée par le déferlement
au dessus de topographies présentant des variations dans la direction longshore est
un sujet complexe et encore ouvert. Nos premiers résultats sont encourageants et de
futures études sont déjà initiées. La modélisation des courants moyens induits par la
houle dans la zone de surf, typiquement les courants de dérive et courants sagittaux,
a à peine été amorcée dans ce travail. La comparaison avec des données in-situ, la
simulation de cas plus réalistes et pour d’autres géométries ainsi que la mise en valeur
des apports dus au schéma équilibre sont à venir. Enfin l’extension numérique de notre
modèle à la zone de levée par l’adjonction de termes dispersifs reste notre objectif le
plus ambitieux. Un tel modèle intégrant des termes dispersifs permettrait en effet
de décrire la quasi totalité de la zone littorale depuis la levée des vagues jusqu’au
déferlement et phénomène de run-up sur la plage. Bien sûr, la zone de transition reste
toujours difficilement modélisable par des approches de type BSV.



Publications

At this day, two papers corresponding to Chapter 1 and Chapter 3 have been submit-
ted :

• Marche F. Derivation of a new two-dimensional viscous shallow wa-

ter model with varying topography, bottom friction and capillary

effects, submitted to European Journal of Mechanic /B: Fluid [Recently rec-
ommended for publication with minor modifications]

• Marche F, bonneton P, Fabrie P, Seguin N. Evaluation of well-balanced

bore-capturing schemes for 2D wetting and drying processes, sub-
mitted to International Journal for Numerical Methods in Fluids

Two other papers are still in progress...
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sité Bordeaux 1 2204.

[40] Casulli V. Semi-implicit finite difference methods for the two-dimensional shallow water equa-
tions. J. Comput. Phys. 1990; 4:56–47.

[41] Casulli V. Cheng RT. Semi-implicit finite difference methods for the three-dimensional shallow
water flow. Int.J.Numer.Meth.Fluids 1992; 15:629–648.

[42] Chen Q, Kirby JT, Dalrymple RA, Kennedy AB, Haller MC. Boussinesq modelling of a rip
current system. J. Geophys. Res. 1999; 104(9):20617–20637.

[43] Chinnayya A, Leroux AY.. A new general Riemann solver for the shallow water equations with
friction and topography. Preprint.

[44] Chippada S, Dawson CN, Martinez ML, Wheler MF. A Godunov-type finite volume method for
the system of shallow water equations. Comp. Meth. Applied. Mech. Eng 1998; 157(9):105–129.

[45] Church J, Thornton E. Effects of breaking wave induced turbulence within a longshore current
model. Coastal Engineering 1993; 20(9):1–28.

[46] Cienfuegos R, Barthelemy E, Bonneton P. A new breaking wave parametrization for Boussinesq
type equations. Proc. WAVES 2005.

[47] Cienfuegos R, Barthelemy E, Bonneton P. A fourth order compact finite volume scheme for fully
nonlinear and weakly dispersive Boussinesq-type equations. Part I : Model development and
analysis. Accepted in Int. J. Num. Meth. Fluids.; 2005.

[48] Cienfuegos R, Barthelemy E, Bonneton P. A fourth order compact finite volume scheme for fully
nonlinear and weakly dispersive Boussinesq-type equations. Part II : Boundary conditions and
model validation. Preprint.

[49] Courant R, Friedrichs K, Lewy H. Uber die pertieller Differenzen-Glichungen der mathematischen
Physik. Mathematische Annalar 1928; 100:32–74.

[50] Cox DT. Experimental and numerical modelling of surf zone hydrodynamics. PhD dissertation,
Univ. of Delaware, Newark, 1995.

[51] Bresch D, Desjardins B. Existence of weak solutions for 2D viscous shallow water equations and
convergence to the quasi-geostrophic model. Commun. Math. Phys. 2003; 238(1,2):211–223.

[52] Dal Maso G, Le Floch PG, Murat F. Definition and weak stability of nonconservative products.
J. Math. Pures Appl. 1995; 74:483–548.

[53] Dingemans MA. Water wave propagation over uneven bottoms-Part 1, 2, World Scientific; 1997.

[54] Erduran KS, Kutija V. Applications of finite volume methods with Osher scheme and split
technique on different types of flow in channel. Proc. Int. Conf. on Godunov Methods: Theory
and Applications 1999; Oxford UK.

[55] Erduran KS, Kutija V, Hewett JM. Performance of finite volume solutions to the shallow water
equations with shock-capturing schemes. Int. J. Numer. Meth. Fluids 2002; 40:1237–1273.

[56] Eymard R, Gallouet T, Herbin R. Finite volume methods. In Handbook of numerical analysis,
vol VII, Ciarlet PG, Lions JL, editors. North Holland: Amsterdam, 2000; 729–1020.

[57] Gallouet T, Herard JM, Seguin N. Some approximate Godunov schemes to compute shallow-
water equations with topography. Computers and Fluids 2003; 32:479–513.

[58] Gallouet T, Herard JM, Seguin N. On the use of some symetrizing variables to deal with vacuum.
Calcolo 2003; 40:163–194.

[59] Gallouet T, Herard JM, Seguin N. Some recent finite volume schemes to compute Euler equations
using real gaz EOS. Int. J. Numer. Methods Fluids 2002; 39:1073–1138.

[60] Galvin CJ. Breaker type classification on three laboratory beaches. J. Geophys. res. 1968;
73:3651–3659.

[61] Garcia R, Kahawita RA. Numerical solutions of the St.Venant equations with the MacCormack
finite-difference scheme. Int. J. Numer. Methods Fluids 1986; 6:259–274.



274 Bibliography

[62] Gerbeau JF, Perthame B. Derivation of viscous Saint-Venant system for laminar shallow water;
Numerical validation. Discrete and continuous dynamical systemes-series B 2001; 1:89–102.

[63] Gica E, Teng MH. Numerical modeling of earthquake-generated distant tsunamis in the pacific
basin. Proc. 16th ASCE Eng. Mech. Conf 2003, Univ. Washington, Seattle.

[64] Glaister P. Approximate Riemann solutions of the shallow water equations. J. Hydr. Res. 1988;
26:293–305.

[65] Glaister P. Prediction of supercritical flow in open channels. Comput. and Math. Appl. 1992;
24(7):69–86.

[66] Godlewski E, Raviart PA. Numerical approximations of hyperbolic systems of conservation laws.
Applied Mathematical Sciences 118 1996, Springer Verlag, New York.

[67] Godunov SK. A difference method for numerical calculation of discontinuous equations of hy-
drodynamics. Mat Sb 1959; 271–300.[in Russian]

[68] Gosse L. A well balanced flux-vector splitting scheme designed for the hyperbolic systems of
conservation laws with source terms. Comput. Math Appl. 2000; 39(1):135–159.

[69] Goto C. Nonlinear equations of long waves in the Lagrangian description. Coastal Engineering
in Japan 1979; 22(1):1–9.

[70] Goto C, Shuto N Run-up of tsunamis by linear and nonlinear theories. Proc 17th Coast. Eng.
Conf. ASCE Sydney Australia 1980;

[71] Govender K, Mocke GP, Alport MJ. Video imaged surf zone wave and roller structures and flow
fields. J. Geophys. Res. 2002; 107:3072–3093.

[72] Greenberg JM, Leroux AY. A well balanced scheme for the numerical processing of source terms
in hyperbolic equations. SIAM J.Numer.Anal. 1996; 33(1):1–16.

[73] Greenberg JM, Leroux AY, Baraille R, Noussair A. Analysis and approximation of conservation
laws with source terms. SIAM J. Numer. Anal. 1997; 34(5):1980–2007.

[74] Grenier E. On the derivation of homogeneous hydrostatic equations, ESIAM : Math. Model.
Numer. Anal. 1999; 33(5):965–970.

[75] Gustafsson B, Sundstrom A. Incompletely parabolic problems in fluid dynamics. SIAM J. Appl.
Math. 1978; 35(5):343–357.
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